
Optimizing Indirect Branch Prediction Accuracy
in Virtual Machine Interpreters

M. Anton Ertl
∗

TU Wien
David Gregg

Trinity College, Dublin

ABSTRACT
Interpreters designed for efficiency execute a huge number
of indirect branches and can spend more than half of the
execution time in indirect branch mispredictions. Branch
target buffers are the best widely available form of indirect
branch prediction; however, their prediction accuracy for ex-
isting interpreters is only 2%–50%. In this paper we investi-
gate two methods for improving the prediction accuracy of
BTBs for interpreters: replicating virtual machine (VM) in-
structions and combining sequences of VM instructions into
superinstructions. We investigate static (interpreter build-
time) and dynamic (interpreter run-time) variants of these
techniques and compare them and several combinations of
these techniques. These techniques can eliminate nearly all
of the dispatch branch mispredictions, and have other ben-
efits, resulting in speedups by a factor of up to 3.17 over
efficient threaded-code interpreters, and speedups by a fac-
tor of up to 1.3 over techniques relying on superinstructions
alone.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.3.4
[Programming Languages]: Processors—Interpreters

General Terms
Languages, Performance, Experimentation

Keywords
Interpreter, branch target buffer, branch prediction, code
replication, superinstruction

∗Correspondence Address: Institut für Computersprachen,
Technische Universität Wien, Argentinierstraße 8, A-1040
Wien, Austria; anton@mips.complang.tuwien.ac.at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

1. INTRODUCTION
Different programming language implementation ap-

proaches provide different tradeoffs with respect to the fol-
lowing criteria:

• Ease of implementation

• Portability (Retargetability)

• Compilation Speed

• Execution Speed

Interpreters are a popular language implementation ap-
proach that can be very good at the first three criteria,
but has an execution speed disadvantage: an interpreter de-
signed for efficiency typically suffers a factor of ten slowdown
for general-purpose programs over native code produced by
an optimizing compiler [10].1 In this paper we investigate
how to improve the execution speed of interpreters.

Existing efficient interpreters perform a large number of
indirect branches (up to 13% of the executed instructions).
Mispredicted branches are expensive on modern processors
(e.g., they cost about 10 cycles on the Pentium III and
Athlon and 20 cycles on the Pentium 4). As a result, in-
terpreters can spend more than half of their execution time
recovering from indirect branch mispredictions [7]. Conse-
quently, improving the indirect branch prediction accuracy
has a large effect on interpreter performance.

The best indirect branch predictor in widely available
processors is the branch target buffer (BTB). Most current
desktop and server processors have a BTB or similar struc-
ture: all Pentiums, Athlon, Alpha 21264, Itanium 2. BTBs
mispredict 50%–63% of the executed indirect branches in
threaded-code interpreters and 81%–98% in switch-based in-
terpreters [7].

In this paper, we look at software ways to improve the
prediction accuracy. The main contributions of this paper
are:

• We propose the new technique of replication (Sec-
tion 4.1) for eliminating mispredictions.

1For library-intensive special-purpose programs the speed
difference is usually much smaller. Not all interpreters
are designed for efficiency on general-purpose programs and
some may produce slowdowns by a factor > 1000 [15]. Un-
fortunately, many people draw incorrect general conclusions
about the performance of interpreters from such examples.

Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
SIGPLAN ’03 Conference on Programming Language Design and Implementation (PLDI ’03)

typedef enum {
add /* ... */

} Inst;

void engine()
{

static Inst program[] = { add /* ... */ };

Inst *ip = program;
int *sp;

for (;;)
switch (*ip++) {
case add:

sp[1]=sp[0]+sp[1];
sp++;
break;

/* ... */
}

}

Figure 1: VM instruction dispatch using switch

• We evaluate this technique, as well as existing superin-
struction techniques, and the combination of these
techniques with respect to prediction accuracy and
performance (Section 7).

• We introduce several enhancements of dynamic su-
perinstructions (in addition to replication), in particu-
lar: extending them across basic blocks; and a portable
way to detect non-relocatable code fragments (Sec-
tion 5.2).

• We empirically compare the static [8] and dynamic [13]
superinstruction techniques against each other (Sec-
tion 7).

2. BACKGROUND

2.1 Efficient Interpreters
This section discusses how efficient interpreters are im-

plemented. We do not have a precise definition for effi-
cient interpreter, but the fuzzy concept “designed for good
general-purpose performance” shows a direct path to spe-
cific implementation techniques.

If we want good general-purpose performance, we can-
not assume that the interpreted program will spend large
amounts of time in native-code libraries. Instead, we have to
prepare for the worst case: interpreting a program perform-
ing large numbers of simple operations; on such programs
interpreters are slowest relative to native code, because these
programs require the most interpreter overhead per amount
of useful work.

To avoid the overhead of parsing the source program re-
peatedly, efficient interpretive systems are divided into a
front-end that compiles the program into an intermediate
representation, and an interpreter for that intermediate rep-
resentation; this design also helps modularity. This paper
deals with the efficiency of the interpreter; the efficiency of
the front-end can be improved with the established methods
for speeding up compiler front-ends.

To minimize the overhead of interpreting the intermedi-
ate representation, efficient interpretive systems use a flat,

sequential layout of the operations (in contrast to, e.g.,
tree-based intermediate representations), similar to machine
code; such intermediate representations are therefore called
virtual machine (VM) codes.2 Efficient interpreters usually
use a VM interpreter (but not all VM interpreters are effi-
cient).

