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Abstract

Pointer analysis is a critical compiler analysis used to disambiguate the indirect memory ref-

erences that result from the use of pointers and pointer-based data structures. A conventional

pointer analysis deduces for every pair of pointers, at any program point, whether a points-to

relation between them (i) definitely exists, (ii) definitely does not exist, or (iii) maybe exists.

Many compiler optimizations rely on accurate pointer analysis, and to ensure correctness can-

not optimize in the maybe case. In contrast, recently-proposed speculative optimizations can

aggressively exploit the maybe case, especially if the likelihood that two pointers alias could be

quantified. This dissertation proposes a Probabilistic Pointer Analysis (PPA) algorithm that

statically predicts the probability of each points-to relation at every program point. Building on

simple control-flow edge profiling, the analysis is both one-level context and flow sensitive—yet

can still scale to large programs.
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Chapter 1

Introduction

Pointers are powerful constructs in C and other similar programming languages that enable

programmers to implement complex data structures. However, pointer values are often am-

biguous at compile time, complicating program analyses and impeding optimization by forcing

the compiler to be conservative. Many pointer analyses have been proposed which attempt

to minimize pointer ambiguity and enable compiler optimization in the presence of point-

ers [2, 6, 22, 26, 49, 62, 65, 77, 78, 80]. In general, the design of a pointer analysis algorithm is

quite challenging, with many options that trade accuracy for space/time complexity. For ex-

ample, the most accurate algorithms often cannot scale in time and space to accommodate

large programs [26], although some progress has been made recently using binary decision dia-

grams [6, 77,80].

The fact that memory references often remain ambiguous even after performing a thorough

pointer analysis has motivated a class of compiler-based optimizations called speculative op-

timizations. A speculative optimization typically involves a code transformation that allows

ambiguous memory references to be scheduled in a potentially unsafe order, and requires a

recovery mechanism to ensure program correctness in the case where the memory references

were indeed dependent. For example, EPIC instruction sets (eg., Intel’s IA64) provide hardware

1



1.1. Probabilistic Pointer Analysis 2

support that allows the compiler to schedule a load ahead of a potentially-dependent store, and

to specify recovery code that is executed in the event that the execution is unsafe [24,45]. Pro-

posed speculative optimizations that allow the compiler to exploit this new hardware support

include speculative dead store elimination, speculative redundancy elimination, speculative copy

propagation, and speculative code scheduling [20,51,52].

More aggressive hardware-supported techniques, such as thread-level speculation [40, 47,

60, 69] and transactional programming [37, 38] allow the speculative parallelization of sequen-

tial programs through hardware support for tracking dependences between speculative threads,

buffering speculative modifications, and recovering from failed speculation. Unfortunately, to

drive the decision of when to speculate many of these techniques rely on extensive data de-

pendence profile information which is expensive to obtain and often unavailable. Hence we are

motivated to investigate compile-time techniques—to take a fresh look at pointer analysis with

speculative optimizations in mind.

1.1 Probabilistic Pointer Analysis

A conventional pointer analysis deduces for every pair of pointers, at any program point, whether

a points-to relation between them (i) definitely exists, (ii) definitely does not exist, or (iii) maybe

exists. Typically, a large majority of points-to relations are categorized as maybe, especially

if a fast-but-inaccurate approach is used. Unfortunately, many optimizations must treat the

maybe case conservatively, and to ensure correctness cannot optimize. However, speculative

optimizations can capitalize on the maybe case—especially if the likelihood that two pointers

alias can be quantified. In order to obtain this likelihood information, in this thesis we propose

a Probabilistic Pointer Analysis (PPA) that accurately predicts the probability of each points-to

relation at every program point.
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1.2 Research Goals

The focus of this research is to develop a Probabilistic Pointer Analysis (PPA) for which we

have the following goals:

1. to accurately predict the probability of each points-to relation at every pointer dereference;

2. to scale to the SPEC 2000 integer benchmark suite [19];

3. to understand potential trade-offs between scalability and accuracy; and

4. to increase the overall understanding of program behaviour.

To satisfy these goals we have developed a PPA infrastructure, called Linear One-Level

Interprocedural Probabilistic Points-to (LOLIPoP), based on an innovative algorithm that is

both scalable and accurate: building on simple (control-flow) edge profiling, the analysis is

both one-level context and flow sensitive, yet can still scale to large programs. The key to the

approach is to compute points-to probabilities through the use of linear transfer functions that

are efficiently encoded as sparse matrices. LOLIPoP is very flexible, allowing us to explore the

scalability/accuracy trade-off space.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2 the background material

and related work in the fields of pointer analysis and pointer analysis for speculative optimization

are described. In Chapter 3 the probabilistic pointer analysis algorithm is described. Chapter 4

describes the LOLIPoP infrastructure, including the practical implementation details and the

design tradeoffs. Chapter 5 evaluates the efficiency and accuracy of the LOLIPoP infrastructure,

and Chapter 6 concludes by summarizing the dissertation, naming its contributions, and listing

future extensions of this work.



