An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 dB Gain

Michael Gordon,
Sorin P. Voinigescu

University of Toronto
Toronto, Ontario, Canada

ESSCIRC 2004, Leuven, Belgium
Outline

- Motivation
- LNA Topology Comparison
- Inductor-Based LNA Design
- Fabrication
- Measurement Results
- Conclusion
- Future Work
Work Motivation

- 60-GHz WLAN (57-64 GHz)
- GigaBit Ethernet in 70-GHz and 80-GHz band
- 77-GHz Automotive RADAR

- mm-wave design advantages over 5-10 GHz RF
 - Simpler and robust super-heterodyne radio architecture (A lot of bandwidth available)
 - Smaller passives and die area (lower cost)
 - Smaller antenna with higher gain
Research Goals

- Study the feasibility of Si-based transceiver blocks for mm-wave applications
- Develop a mm-wave LNA design methodology
- Assess modeling limitations of active and passive components at mm-wave frequencies
 - Inductors
 - SiGe HBTs
Transceiver Overview

Transmitter

IF_{in} 5 GHz

VCO

Power Amp

RF_{out} 60 GHz

Receiver

RF_{in} 60 GHz

LNA

BPF

Mixer

IF_{out} 5 GHz

[C. Lee et al, CSICS 2004]

This work

Michael Gordon, ESSCIRC 2004
Choice of Technology

<table>
<thead>
<tr>
<th></th>
<th>(f_T, f_{\text{MAX}})</th>
<th>Integration</th>
<th>Noise Figure</th>
<th>Breakdown voltage</th>
<th>Mask Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>InP HBT</td>
<td>160</td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>InP HEMT</td>
<td>170</td>
<td>low</td>
<td>low</td>
<td>low-medium</td>
<td>moderate</td>
</tr>
<tr>
<td>0.18(\mu)m SiGe</td>
<td>150</td>
<td>high</td>
<td>high</td>
<td>medium</td>
<td>low</td>
</tr>
<tr>
<td>90nm CMOS</td>
<td>140</td>
<td>high</td>
<td>low</td>
<td>low</td>
<td>high</td>
</tr>
</tbody>
</table>

[S.P. Voinigescu et al, SiRF 2004]

- CMOS NF < SiGe NF (in simulation)
- SiGe transistor NF\(_{\text{min}}\) of 5 dB stresses LNA design
Basic LNA Topologies

Common-Emitter

- Concurrent noise / input match

Common-Base

- Simple input match

Cascode

- Concurrent noise / input match

- Increased Gain

- High Isolation

- Increased Noise

First iteration tape-out at mm-wave frequency:

Topology must be insensitive to transistor model inaccuracies and process variations
LNA Topology Comparison

- Low gain at mm-wave frequencies (need multi-stage)
- Use Noise Measure for comparison
- CE: lowest M_{min}, but lowest G_A
- Parasitics and emitter degeneration reduce gain
- Cascode is the safe choice with high G_A and robustness

$$M_{\text{min}} = \frac{F - 1}{1 - \frac{1}{G_A}}$$

$\text{NF}_{\text{min}}, \ G_A$ simulation
2 x 6.4µm/0.2µm HBT @ 52 GHz

Calculated M_{min}
Inductor-Based LNA Design

- 60 GHz LNA in [S. Reynolds et al, ISSCC 2004] uses transmission-lines for matching and loading
- Inductors can replace transmission-lines
 - Smaller – significant die area reduction
 - L-C networks for input and output matching
- Need to be able to design inductors for mm-wave frequencies and model them accurately

29 µm

330 pH
Stacked Inductor

32 µm

440 pH
Stacked Inductor
Cascode Design Methodology

- Extension to an LNA Design Methodology presented in [S. Voinigescu et al, JSSC Sep '97] for 2-6 GHz

1. Starting with the cascode, bias it at its M_{min} current density (J_{OPT})

2. At J_{OPT}, size Q1-Q2 emitter lengths to match the real part of the optimum noise impedance (R_{sop}) to Z_0

$$R_{sop} \sim l_e^{-1}$$
3. Add L_E and L_B to match Z_{IN} to Z_o

4. Add L_C to resonate the tank at the desired frequency

\[
\text{Re}\{Z_{IN}\} = \frac{L_e \left(2\pi f_T \right)}{\left(C_\pi + 2C_\mu \right) \left(\frac{1}{C_\pi} + \frac{1}{C_\mu} \right)}
\]

Concurrent input impedance and optimum noise impedance match
LNA Schematic

- Use two stages for higher gain
- Inter-stage matching inductor to improve power transfer
- Low-pass noise filtering of bias network