The interpretation of a VM instruction consists of access-
ing arguments of the instruction, performing the function
of the instruction, and dispatching (fetching, decoding and
starting) the next instruction. Dispatch is common to all
VM interpreters and can consume most of the run-time of
an interpreter, so this paper focuses on dispatch.

Dispatching the next VM instruction requires executing
one indirect branch to get to the native code that imple-
ments the next VM instruction. In efficient interpreters the
machine code for simple VM instructions can take as few as
3 native instructions (including the indirect jump), resulting
in a high proportion of indirect branches in the executed in-
struction mix (we have measured up to 13% for the Gforth
interpreter and 11% for the Ocaml interpreter [7]).

There are two popular VM instruction dispatch tech-
niques:

Switch dispatch uses a large switch statement, with one
case for each instruction in the virtual machine in-
struction set. Switch dispatch can be implemented in
ANSI C (see Fig. 1), but is not very efficient [7] (see
also Section 3).

Threaded code represents a VM instruction as address
of the routine that implements the instruction [1].
In threaded code the code for dispatching the next
instruction consists of fetching the VM instruction,
jumping to the fetched address, and incrementing the
instruction pointer. This technique cannot be imple-
mented in ANSI C, but it can be implemented in GNU
C using the labels-as-values extension. Figure 2 shows
threaded code and the instruction dispatch sequence.
Threaded code dispatch executes fewer instructions,
and provides better branch prediction (see Section 3).

Several interpreters use threaded code when compiling
with GCC, and fall back to switch dispatch, if GCC is not
available (e.g., the Ocaml interpreter, YAP, Sicstus Prolog).

2.2 Branch Target Buffers
CPU pipelines have become longer over time, in order

to support faster clock rates and out-of-order superscalar
execution. Such CPUs execute straight-line code very fast;
however, they have a problem with branches, because they
are typically resolved very late in the pipeline (stage n), but
they affect the start of the pipeline. Therefore, the following
instructions have to proceed through the pipeline for n cycles
before they are at the same stage they would be if there was
no branch. We can say that the branch takes n cycles to
execute (in a simplified execution model).

To reduce the frequency of this problem, modern CPUs
use branch prediction and speculative execution; if they pre-
dict the branch correctly, the branch takes little or no time
to execute. The n cycles delay for incorrectly predicted

2The term virtual machine is used in a number of slightly
different ways by various people; we use the meaning in the
first item of
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?virtual+machine.

VM Code VM instruction routines

Machine code for iadd
Dispatch next instruction

Machine code for imul
Dispatch next instruction

imul
iadd
iadd
...

GNU C Alpha assembly

next_inst = *ip; ldq s2,0(s1) ;load next VM instruction

ip++; addq s1,0x8,s1 ;increment VM instruction pointer

goto *next_inst; jmp (s2) ;jump to next VM instruction

Figure 2: Threaded code: VM code representation and instruction dispatch

address of
branch instruction

predicted target

Figure 3: Branch Target Buffer (BTB)

branches is called the misprediction penalty. The mispredic-
tion penalty is about 10 cycles on the Pentium III, Athlon,
and 21264, and about 20 cycles on the Pentium 4.

The best predictor for indirect branches in widely avail-
able CPUs is the branch target buffer (BTB). An idealised
BTB contains one entry for each branch and predicts that
the branch jumps to the same target as the last time it was
executed (see Fig. 3). The size of real BTBs is limited, re-
sulting in capacity and conflict misses. Most current CPUs
have a BTB-style predictor, e.g. all Pentiums, Athlon, Al-
pha 21264, Itanium 2.

Better indirect branch predictors have been proposed [4,
5, 11], and they would improve the prediction accuracy in
interpreters substantially [7]. However, they have not been
implemented yet in widely available hardware, and it is not
clear, if and when they will be available. The software tech-
niques explored in this paper improve the prediction accu-
racy now, by a similar amount.

3. INTERPRETERS AND BTBS
Ertl and Gregg investigated the performance of several

virtual machine interpreters on several branch predictors [7]
and found that BTBs mispredict 81%–98% of the indirect
branches in switch-dispatch interpreters, and 57%–63% of
the indirect branches in threaded-code interpreters (a vari-
ation, the so-called BTB with two-bit counters, produces
slightly better results for threaded code: 50%–61% mispre-
dictions).

What is the reason for the differences in prediction ac-
curacy between the two dispatch methods? The decisive
difference between the dispatch methods is this: A copy of
the threaded code dispatch sequence is usually appended to
the native code for each VM instruction; as a result, each
VM instruction has its own indirect branch. In contrast,
with switch dispatch all compilers we have tested produce
a single indirect branch (among other code) for the switch,
and they compile the breaks into unconditional branches to
this common dispatch code. In effect, the single indirect
branch is shared by all VM instructions.

Why do these mispredictions occur? Consider the VM
code fragment in Fig. 4, and imagine that the loop has been
executed at least once.

With switch dispatch, there is only one indirect branch,
the switch branch, and consequently there is only one BTB
entry involved. When jumping to the native code for VM
instruction A, the BTB entry is updated to point to that
native code routine. When the next VM instruction is dis-
patched, the BTB will therefore predict target A; in our
example the next instruction is B, so the BTB mispredicts.
The BTB now updates the entry for the switch instructions
to point to B, etc. So, with switch dispatch the BTB always
predicts that the current instruction will also be the next
one to be executed, which is rarely correct.