Chapter 2

Background

This chapter presents the background material and related work in the fields of pointer analysis

and pointer analysis for speculative optimization. The organization of this chapter is divided into

four main areas: Section 2.1 introduces the basic concepts and terminology involved in pointer

analysis research; Section 2.2 describes some of the traditional approaches used to perform

pointer analysis and outlines the strengths and drawbacks of the various approaches; Section 2.3

discusses various speculative optimizations that have been proposed to aggressively exploit overly

conservative pointer analysis schemes; and finally Section 2.4 describes more recently proposed

program analysis techniques that aid speculative optimizations.

2.1 Pointer Analysis Concepts

A pointer is a programming language datatype whose value refers directly to (or points-to) the

address in memory of another variable. Pointers are powerful programming constructs that are

heavily utilized by programmers to realize complex data structures and algorithms in C and

other similar programming languages. They provide the programmer with a level of indirection

when accessing data stored in memory. This level of indirection is very useful for two main

4



2.1. Pointer Analysis Concepts 5

Table 2.1: Pointer Assignment Instructions

α = &β Address-of Assignment

α = β Copy Assignment

α = *β Load Assignment

*α = β Store Assignment

reasons: (1) it allows different sections of code to share information easily; and (2) it allows for

the creation of more complex “linked” dynamic data structures such as linked lists, trees, hash

tables, etc. For the purposes of this discussion, the variable that the pointer points to is called

a pointee target. A points-to relation between a pointer and a pointee is created with the unary

operator ‘&’, which gives the address of a variable. For example, to create a points-to relation

〈∗α, β〉 between a pointer α and a target β, the following assignment is used α = &β. The

indirection or dereference operator ‘*’ gives the contents of an object pointed to by a pointer

(i.e. the pointee’s contents). The assignment operation ‘=’ when used between two pointers,

makes the pointer on the left side of the assignment point to the same target as the pointer on

the right side. Table 2.1 describes the four basic instructions that can be used to create points-to

relations. All other pointer assigning instructions can be normalized into some combination of

these four types. Figure 2.1 is a C source code example that demonstrates how pointers can be

assigned and used.

In this example found in Figure 2.1, there are three pointer variables (p, q, and r) and three

pointee target variables that can be pointed at (a, b and q). Any variable, including a pointer,

whose address is taken using the ‘&’ operator is defined as a pointee target. Initially, at program

point S1, all three pointers (p, q, and r) are uninitialized. A special undefined pointee target,
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void main() {

int a = 1, b = 2;
int **p, *q, *r;

S1: q = &a;
S2: r = q;
S3: p = &q;
S4: *p = &b;
S5: r = *p;

S6: **p = 3;
S7: *r = 4;

...

}

Figure 2.1: Sample C code that uses pointers.

denoted ‘UND’, is used as the target of an uninitialized pointer. Therefore, at program point S1,

the points-to relations that exist are: 〈∗p, UND〉, 〈∗q, UND〉, and 〈∗r, UND〉. At program point S1,

the pointer q is assigned to point to the target a using an address-of assignment. Statement

S1 has the following two side effects: (1) the points-to relation 〈∗q, UND〉 is killed, and (2) the

points-to relation 〈∗q, a〉 is generated. At program point S2, the copy assignment instruction

assigns the pointer r to point to the target of pointer q. At S2, The pointer q has a single target,

which is a. Therefore, S2 kills the points-to relation 〈∗r, UND〉 and creates the points-to relation

〈∗r, a〉. At S3, there is another address-of assignment that assigns the double pointer p to point

to the target q, which is itself is a pointer. This instruction creates the following two points-to

relations 〈∗p, q〉 and 〈∗ ∗ p, a〉1. The instruction at S4 is a store assignment. Since it can be

proven that at program point S4 the pointer p can only point to q, S4 kills the points-to relation

1A double pointer points-to relation such as this one is often ignored and not tracked because it can be
inferred from the other points-to relations in the set.
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〈∗q, a〉 and creates the points-to relation 〈∗q, b〉. The instruction at S5 is a load assignment that

assigns r to point to the target of ∗p, which is the target of q, which is b. Therefore, at S6,

the following points-to relations are said to exist: 〈∗p, q〉, 〈∗q, b〉 and 〈∗r, b〉. An analysis such

as this, that tracks the possible targets that a pointer can have, is referred to as a points-to

analysis. A safe points-to analysis reports all possible points-to relations that may exist at any

program point.