Q1-Q4:
2 x 6.4µm / 0.2µm

Bias Q5-Q6:
2 x 1.7µm / 0.2µm
mm-wave Inductor Modeling

- mm-wave inductor design technique [T. Dickson et al, IMS 2004]
 - Use 3D stacked inductors
- Modeled using the ASITIC software tool
- Extracted compact 2-π inductor models used in circuit design

440 pH inductor
Fabrication

- Fabricated in Jazz Semiconductor’s production 0.18 µm SiGe120 BiCMOS process

- Standard 60µm x 60µm, pads (100µm pitch)
- Die size is pad limited 250µm x 200µm core
- 4 stacked inductors
- 2 wire inductors

Michael Gordon, ESSCIRC 2004
Transistor Measurements

- NF_{min} extracted from measured Y-Parameters
 - Shown to be a valid technique for frequencies below $f_T/2$
 [S. Voinigescu et al, JSSC Sep '97]

- f_T and $f_{\text{MAX}} = 150$ GHz
- $NF_{\text{min}} @ 60$ GHz = 5.2 dB
- Good agreement with HBT model
Inductor Measurements

- Short and Open test-structure de-embedding
- Inductance is 15% higher than simulated
- SRF (Self-Resonance-Frequency) is lower for the 3D stacked inductors than simulated
- Measured Q > 10 at 50 GHz

330pH Inductor L and Q

440pH Inductor L and Q
S-parameter Measurements

- 22 dB Gain at 52 GHz
- LNA Peak frequency is dictated by tank inductor
 - Lower inductor SRF shifts the peak to lower frequency
 - Biasing does not affect peak frequency

LNA S-parameters

Biasing effect on gain peak
Linearity Measurements

- Measured 1dB compression at 50 GHz ($V_{CC}=3.3V$)
- Input 1 dB compression point of \(-14 \text{ dBm}\)
- Output 1 dB compression point of \(3 \text{ dBm}\)
Comparison to other work

<table>
<thead>
<tr>
<th>Tech</th>
<th>Gain (dB)</th>
<th>NF (dB)</th>
<th>P_{IN1dB} (dBm)</th>
<th>Power (mW)</th>
<th>Area</th>
<th>FOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 GHz [X. Guan, JSSC Feb 2004]</td>
<td>15</td>
<td>6.0</td>
<td>-</td>
<td>24</td>
<td>*0.05 mm²</td>
<td>-</td>
</tr>
<tr>
<td>24 GHz [H. Hashemi, ISSCC 2004]</td>
<td>25</td>
<td>3.8</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60 GHz [S. Reynolds, ISSCC 2004]</td>
<td>17</td>
<td>4.2</td>
<td>-20</td>
<td>11</td>
<td>0.77 mm²</td>
<td>1.72</td>
</tr>
<tr>
<td>52 GHz This work (3.3V)</td>
<td>22</td>
<td>7.5</td>
<td>-14</td>
<td>38</td>
<td>0.16 mm²</td>
<td>1.88**</td>
</tr>
<tr>
<td>52 GHz This work (2.5V)</td>
<td>18</td>
<td>7.9</td>
<td>-18</td>
<td>19</td>
<td>0.16 mm²</td>
<td>0.53**</td>
</tr>
</tbody>
</table>

$$LN A_{FOM} = \frac{G * P_{IN1dB} * f}{(NF - 1) * P}$$

* Area without pads
** Simulated Noise Figure
Summary and Conclusion

<table>
<thead>
<tr>
<th>Gain</th>
<th>22 dB at 52 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{11} / S_{22}</td>
<td>< -12 dB / -5 dB</td>
</tr>
<tr>
<td>NF</td>
<td>7.5 dB (simulated)</td>
</tr>
<tr>
<td>Isolation</td>
<td>< -30 dB</td>
</tr>
<tr>
<td>$P_{\text{IN1dB}} / P_{\text{OUT1dB}}$</td>
<td>-14 dBm / +3 dBm</td>
</tr>
<tr>
<td>Power</td>
<td>38 mW (11.4 mA from 3.3V)</td>
</tr>
</tbody>
</table>

- 52 GHz LNA with 22 dB gain using a production 0.18µm SiGe BiCMOS technology
- Fully inductor-based circuit operating above 50 GHz
- Significant die-area reduction over the use of transmission lines
Future work: 90nm CMOS LNA

- CMOS f_T and $f_{MAX} = 140$ GHz
- Single-stage cascode LNA
 - 2.5 dB gain at 52 GHz
 - Uses 3D stacked inductors
- Peak shift down due to tank inductor

Future - Simulated 2-stage

- $S_{21} = 22$ dB
- NF = 4 dB

Measured 1-stage
Acknowledgements

- Kenneth Yau for SiGe HBT characterization
- Jazz Semiconductor for financial support and fabrication
- NSERC
- Micronet
- Canadian Wireless Telecom Association