For threaded code, each VM instruction has its own in-
direct branch and BTB entry (assuming there are no con-
flict or capacity misses in the BTB); e.g., instruction A has
Branch br-A and BTB entry br-A, etc. So, when VM in-
struction B dispatches the next instruction, the same target
will be selected as on the last execution of B; since B oc-
curs only once in the loop, the BTB will always predict the
same target: A. Similarly, the branch of the GOTO instruc-
tion will also be predicted correctly (branch to A). However,
A occurs twice in our code fragment, and the BTB always
uses the last target for the prediction (alternatingly B and
GOTO), so the BTB will never predict A’s dispatch branch
correctly.

We will concentrate on interpreters using separate dis-
patch branches in the rest of the paper.

4. IMPROVING THE PREDICTION ACCU-
RACY

Generally, as long as a VM instruction occurs only once
in the working set of the interpreted program, the BTB will
predict its dispatch branch correctly, because the instruction
following the VM instruction is the same on all executions.
But if a VM instruction occurs several times, mispredictions
are likely.

4.1 Replicating VM Instructions
In order to avoid having the same VM instruction several

times in the working set, we can create several replicas of the
same instruction. We copy the code for the VM instruction,
and use different copies in different places. If a replica occurs
only once in the working set, its branch will predict the next
instruction correctly.

Figure 5 shows how replication works in our example.

switch dispatch threaded code
VM BTB next instruction BTB next instruction
program entry prediction actual entry prediction actual
label:
A switch A B br-A GOTO B
B switch B A br-B A A
A switch A GOTO br-A B GOTO
GOTO label switch GOTO A br-GOTO A A

Figure 4: BTB predictions on a small VM program

threaded code
VM BTB next instruction
program entry prediction actual
label:
A1 br-A1 B B
B br-B A2 A2

A2 br-A2 GOTO GOTO
GOTO label br-GOTO A1 A1

Figure 5: Improving BTB prediction accuracy by
replicating VM instructions

threaded code
VM BTB next instruction
program entry prediction actual
label:
A br-A B A B A
B A br-B A GOTO GOTO
GOTO label br-GOTO A A

Figure 6: Improving BTB prediction accuracy with
superinstructions

There are two copies of the VM instruction A now, A1, and
A2. Each of these copies has its own dispatch branch and its
own entry in the BTB. Because A1 is always followed by B,
and A2 is followed by GOTO, the dispatch branches of A1

and A2 always predict correctly, and there are no mispredic-
tions after the first iteration while the interpreter executes
the loop (except possibly mispredictions from capacity or
conflict misses in the BTB).

4.2 Superinstructions
Combining several VM instructions into superinstructions

is a technique that has been used for reducing VM code size
and for reducing the dispatch and argument access overhead
in the past [14, 13, 10, 8]. However, its effect on branch
prediction has not been investigated in depth yet.

In this paper we investigate the effect of superinstructions
on dispatch mispredictions; in particular, we find that us-
ing superinstructions reduces mispredictions far more than
it reduces dispatches or executed native instructions (see
Section 7.3).

To get an idea why this is the case, consider Figure 6: we
combine the sequence B A into the superinstruction B A.
This superinstruction occurs only once in the loop, and A
now also occurs only once, so there are no mispredictions
after the first iteration while the interpreter executes the
loop.

5. IMPLEMENTATION

5.1 Static Approach
There are two ways of implementing replication and su-

perinstructions (see Fig. 7).
In the static approach the interpreter writer produces

replicas and/or superinstructions at interpreter build-time,
typically by generating C code for them with a macro pro-
cessor or interpreter generator (e.g., vmgen supports static
superinstructions [8]). During VM code generation (at inter-
preter run-time) the interpreter front-end just selects among
the built-in replicas and/or superinstructions.

For static replication two plausible ways to select the copy
come to mind: round-robin (i.e., always select the statically
least-recently-used copy) and random. We tried both ap-
proaches in our simulator, and achieved better results for
round-robin, so we use that in the rest of the paper. Our
explanation for the better results with round-robin selec-
tion is spatial locality in the code; execution does not jump
around in the code at random, but tends to stay in a specific
region (e.g., in a loop), and there it is less likely to encounter
the same replica twice with round-robin selection. E.g., in
our example loop we will get the perfect result (Fig. 5) if we
have at least two replicas of A and use round-robin selection,
whereas random selection might use the same replica of A
twice and thus produce 50% mispredictions.

For static superinstructions one can use dynamic pro-
gramming (shortest-path algorithm) to select the optimal
(minimum) number of superinstructions for a given basic
block [2]. A simpler alternative is the greedy (maximum
munch) algorithm. In the rest of the paper we use the greedy
algorithm (because we have not yet implemented dynamic
programming); preliminary simulation results indicate there
is almost no difference between the results for optimal and
greedy selection.

5.2 Dynamic Approach
In the dynamic approach the replicas or superinstructions

are created when the VM code is produced at interpreter
run-time.

To implement replication, every time the interpreter front-
end generates a VM instruction, it creates a new copy of
the code for the VM instruction, and lets the threaded code
pointer point to the new copy (see Fig. 7). In this way each
instance of a VM instruction gets its own replica, ensuring
that there are no mispredictions (apart from those resulting
from the limited BTB size). The original copies of the code
are only used for copying, and are never executed. The
front-end knows the end of the code to be copied through a
label there [13].

data segment
VM Code

code segment
VM instruction routines

Machine code for iload
Dispatch next

Machine code for iload
Dispatch next

iload
iadd
iload
iload

Machine code for iadd
Dispatch next

data segment
VM Code

code segment
VM routine originals

Machine code for iload
Dispatch next

iload
iadd
iload
iload

Machine code for iadd
Dispatch next

data segment
VM routine copies

Machine code for iload
Dispatch next

Machine code for iadd
Dispatch next

Machine code for iload
Dispatch next

Machine code for iload
Dispatch next

Static Replication Dynamic Replication

Figure 7: The static and the dynamic approach to implementing replication

Implementing dynamic replication with dynamic superin-
structions requires only a small change over dynamic repli-
cation alone, if the replicas are already laid down in memory
in the same sequence as the VM code: just do not copy the
dispatch code except on VM basic block ends. This results
in one superinstruction for each basic block.