2.1.1 Pointer Alias Analysis and Points-To Analysis

A pointer alias analysis determines, for every pair of pointers at every program point, whether

two pointer expressions refer to the same storage location or equivalently store the same ad-

dress. A pointer alias analysis algorithm will deduce for every pair of pointers one of three

classifications: (i) definitely aliased, (ii) definitely not aliased, or (iii) maybe aliased. A points-to

analysis, although similar, is subtly different. A points-to analysis attempts to determine what

storage locations or pointees a pointer can point to—the result can then be used as a means

of extracting or inferring pointer aliasing information. The main differences between an alias

analysis and a points-to analysis are the underlying data structure used by the algorithm and

the output produced. The analysis type has consequences in terms of precision and algorithm

scalability—these will be discussed further in section 2.1.6. The terms pointer alias analysis and

points-to analysis are often times incorrectly used interchangeably. The broader term of pointer

analysis is typically used to encapsulate both.

2.1.2 The Importance of and Difficulties with Pointer Analysis

Pointer analysis does not improve program performance directly, but is used by other optimiza-

tions and is typically a fundamental component of any static analysis. Static program analysis

aims at determining properties of the behaviour of a program without actually executing it.
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It analyzes software source code or object code in an effort to gain understanding of what the

software does and establish certain correctness criteria to be used for various purposes. These

purposes include, but are not limited to: optimizing compilers, parallelizing compilers, support

for advanced architectures, behavioral synthesis, debuggers and other verification tools. One

of the main challenges of any program analysis is to safely determine what memory locations

the program is attempting to access at any read or write instruction, and this problem be-

comes substantially more difficult when memory is accessed through a pointer. In order to gain

useful insight, a pointer analysis is often required. Complicating things further, the degree of

accuracy required by a pointer analysis technique is dependent on the actual program analysis

being performed [44]. For example, in the sample code presented in Figure 2.1, an optimizing

compiler or a parallelizing compiler would want to know whether the statements at S6 and S7

accessed the same memory locations. If the static analyzer could prove that all load and store

operations were independent, then the statements could potentially be reordered or executed in

parallel in order to improve performance. Many advanced architectures, behavioral/hardware

synthesis tools [34, 64, 76] and dataflow processors [63, 71] attempt to reduce the pressure on

a traditional cache hierarchy by prepartitioning memory accesses into different memory banks.

These applications rely on a static analysis that is able to safely predetermine at compile time

which memory accesses are mapped to which memory banks. The accuracy of pointer analysis

is not as important for this purpose of memory partitioning [64]. As a final example a debugger

uses pointer analysis to detect uninitialized pointers or memory leaks.

Currently, developing both an accurate and scalable pointer analysis algorithm is still re-

garded as an important yet very complex problem. Even without dynamic memory allocation,

given at least four levels of pointer dereferencing (i.e. allowing pointer chains to be of length 4)

the problem has been shown to be PSPACE Complete [49] and to be NP Hard given at least

two levels of pointer dereferencing [48]. Given these results, it is very unlikely that there are

precise, polynomial time algorithms for the C programming language. Although, there are many
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different solutions that trade off some precision for scalability. These tradeoffs are discussed

further in Section 2.1.6.

2.1.3 Static Memory Model

To perform any pointer analysis, an abstract representation of addressable memory called a

static memory model must be constructed. For the remainder of this dissertation, it is assumed

that a static memory model is composed of location sets [78]2. A location set can represent one or

more real memory locations, and can be classified as a pointer, pointee, or both. A location set

only tracks its approximate size and the approximate number of pointers it represents, allowing

the algorithm used to abstract away the complexities of aggregate data structures and arrays

of pointers. For example, fields within a C struct can either be merged into one location set, or

else treated as separate location sets.

2.1.4 Points-To Graph

A points-to relation between a pointer α and a pointee target β is denoted as such 〈∗α, β〉. This

notation signifies that the dereference of variable α and variable β may be aliased. A points-to

graph is typically used in a points-to analysis algorithm to efficiently encode all possible may

points-to relations. A points-to graph is a directed graph whose vertices represent the various

pointer location sets and pointee target location sets. An edge from node α to the target node

β represents a may-points-to relation 〈∗α, β〉. For certain algorithms, the edge is additionally

annotated as a must points-to edge, if the relation is proven to always persist. Figure 2.2

shows the points-to graphs for the various program points associated with the sample code in

Figure 2.1.