If you want dynamic superinstructions without replica-
tion, you have to perform another change: at the end of
each VM basic block, check if the superinstruction has al-
ready occured; if so, eliminate the new replica, and redirect
the threaded code pointers to the first version of the superin-
struction (see [13]).

One can get dynamic superinstructions larger than a basic
block with two more changes:

• Keep the increments of the VM instruction pointer
even if you do not copy the rest of the dispatch code;
as a result, the VM code will be quite similar to the
dynamic replication case (whereas you have only one
threaded-code pointer per superinstruction if you elim-
inate the increments); this allows to continue the su-
perinstruction across VM code entry points; on a VM
jump to the entry point, the threaded code pointer at
this place will be used and result in entering the code
for the superinstruction in the middle.

• Let the dispatch for the fall-through path of a con-
ditional VM branch be at the end of the conditional
branch code, and use an additional dispatch for the
branch-taken path; then you can also eliminate the
(fall-through) dispatch at the end of a conditional VM
branch.

As a result of these two optimizations, all dispatches are
eliminated, except dispatches for taken VM branches, VM
calls and VM returns (see Fig. 8).

One problem with the dynamic approach is that it can
only copy code that is relocatable; i.e., it cannot copy code, if
the code fragment contains a PC-relative reference to some-
thing outside the code fragment (e.g., an Intel 386 call

instruction), or if it contains an absolute reference to some-
thing inside the code fragment (e.g., a MIPS j(ump) instruc-
tion). Whether the code for a VM instruction is relocatable
or not depends on the architecture and on the compiler; so,
a general no-copying list [13] is not sufficient.

Machine Code for A
if (top-of-stack != 0) {
 ip = target
 Dispatch next
}
Machine code for B
Machine code for C
Machine code for return
Dispatch next

Basic block boundaries
but no dispatch

data segment
VM Code

data segment
VM routine copies

A
ifeq

target
B
C

return

Figure 8: Superinstructions across basic blocks

Our approach to this problem is to have two versions of the
VM interpreter function, one with some gratuitious padding
between the VM instructions. We compare the code frag-
ments for each VM instruction of these two functions; if they
are the same, the code fragment is relocatable, if they are
different, it is not.

The dynamic approach requires a small amount of
platform-specific code; on most architectures it needs only
code for flushing the I-cache, but, e.g., on MIPS it might
have to ensure that the copies are in the same 256MB region
as the original code to ensure that the J and JAL instruc-
tions continue to work.

5.3 Comparison
The main advantage of the static approach is that it is

completely portable, whereas the dynamic approach requires
a small amount of platform-specific code.

Another advantage of static superinstructions is that their
code can be optimized across their component instructions,
whereas dynamic superinstructions simply concatenate the
components without optimization. In particular, static su-
perinstructions can keep stack items in registers across com-
ponents, and combine the stack pointer updates of the com-
ponents. In addition, static superinstructions make it pos-
sible to use instruction scheduling across component VM
instructions. These advantages can also be exploited in a
dynamic setting by combining static superinstructions with
dynamic superinstructions and dynamic replication.

Moreover, static replication and superinstructions also
work for non-relocatable code. However, at least for Gforth
the code for the frequently-executed VM instructions is
relocatable on the 386 and Alpha architecture. For the
JVM, instructions that can throw exceptions are often non-
relocatable (relative branch to the throw code outside the
code for the VM instruction), but that can be worked
around, e.g., by using an indirect branch instead of the rel-
ative branch.

Finally, the static approach does not need to pay the cost
of copying the code at run-time (including potentially ex-
pensive I-cache flushes), that the dynamic approach has to
pay. However, in our experiments this copying takes 5ms for
a 10000-line program (190KB generated code) on a Celeron-
800, so that should usually not be a problem3.

The main advantage of the dynamic approach is that it
perfectly fits replications and/or superinstructions to the in-
terpreted program, whereas the static approach has to select
one set of replications/superinstructions for all programs.

Another advantage of the dynamic approach is that the
number of replications and superinstructions is only limited
by the resulting code size, whereas in the static approach the
time and space required for compiling the interpreter limit
the number of replications and superinstructions to around
1000 (e.g., compiling Gforth with 1600 superinstructions re-
quires 5 hours and 400 MB on a Celeron-800).

5.4 Relation to just-in-time compilers
The machine code resulting from dynamic superinstruc-

tions with replication is similar to what a simple just-in-time
(JIT) native-code compiler produces. So why not write a
JIT compiler in the first place?

The reason is portability. Native-code compilers take a sig-
nificant effort to retarget to another architecture (typically
months to years, for each architecture). In contrast retarget-
ing the dynamic replication/superinstruction part from the
386 to the Alpha architecture took about an hour. And if we
do not invest the hour, we can still fall back to the base in-
terpreter on the new architecture; in contrast, if you do not
want to invest the months of effort for retargeting a JIT, you
need a separate fallback system (e.g., an interpreter), and
that needs even more effort. And all these targets and the
fallback system have to be maintained, requiring yet more
effort.

Technically, the main difference between code from a sim-
ple, macro-expanding native-code compiler and our code
from dynamic replication with dynamic superinstructions is:
our code accesses immediate arguments of VM instruction
through the VM code representation; and it uses indirect
branches instead of direct branches for control-flow changes.

See Section 7.6 for a timing comparison.

6. EXPERIMENTAL SETUP
We have conducted experiments using a simulator as well

as experiments using an implementation of these techniques.
We used a simulator to get results for various hardware con-
figurations (especially varying BTB and cache sizes), and to
get results without noise effects like cache or BTB conflicts,

3Actually, in comparison to plain threaded code, the copying
overhead is already amortized by the speedup of the Forth-
level startup code, leading to the same total startup times
(17ms on the Celeron-800).

Program Version Lines Description
gray 4 754 parser generator
bench-gc 1.1 1150 garbage collector
tscp 0.4 1625 chess
vmgen 0.5.9 2068 interpreter generator
cross 0.5.9 2735 Forth cross-compiler
brainless 0.0.2 3519 chess
brew 38 29804 evolutionary programming

Figure 9: Benchmark programs used

or (for static methods) instruction scheduling or register al-
location differences.

The results from the simulation and the real implementa-
tion agree reasonably well, so in this paper we mainly report
results from the implementation running on real processors,
and we refer to the simulation results only to clarify points
that are not apparent from the real-world implementation
results.

6.1 Implementation
We implemented the techniques described in Section 4 in

Gforth, a product-quality Forth interpreter.
In particular, we implemented static superinstructions us-

ing vmgen [8]; we implemented static replication by repli-
cating the code for the (super)instructions on interpreter
startup instead of at interpreter build-time; in all other re-
spects this implementation behaves like normal static repli-
cation (i.e., the replication is not specific to the interpreted
program, unlike dynamic replication). This was easier to
implement, allowed to use more replication configurations
(in particular, more replicas) and should produce the same
results as normal static replication (except for the copying
overhead, and the impact of that was small compared to the
benchmark run-times).

We implemented dynamic methods pretty much as de-
scribed in Section 5.2, with free choice (through command-
line flags) of replication, superinstructions, or both, and su-
perinstructions within basic-blocks or across them. By us-
ing this machinery with a VM interpreter including static
superinstructions we can also explore the combination of
static superinstructions (with optimizations across compo-
nent instructions) and the dynamic methods.

One thing that we have not implemented is eliminating
the increments of the VM instruction pointers along with
the rest of the instruction dispatch in dynamic superinstruc-
tions. However, by using static superinstructions in addition
dynamic superinstructions and replication we also reduce
these increments (in addition to other optimizations); look-
ing at the results from that, eliminating only the increments
probably does not have much effect. It would also conflict
with superinstructions across basic blocks.

6.2 Machines
We used an 800MHz Celeron (VIA Apollo Pro chipset,

512MB PC100 SDRAM, Linux-2.4.7, glibc-2.2.2, gcc-2.95.3)
for most of the results we present here. The reason for
this choice is that the Celeron has a relatively small I-cache
(16KB), L2 cache (128KB), and BTB (512 entries), so any
negative performance impacts of the code growth from our
techniques should become visible on this processor.

gray bench-gc tscp vmgen cross brainless brew

speedup

1.0

2.0

3.0

plain static repl static super static both
dynamic repl dynamic super dynamic both across bb with static super

Figure 10: Speedups of various interpreter optimizations on a Celeron-800

For comparison, we also present some results from
a 1200MHz Athlon (Thunderbird; VIA KT133 chipset,
192MB PC100 SDRAM, Linux-2.4.0, glibc-2.1.3, gcc-
2.95.1). This processor has a larger I-cache (64KB), L2 cache
(256KB), and BTB (2048 entries).

Both processors allow measuring a variety of events with
performance-monitoring counters, providing additional in-
sights.

6.3 Benchmarks
Figure 9 shows the benchmarks we used for our exper-

iments. The line counts include libraries that are not
preloaded in Gforth, but not what would be considered as
input files in languages with a hard compile-time/run-time
boundary (e.g., the grammar for gray, and the program to
be compiled for cross), as far as we could tell the difference.

7. RESULTS

7.1 Interpreter variants
We compared the following variants of Gforth:

plain Threaded code; this is used as the baseline of our
comparison (factor 1).

static repl Static replication with 400 replicas and round-
robin selection.

static super 400 static superinstructions with greedy se-
lection.

static both 35 unique superinstructions, 365 replicas of in-
structions and superinstructions (for a total of 400).

dynamic repl Dynamic replication

dynamic super Dynamic superinstructions without repli-
cation, limited to basic blocks (very similar to what
Piumarta and Riccardi proposed [13]).

dynamic both Dynamic superinstructions, limited to ba-
sic blocks, with replication.

across bb Dynamic superinstructions across basic blocks,
with replication.

with static super First, combine instructions within a ba-
sic block into static superinstructions (with 400 su-
perinstructions) with greedy selection, then form dy-
namic superinstructions across basic blocks with repli-
cation from that. This combines the speed benefits of
static superinstructions (optimization across VM in-
structions) with the benefits of dynamic superinstruc-
tions with replication.

We used the most frequently executed VM instructions
and sequences from a training run with the brainless bench-
mark for static replication and static superinstructions.

We used 400 additional instructions for the static vari-
ants because it is a realistic number for interpreters dis-
tributed in source code: it does not cost that much in in-
terpreter compile-time and compile-space, and using more
gives rapidly diminishing improvements.

The presented results are for complete benchmark runs,
including interpreter startup times, benchmark compilation,
and, for the dynamic variants, the time spent in code copy-
ing.