2Note that the term location set itself is not necessarily dependent on this location-set-based model.
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void main() {

int a = 1, b = 2;
int **p, *q, *r;

S1: q = &a;
S2: r = q;
S3: p = &q;
S4: *p = &b;
S5: r = *p;

S6: **p = 3;
S7: *r = 4;

...

}

(a) Sample program from Figure 2.1

(b) S1 (c) S2

(d) S3 (e) S4

(f) S5 (g) S6

Figure 2.2: The points-to graphs corresponding to the different program points in the sample
code found in Figure 2.1.

2.1.5 Pointer Analysis Accuracy Metrics

The conventional way to compare the precision of different pointer analyses is by using either

a static or dynamic metric. A static metric (also called a direct metric) asserts, without ever

executing the program, that a pointer analysis algorithm X is more precise than an algorithm

Y if the point-to graph generated by the algorithm X is a subset of Y, given an equal model of

memory. Many researchers [22,26,43,49] estimate precision by measuring the cardinality of the

points-to set for each pointer dereference expression, and then calculate the average—in short,
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Figure 2.3: A conservative points-to graph for the sample code found in Figure 2.1. This graph
is safe for every program point and is constructed by taking the union of all possible points-to
graphs (see Figure 2.2). A solid edge represents a must-point-to relation and a dotted line
represents a may-point-to relation. The UND target is not included for simplicity.

the average dereference size. The disadvantage of using a static metric is that the precision result

is sensitive to the static model of memory used. For example, modeling the entire heap as a

single pointee target location would be advantageous for an average dereference size metric; this

can result in misleading comparisons to other algorithms that model the heap more accurately.

A second method of measuring accuracy is with the use of a dynamic metric. A traditional

dynamic metric evaluates the number of false points-to relations reported by the analysis; that is

the number of points-to relations that never occur at runtime [54]. There are many disadvantages

with a dynamic metric. The result, like the static metric, is sensitive to the static memory model

used. The result is also sensitive to the input set used, which may not sufficiently cover all

interesting control-flow cases. A dynamic metric also requires some form of runtime dependence

profiling, which can be a computationally expensive undertaking.

A third method of measuring accuracy is to apply the analysis to a client optimization and

report the speedup; this is referred to as an indirect metric. The assumption is that a more

accurate analysis will result in improved performance, although it has been shown that this is
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not always the case [22,23,44] and therefore an indirect metric may be disadvantageous as well.

Hind addresses this accuracy metric problem [42] and argues that the best way to measure and

compare pointer analysis precision is to concurrently use all three types: static, dynamic, and

indirect.

2.1.6 Algorithm Design Choices

There are many factors and algorithm design choices that cause a pointer analysis X to be more

accurate than a pointer analysis Y. Typically, when making algorithm design choices there exists

a tradeoff between algorithm scalability (in time and space) and accuracy. Some of the major

design considerations are [42]:

• flow-sensitivity,

• context-sensitivity,

• aggregate modeling / field-sensitivity,

• heap modeling, and

• alias representation.

A flow-sensitive pointer analysis takes into account the order in which statements are

executed when computing points-to side effects. It is normally realized through the use of

strong/weak updates applied to a data flow analysis (DFA) [1, 56] framework, which requires

repeated calculations on a control flow graph until a fixed point solution is found. The analysis is

considered to be highly precise; however, the analysis is generally regarded as too computation-

ally intensive for two reasons: (1) Pointer analysis generally requires a forward and backward

interprocedural DFA, which is not feasible for large programs [70]; and (2) it also requires that

a points-to graph be calculated for every program point. Because of the exponential number
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void fsTest(int x) {

int a, b, c, d;
int *p;

S1: p = &a;
S2: p = &b;

if(x)
S3: p = &c;

if(x)
S4: p = &d;

S5: *p = 0;

}

(a) Sample program

(b) Flow Insensitive

(c) Flow Sensitive

(d) Path Sensitive

Figure 2.4: Sample code, and the resulting points-to graphs at program point S5 with various
flavors of control-flow sensitivity.

of program points associated with an interprocedural analysis, achieving a scalable solution is

difficult. A further and more ambitious approach is a path sensitive analysis, which requires

that each non-cyclic path be analyzed individually; a means of correlating control dependences

is required to prune away invalid control flow paths. Figure 2.4 shows a sample program and

depicts the different points-to graphs created by the three different approaches.

A context-sensitive pointer analysis distinguishes between the different calling contexts of

a procedure. The implication is that the points to side effects on any given path of the call

graph are treated uniquely, in contrast to a context-insensitive pointer analysis which merges all

the calling contexts of a procedure when summarizing the points-to side effects. We discuss the
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int *retParam(int *x) {
return x;

}

void csTest() {

int a, b;
int *p, *q;

S1: p = retParam(&a);
S2: q = retParam(&b);

S3: *p = 0; *q = 0;

}

(a) Sample program

(b) Context Insensitive

(c) Context Sensitive

Figure 2.5: Sample code, and the resulting points-to graphs at program point S3 for various
flavors of context sensitivity.

difficulties associated with a context sensitive analysis later in Section 2.1.7, and in Sections 2.2.2

and 2.2.3 we describe various methods that have been proposed for overcoming these difficulties.

Figure 2.5 shows a sample program and depicts the two different points-to graphs created by a

context insensitive and a context sensitive analysis.

A third factor affecting accuracy is aggregate modeling or field-sensitivity. Aggregate

structures with multiple pointer type fields, such as arrays of pointers or C structs can be

handled specially. Pointers within structs are merged and handled as a single pointer in a field-

insensitive analysis. Conversely, a field-sensitive analysis handles every field and subsequently

subfield as a separate and unique field. This approach additively requires a means of handling

recursive data structures. Similarly, an array of pointers can be handled as a single node or each

array element could be treated as a unique pointer field. Treating each array node uniquely
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creates many complications because of array subscript uncertainty. A third option, proposed

by Emami [26], is to represent arrays (both pointers and pointee targets) with two location

sets. One of the location sets represents the first element of the array and the second element

represents the remainder of the array. This added information enables a client analysis to be

more aggressive when performing array subscript dependence analysis.

Heap modeling is another important, yet often neglected, design decision to be considered

when performing any pointer analysis. A means of dealing with pointee targets created by

dynamic allocation library calls such as malloc and calloc in C is required. The simplest and

most inaccurate approach is to merge all heap allocation callsites into one location set. The

most common approach is callsite allocation, which treats each individual callsite allocation

program point as a unique location set target. This approach is considered to produce precise

results in most cases; although, when a programmer uses a custom allocator [5,11] it essentially

degrades the analysis into a heap-merged approach. A more precise approach that addresses

this custom allocator issue is to assign a unique location set for every unique context path

to every allocation callsite [43, 50, 57]. Other aggressive shape analysis techniques have also

been proposed. A shape analysis technique attempts to further disambiguate dynamic memory

location sets by categorizing the underlying data structure created by the allocation callsite into

a List, Tree, DAG, or Cyclic Graph [33].

Alias representation is yet another factor to be considered by any pointer analysis al-

gorithm. Alias representation signifies what type of data structure is used to track aliasing

information. There are two basic representation types:

• alias pairs, and

• points-to relations.

A complete alias-pairs representation stores all alias pairs explicitly, such as the one used by

Landi [49]. A compact alias-pairs representation stores only basic alias pairs, and derives new
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alias pairs by dereference, transitivity and commutativity. The most common representation

is to store points-to relation pairs to indicate that one variable is pointing to another. Addi-

tionally, the representation can choose to distinguish between must-alias and may-alias pairs;

this information is very useful for a flow-sensitive analysis that uses strong and weak updates.

Figure 2.6 demonstrates a sample program created to illustrate the difference between the two

representations. The flow sensitive pointer alias graph and points-to graph corresponding to

program point S5 is shown in Figure 2.6 (b) and (c) respectively. If the compiler wanted to

know, at program point S5, do the pointers p and q alias? The alias-pairs representation ap-

proach would output definitely no, whereas the point-to representation approach would answer

with maybe. The alias analysis approach is considered to be slightly more precise but relatively

much more expensive in terms of complexity.

2.1.7 Context Sensitivity Challenges

Context sensitivity is regarded as the most important contributor towards achieving an accurate

pointer analysis. Conceptually, context sensitivity can be realized by giving each caller its own

copy of the function being called. Two distinct approaches have been proposed:

• cloning-based analysis, and

• summary-based analysis.