7.2 Speedups
Figure 10 shows the speedups these versions achieve over

plain on various benchmarks.
The dynamic methods fare better than the static meth-

ods (exception: on brainless static superinstructions do bet-
ter than dynamic replication; that is probably because the
training program was brainless).

For the static methods, we see that static replication does
better than static superinstructions, probably because repli-
cation depends less on how well the training run fits the ac-
tual run. A combination of replication and superinstructions
is usually better, however (see Section 7.5).

For the dynamic methods, superinstructions alone per-
form better than replication alone. However, the combina-
tion performs even better; exceptions: cross and brainless
on the Celeron, due to I-cache misses (on the Athlon the
combination is better for all benchmarks). Performing both
optimizations across basic blocks is always beneficial, and
using static superinstructions in addition helps some more
(exception: brew, because static superinstructions do not
improve the prediction accuracy there and because it exe-
cutes more native instructions; this is an artifact of the im-

cycles (*500M)
instructions (*250M)

taken_branches (*50M)
taken_mispredicted (*50M)

icache_misses (*100k)
miss_cycles (*500M)

code_bytes (*250k)

events
1.0

0.8

0.6

0.4

0.2

0.0

plain static repl static super static both
dynamic repl dynamic super dynamic both across bb with static super

Figure 11: Performance counter results for bench-gc on a Celeron-800

cycles (*60G)
instructions (*30G)

taken_branches (*6G)
taken_mispredicted (*6G)

icache_misses (*200M)
miss_cycles (*60G)

code_bytes (*1M)

events
1.0

0.8

0.6

0.4

0.2

0.0

plain static repl static super static both
dynamic repl dynamic super dynamic both across bb with static super

Figure 12: Performance counter results for brew on a Celeron-800

plementation of superinstructions in this version of Gforth
and does not transfer to other interpreters or future versions
of Gforth).

Overall, the new techniques provide very nice speedups
over the techniques usually used in efficient interpreters (up
to factor 2.08 for static both over plain, and factor 3.17 for
with static super across plain), but also across existing tech-
niques that are not yet widely used (factor 1.30 for static
both over static super [8] on bench-gc, and factor 1.29 for
with static super over dynamic super [13]).

7.3 Other metrics
We take a closer look at the reasons for the speedups by

looking at various other metrics, using mostly performance
monitoring counters:

cycles (tsc) The number of cycles taken for executing the
program; this is proportional to the reciprocal of the
speedup.

instructions (event C0) Executed (retired) instructions.

taken branches (event C9) Executed (retired) taken
branch instructions.

taken mispredicted (event CA) Executed (retired) taken
branch instructions that are mispredicted. For plain
most of these mispredictions are mispredictions of
the dispatch indirect branches of the interpreter.
We use the same scale factor for this event as for
taken branches, so you can directly see how many of
the taken branches are mispredicted. We also scale
this event such that 1 misprediction corresponds to
10 cycles (the approximate cost of a misprediction on
a Celeron or Athlon); this allows you to directly see
how much of the time is spent in mispredictions and
compare this to, e.g., the time spent in I-cache misses.

icache misses (event 81) Instruction fetch misses. Note
the scale factor for these events; they are much rarer
than the others.

miss cycles (event 86) Cycles during which the instruc-
tion fetch is stalled (usually due to I-cache misses);
we use the same scale factor for this event as for cy-
cles, so you can directly see how much of the time
is spent in I-cache misses, and compare this to, e.g.,
taken mispredicted.

code bytes The size of the code generated at run-time, in
bytes. Due to the way we implemented static replica-
tion, you see a few KB of code generated even for some
static schemes.

Figure 11 shows these metrics for bench-gc. In this
benchmark nearly all of the executed branches are dispatch
branches [7], so the effects of our dispatch optimizations
should be most evident there.

Figure 12 shows these metrics for brew. This is our largest
benchmark, so it may unveil effects from code growth that
are not apparent with smaller benchmarks (however, brain-
less and cross have a slightly higher proportion of I-cache
miss cycles, so the locality characteristics of a program do
not necessarily correlate with size).

The first thing to notice is that both the instructions and
the taken branches count are the same for plain, static repl,
and dynamic repl. Similarly, they are the same for dynamic
super and dynamic both. The reason is that (after startup,
with its negligible copying overhead) these interpreters exe-
cute exactly the same sequence of native instructions, only
coming from different copies of the code. So the difference in
cycles between these interpreters comes from the difference
in branch mispredictions, I-cache misses and other, similar
effects (however, looking at the data, we believe that other
effects only play a negligible role).

Looking at the cycles and taken mispredicted metrics, we
see that mispredictions consume a large part of the time
in the plain interpreter, and that just eliminating most of
these mispredictions by dynamic replication gives a dra-
matic speedup (factor 2.39 for bench-gc). Our simulations
show that the remaining mispredicted dispatch branches are
due to indirect VM branches (mostly, VM returns), apart
from capacity and conflict misses in the BTB.

The static methods do not work that well: they do not
reduce the mispredictions as much, because they have to
reuse VM instructions.

Dynamic superinstructions without replication have a
slightly worse misprediction accuracy than dynamic repli-
cation, because superinstructions are reused, but they make
up for this by executing fewer instructions, and (for brew)
taking fewer miss cycles.

Looking at the instructions, we see that VM superinstruc-
tions do not reduce the number of executed native instruc-
tions much. Both static and dynamic superinstructions re-
duce this by similar amounts (apart from brew); dynamic
superinstructions eliminate more dispatch code (see also the
effect on taken branches), whereas static superinstructions
allow optimizations between component VM instructions.
Across bb reduces the instructions a little more, and with
static super also a little more (exception: brew).