The simplest way of achieving context sensitivity is through function cloning. In a cloning-

based analysis every path through the call graph is cloned or conceptually inlined, and then a

context-insensitive algorithm on the expanded call graph is performed. This expanded call graph

is called an invocation graph [26]. This technique is a simple way of adding context sensitivity to

any analysis. The problem with this technique is that the invocation graph, if not represented

sensibly, can blow up exponentially in size.
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void aliasRepTest() {

int a, b, c;
int *p, *q;

if(x) {
S1: p = &a;
S2: q = &b;

} else {
S3: p = &b;
S4: q = &c;

}

S5: *p = 0; *q = 1;

}

(a) Alias Representation Example

(b) Pointer Alias Graph

(c) Points-To Graph

Figure 2.6: An example illustrating the difference between using an alias graph representation
or a points-to representation. Both graphs are flow sensitive and representative of the state of
the pointers p and q at program point S5. This examples shows why an alias representation can
be more accurate.

In a summary-based analysis, a summary (or a transfer function) which summarizes the

effects of a procedure is obtained for each procedure. The algorithm usually has two phases:

(i) a bottom-up phase in which the summaries for each procedure are collected using a reverse

topological traversal of the call graph; and (ii) a top-down phase in which points-to information

is propagated back down in a forward topological traversal through the call graph. This two

phased approach is very advantageous for any analysis that can easily summarize the effects of

a procedure. Unfortunately, for a full context-sensitive pointer analysis, this approach has not

yet been shown to scale to large programs—mainly because it is difficult to concisely summarize

the points-to side effects of a procedure. The difficulty lies in the inability to compute a safe and
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void swap(int **x, int **y) {

int *tmp;

S1: tmp = *x;
S2: *x = *y;
S3: *y = tmp;

}

(a) swap source code
(b) swap summary function

Figure 2.7: An example that graphically demonstrates how to summarize the procedure swap

found in (a).The procedure’s transfer function is shown in (b). The shaded nodes represent
unknown location sets (also called shadow variables) that are to be replaced when the transfer
function is applied. The procedure swap is fully summarized with this linear transfer function.
Obtaining a single linear transfer function is not always possible as shown in Figure 2.8.

precise one-to-one mapping (a linear transfer function) with regards to points-to graph input to

output. Meaning, given any points-to set input, does there exist a single linear transfer function

that can be used to summarize and compute the output. The examples found in Figure 2.7

and Figure 2.8 suggest why a full context-sensitive linear transfer function is difficult to achieve

safely.

Figure 2.7(a) shows an example procedure named swap. This procedure takes in two pointer

arguments (x and y) and effectively swaps their points-to targets. To summarize this procedure

without knowing the points-to graph into the call of this procedure (as is the case for any

summary-based approach), temporary place holder variables which we call shadow variables are

used. A shadow variable is equivalent to Emami’s invisible variable [26] or Bhowmik’s dummy

variable [7]. Pointer analysis is performed on the procedure and a summarizing points-to graph

is built as shown in Figure 2.7(b). This points-to graph contains four shadow variables which
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void alloc(int **x, int **y) {

S1: *x = (int*)malloc(sizeof(int));

}

(a) alloc source code

(b) alloc summary function
(*x is not aliased to *y)

(c) alloc summary function
(*x definitely aliased to *y)

(d) alloc summary function
(*x might be aliased to *y)

Figure 2.8: An example that graphically demonstrates how to summarize the procedure alloc

found in (a). The procedure’s transfer functions for 3 different input cases are shown in (b),
(c), and (d). For this example, (d) can be used as a safe linear transfer function for all 3 input
cases, although this may introduce many spurious points-to relations.

are the shaded nodes within the points to graph. When analyzing a call to the swap procedure,

the shadow variables within the transfer function are replaced with the input-parameter location

set variables. The resulting transfer function represents the side effects obtained with a call to

the swap procedure. This swap procedure is an ideal candidate procedure for a summary based

approach because the transfer function is linear, meaning the side effects are independent of the

input points-to graph. Figure 2.8 illustrates an example where this is not the case.

Figure 2.8(a) shows an example procedure named alloc. This procedure also takes in two

pointer arguments (x and y), and the pointer y is allocated to the dynamic heap location set

named heap s1. Figure 2.8(b) illustrates the intuitive summarizing function which reassigns the
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shadow pointer *x to point to the new location set heap s1 and the shadow pointer *y remains

unchanged. Unfortunately, in the unlikely event that the shadow variables *x and *y are aliased

(refer to the same variable) then this summarizing function is incorrect. In the event that *x

and *y definitely alias, then the summarizing function found in Figure 2.8(b) should be applied,

which additionally reassigns *y to point to heap s1. In the event of a may-alias relation between

*x and *y, Figure 2.8(c) depicts the transfer function that should be applied. This problem of

aliasing input pointer arguments is referred to as Shadow Variable Aliasing (SVA). All summary

based approaches must somehow solve this SVA problem.

The SVA problem stems from the use of call by reference parameters and global variables

passing between procedures which introduce aliases, an effect where two or more l-values [1] refer

to the same location set at the same program point. More precisely aliases created by multiple

levels of dereferencing impede summary-based pointer analyses; i.e. pointers with k levels of

dereferencing where k > 1 and k is the maximum level of pointer dereferencing. Ramalingam [58]

shows that solving the may-alias problem for k > 1 level pointer is undecidable. However, if

k = 1 the problem has been shown to be almost trivial [8,49]. Most summary based approaches

attempt to somehow map the k = n problem into a k = 1 problem3. There are four known

approaches to achieving this mapping.

1. Perform a one-level analysis n times [26].

2. For each incoming alias pattern, specialize each procedure summary for all possible input

alias patterns [78]; this approach is called a Partial Transfer Function (PTF) approach.

3. Hoist and inline multi-level pointer assignment instructions from caller to callee until they

can be resolved into a one-level pointer assignment instruction [9].

4. Summarize each procedure using a single safe [12] or unsafe [7] summary function.

3
n represents the maximum level of dereferencing found in the program
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These approaches will be further discussed in Section 2.2.

2.2 Conventional Pointer Analysis Techniques

Pointer analysis is a well-researched problem and many algorithms have been proposed, yet

no one approach has emerged as the preferred choice [44]. A universal solution to pointer

analysis is prevented by the large trade-off between precision and scalability as described in

Section 2.1.6. The most accurate algorithms are both context-sensitive and control-flow-sensitive

(CSFS) [26,49,78]; however, it has yet to be demonstrated whether these approaches can scale to

large programs. Context-insensitive control-flow-insensitive (CIFI) algorithms [2, 65] can scale

almost linearly to large programs, but these approaches are regarded as overly conservative and

may impede aggressive compiler optimization. Several approaches balance this trade-off well

by providing an appropriate combination of precision and scalability [6, 22, 77, 80], although

their relative effectiveness when applied to different aggressive compiler optimizations remains

in question.

2.2.1 Context-insensitive Flow-insensitive (CIFI) Algorithms

The simplest and most common types of pointer analysis algorithms are typically both context-

insensitive and flow-insensitive (CIFI). Not surprisingly, there exists many different types of

CIFI algorithms. Currently, most commercially available compilers simply use an address-taken

CIFI pointer analysis. This type of analysis simply asserts that every object that has its address

taken may be the target of any pointer object. This is obviously a very imprecise approach,

although it is quite effective at improving the programs performance when applied to a client

optimization relative to using no pointer analysis [44].

The two classic approaches to realizing an efficient context-insensitive flow-insensitive (CIFI)

analysis are:
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• inclusion based, and

• unification based.

An inclusion based analysis treats every pointer assignment instruction as a constraint equa-

tion and iteratively solves for the points-to graph by repeatedly performing a transitive closure

on the entire graph, until a fixed solution is realized. Andersen [2] initially proposed a sim-

ple and intuitive CIFI inclusion based pointer analysis with worst case complexity of O(n3);

where n is the size of the program. Fahndrich, et al [27] improved on the runtime of Andersen’s

pointer analysis by collapsing cyclic constraints into a single node, and by selectively propagating

matching constraints. With this optimized approach, they demonstrated orders of magnitude

improvement in analysis runtime. Rountev and Chandra [61] also proposed a similar and more

aggressive algorithm for collapsing cyclical constraints and avoiding duplicate computations.

A unification based approach is a much more scalable, yet slightly less accurate approach

to performing a FICI analysis. In a unification based approach, location set nodes within the

points-to graph are merged such that every node within the graph can only point to a single

other node. This merge operation eliminates the transitive closure operation required by the

inclusion based approach and therefore allows for linear scaling. Steensgaard [65] proposed

the first unification based algorithm, which runs in almost linear time. The algorithm uses

Tarjan’s union-find data structure [73] to efficiently perform the analysis. The disadvantage of

a unification approach is that it may introduce many spurious point-to relations as is the case

in the example found in Figure 2.9. In this example, the unification based approach creates the

following spurious (false) points-to relations: 〈∗r, b〉, 〈∗s, a〉, and〈∗q, b〉.