Looking at taken branches, we get a similar picture as
with instructions, except that dynamic superinstructions re-
duce this metric much more than static superinstructions.
Also, across bb and with static super have the same num-
ber of taken branches (exception: brew), because with static
super only changes what goes on in a dynamic superinstruc-
tion, not how it is formed.

Taken branches also indicates (and our simulation results
confirm) that the length of the average executed superin-
struction is quite short for static superinstructions (typically
around 1.5 component instructions), but also for dynamic
superinstructions (around 3 component instructions). Also,
across bb does not increase the superinstruction length by

much, because in Forth the most frequent reason for basic
block boundaries is calls and returns, and across bb does not
help there; therefore we expect across bb to have a greater ef-
fect on superinstruction length and on performance in other
languages.

7.4 Code growth
A frequent reaction to the proposal for replication is that

the resulting code growth will cause so many performance
problems that the end result will be slower than the original
interpreter; a quick look at the speedups (Fig. 10) should
convince everyone that this is not true, even on a CPU with
small caches like the Celeron. Still, in this section we take
a closer look at the code growth and its effect on various
metrics.

In the code bytes bars of Fig. 12 we see that the dynamic-
replication based methods produce about 1MB of native
code for brew, with longer superinstructions and static su-
perinstructions reducing the code size a little. In many en-
vironments this is quite acceptable for a 30000-line program
(e.g., brew also consumes 0.5MB of the Gforth data space
containing threaded code and data).

Dynamic superinstructions without replication reuse su-
perinstructions a lot, resulting in a generated code size of
only 200KB.

These size differences are also reflected in icache misses:
the static methods have very few misses, dynamic super
some more, and the replication-based methods even more;
this is also reflected in the miss cycles.

However, the miss cycles only consume a small part of the
total cycles in most cases, and only in a few cases do they
overcome the benefit obtained from better prediction accu-
racy; in particular, on the Celeron dynamic both spends 23%
of the cycles on misses when running brainless (compared to
7.5% for dynamic super), resulting in a slowdown by factor
1.11; however, dynamic both is faster for most other bench-
marks on the Celeron, and for all benchmarks on the Athlon
(factor 1.07 for brainless).

So, unless you have reason to expect to run programs
with particularly bad code locality, we recommend using dy-
namic replication together with dynamic superinstructions
for general-purpose machines.

Another way of looking at the issue is to compare the code
generated by our replication methods to code generated by
a native-code compiler4; it will typically be larger than the
native code by a small constant factor (the factor may be
even < 1 if the native-code compiler uses loop unrolling,
inlining, and other code replicating optimizations); for most
code I-cache misses are not a big issue, so the code size
resulting from replication is usually not a big issue, either.

7.5 Balancing static methods
Figure 13 shows timing results for various combinations

of static replication and superinstructions. Each line repre-
sents a given number of total additional instructions, vary-
ing distributions between replication and superinstructions
along the X axis. .

We can see that the performance improves with the total
number of additional instructions, but approaches a limit of
around 200M cycles.

4Unfortunately the native-code Forth compilers we use do
not report the size of the generated code, so we cannot
present empirical data here.

0

25
50
100
200
400
800

1600

%superinstructions
%replicas

cycles

0
100

50
50

100
0

0

200M

400M

Figure 13: Timing results for Bench-gc with static
replications and superinstructions on a Celeron-800;
the line labels specify the total number of additional
VM instructions

across bb bigForth iForth
tscp 2.98 5.13 3.51
brainless 2.49 2.73
brew 2.17 0.92

Figure 14: Speedups of across bb and two native
code compilers over plain.

We can also see that a combination of replication and
superinstructions gives good results; as long as we are not
too close to the extreme points, performance is not very
sensitive to the actual distribution between replication and
superinstructions.

7.6 Speed comparison with native-code com-
pilers

In this section we look at how far the resulting interpreters
are still from relatively simple native-code compilers. The
native-code Forth compilers we used are bigForth-2.03 and
iForth-1.12. For the data in this section we used Gforth-
0.6.1, which gives slightly different speedups from the ver-
sion used earlier. We also use tscp-0.5. We only ran those
benchmarks that we could get to run on the different com-
pilers easily. The benchmarks were run on an Athlon-1200
(Linux-2.4.19, glibc-2.1.3).

You see the results in Fig. 14. Drawing conclusions from
such a small sample size (both compilers and benchmarks) is
dangerous, but the speed difference between interpreters and
native-code compilers appears to be less than many people
imagine.

8. RELATED WORK
The accuracy of static conditional branch predictors has

been improved with software methods: branch alignment
[3] and code replication [12, 18, 17]. The present paper
looks at using software methods to improve the accuracy
of the BTB, a simple dynamic indirect branch predictor.
Our code replication differs from replication for conditional

branch prediction in all aspects: our work addresses a dy-
namic indirect branch predictor (the BTB) instead of a
static conditional branch predictor. Replication for condi-
tional branches works at compile-time and is based on profil-
ing to find correlations between branches to be exploited by
replication, and no data is affected; in contrast, our replica-
tion changes the representation of the interpreted program
at program startup time to decide the replicas to use.

Better indirect branch predictors than BTBs have been
proposed in a number of papers [4, 5, 11] and they work well
on interpreters [7], but they are not available in hardware
yet, and it will probably take a long time before they are
universally available, if at all.

There are a number of recent papers on improving in-
terpreter performance [14, 6, 13, 16]. Software pipelining
the interpreter [9, 10] is a way to reduce the branch dis-
patch costs on architectures with delayed indirect branches
(or split indirect branches).

Ertl and Gregg [7] investigated the performance of vari-
ous branch predictors on interpreters, but did not investigate
means to improve the prediction accuracy beyond threaded
code. In a similar vein, Romer et al. [15] investigated the
performance characteristics of several interpreters. They
used inefficient interpreters, and thus did not notice that
efficient interpreters spend much of their time on dispatch
branches.

Papers dealing with superoperators and superinstructions
[14, 13, 10, 8] concentrated on reducing the number of exe-
cuted dispatches and sometimes the VM code size, but have
not evaluated the effect of superinstructions on BTB pre-
diction accuracy (apart from two paragraphs in [8]). In par-
ticular, Piumarta and Riccardi invested extra work to avoid
replication (in order to reduce code size), but this increases
mispredictions on processors with BTBs.

9. CONCLUSION
If a VM instruction occurs several times in the working

set of an interpreted program, a BTB will frequently mispre-
dict the dispatch branch of the VM instruction. We present
three techniques for reducing mispredictions in interpreters:
replicating VM instructions, such that hopefully each replica
occurs only once in the working set (speedup up to a fac-
tor of 2.39 over an efficient threaded-code interpreter); and
combining sequences of VM instructions into superinstruc-
tions (speedup up to a factor of 2.45). In combination these
techniques achieve an even greater speedup (up to a factor
of 3.17).

There are two variants of these optimizations: The static
variant creates the replicas and/or superinstructions at in-
terpreter build-time; it produces less speedup (up to a factor
of 1.99), but is completely portable. The dynamic variant
creates replicas and/or superinstructions at interpreter run-
time; it produces very good speedups (up to a factor of
3.09), but requires a little bit of porting work for each new
platform. The dynamic techniques can be combined with
static superinstructions for even greater speed (up to a fac-
tor 3.17).

The speedup of an optimization has to be balanced against
the cost of implementing it. In the present case, in addition
to giving good speedups, the dynamic methods are relatively
easy to implement (a few days of work). Static replication
with a few static superinstructions is also pretty easy to
implement for a particular interpreter.

The software and data we used for this paper is available
at
http://www.complang.tuwien.ac.at/anton/interpreter-btb/.

Acknowledgements
We thank the referees for their helpful comments. The per-
formance counter measurements were made using Mikael
Pettersson’s perfctr package.

10. REFERENCES
[1] J. R. Bell. Threaded code. Commun. ACM,

16(6):370–372, 1973.

[2] T. C. Bell, J. G. Cleary, and I. H. Witten. Text
Compression. Prentice-Hall, 1990.

[3] B. Calder and D. Grunwald. Reducing branch costs
via branch alignment. In Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-VI), pages 242–251, 1994.

[4] K. Driesen and U. Hölzle. Accurate indirect branch
prediction. In Proceedings of the 25th Annual
International Symposium on Computer Architecture
(ISCA-98), pages 167–178, 1998.

[5] K. Driesen and U. Hölzle. Multi-stage cascaded
prediction. In EuroPar’99 Conference Proceedings,
volume 1685 of LNCS, pages 1312–1321. Springer,
1999.

[6] M. A. Ertl. Stack caching for interpreters. In
SIGPLAN ’95 Conference on Programming Language
Design and Implementation, pages 315–327, 1995.

[7] M. A. Ertl and D. Gregg. The behaviour of efficient
virtual machine interpreters on modern architectures.
In Euro-Par 2001, pages 403–412. Springer
LNCS 2150, 2001.

[8] M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. vmgen

— a generator of efficient virtual machine interpreters.
Software—Practice and Experience, 32(3):265–294,
2002.

[9] J. Hoogerbrugge and L. Augusteijn. Pipelined Java
virtual machine interpreters. In Proceedings of the 9th
International Conference on Compiler Construction
(CC’ 00). Springer LNCS, 2000.

[10] J. Hoogerbrugge, L. Augusteijn, J. Trum, and
R. van de Wiel. A code compression system based on
pipelined interpreters. Software—Practice and
Experience, 29(11):1005–1023, Sept. 1999.

[11] J. Kalamatianos and D. Kaeli. Indirect branch
prediction using data compression techniques. Journal
of Instruction Level Parallelism, Dec. 1999.

[12] A. Krall. Improving semi-static branch prediction by
code replication. In Conference on Programming
Language Design and Implementation, volume 29(7) of
SIGPLAN, pages 97–106, Orlando, 1994. ACM.

[13] I. Piumarta and F. Riccardi. Optimizing direct
threaded code by selective inlining. In SIGPLAN ’98
Conference on Programming Language Design and
Implementation, pages 291–300, 1998.

[14] T. A. Proebsting. Optimizing an ANSI C interpreter
with superoperators. In Principles of Programming
Languages (POPL ’95), pages 322–332, 1995.

[15] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman,
W. A. Wong, J.-L. Baer, B. N. Bershad, and H. M.
Levy. The structure and performance of interpreters.
In Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VII), pages
150–159, 1996.

[16] V. Santos Costa. Optimising bytecode emulation for
Prolog. In LNCS 1702, Proceedings of PPDP’99,
pages 261–267. Springer-Verlag, September 1999.

[17] C. Young, N. Gloy, and M. D. Smith. A comparative
analysis of schemes for correlated branch prediction.
In 22nd Annual International Symposium on
Computer Architecture, pages 276–286, 1995.

[18] C. Young and M. D. Smith. Improving the accuracy of
static branch prediction using branch correlation. In
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VI), pages 232–241,
1994.