2.2.2 Context-sensitive Flow-sensitive (CSFS) Algorithms

The most precise pointer analysis algorithms are typically both context-sensitive and flow-

sensitive (CSFS). Emami, Ghiya, and Hendren [26] introduced the invocation graph and pro-
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void main() {

int **p, *q, *r, *s;
int a, b;

S1: q = &a;
S2: p = &r;
S3: r = &a;
S4: p = &s;
S5: s = &b;

}

(a) Sample program

(b) address-taken (c) inclusion based

(d) unification based

Figure 2.9: Different types of flow insensitive points-to analyses. All three points-to graphs are
flow insensitive and therefore safe for all program points.

posed a cloning-based CSFS points-to analysis for C programs. The analysis was designed to be

very accurate for disambiguating pointer references that access stack based memory locations.

The analysis is field sensitive and maps each stack variables to a unique location set, including

locals, parameters, and globals. Arrays are modeled as two location sets, one representing the

first element of the array and the other representing the rest of the array. The heap is modeled

inaccurately and allocated a single location set. Pointers through indirect calls are handled iter-

atively using a transitive closure. Additionally, the analysis tracks both may and must points-to

relationships and use both strong and weak updates while propagating a flow sensitive points-

to graph. Similar to a summary-based approach, Emami’s approach caches the side-effects of

each function call for reuse. The shadow variable aliasing problem was handled by repeating

their one-level analysis n times, where n is the maximum level of dereferencing used. Although
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this analysis dramatically improves the precision in relation to the CIFI analysis, the programs

analyzed were very small and in general the analysis is not expected to scale to larger programs.

Wilson and Lam [78] proposed a summary based CSFS analysis that recognized that many

of the calling contexts were quite similar in terms of alias patterns between the parameters.

As such, they proposed the use of a partial transfer function (PTF) to capture the points-to

information for each procedure. A PTF is a set of linear transfer functions representative of all

possible aliasing scenarios that a given procedure may encounter. The PTF does this by using

temporary location sets to represent the initial point-to information of parameters, and uses

the PTF to derive the final point-to information of the procedure. For the benchmarks used,

they showed only a 30% increase in the number of transfer functions needed. This analysis also

allocated each stack variable and global a unique location set and, in addition, they mapped

each heap allocation callsite to a unique location set. This pointer analysis was shown to run

on benchmarks as large as five thousand lines of code.

Chaterjee, Ryder, and Landi [12] proposed a modular context-sensitive pointer analysis,

using the same static memory model as Wilson and Lam [78], but fully summarizing each

procedure using a single safe transfer function. By detecting strongly connected components

in the call graph, and analyzing them separately they showed space improvements, but no

results on benchmarks larger than 5000 lines of code. Cheng and Hwu [15] extended [12] by

implementing an access path based approach, and partial context-sensitivity, distinguishing

between the arguments at only selected procedures. They demonstrated scalability to hundreds

of thousands of lines of code.

2.2.3 Context-sensitive Flow-insensitive (CSFI) Algorithms

Fahndrich, Rehof, and Das [28] proposed a one-level unification based CSFI pointer analysis.

This analysis distinguishes between the incoming calls to a given procedure, rather than expand
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each path in the call graph. The authors showed that this analysis can analyze hundreds of thou-

sands of lines of code in minutes, and showed precision improvements over the flow-insensitive

context-insensitive unification based analysis. Das also proposed a summary-based generalized

one level flow (GOLF) [22] analysis which adds limited context sensitivity to his unification

based CIFI one level flow idea from [21]. GOLF is field-insensitive and uses callsite alloca-

tion. It is regarded as a relatively precise algorithm that scales well beyond the SPECint95 [19]

benchmarks.

Some progress has also been made recently using a binary decision diagram (BDD) [6,77,80]

data structure to efficiently solve the pointer analysis problem accurately. A BDD based ap-

proach uses Bryant’s [10] Reduced Order Binary Decision Diagram (ROBDD, also called BDD)

to solve the pointer analysis problem using superposition. Similar to the dynamic programming

paradigm, a BDD is able encode and solve exponential problems, on average (and not in the

worst case), in linear time if repetition or duplication exists. The CSFI pointer analysis problem

is formulated using a cloning based approach and the invocation graph is encoded using boolean

logic into a BDD. The problem is then solved quite efficiently because much of the analysis on

an invocation graph involves analyzing duplicated context paths.

2.3 Speculative Optimization

Studies suggest that a more accurate pointer analysis does not necessarily provide increased

optimization opportunities [22, 23, 44] because ambiguous pointers will persist. The fact that

memory references often remain ambiguous even after performing a thorough pointer analy-

sis has motivated a class of compiler-based optimizations called data speculative optimizations.

A data speculative optimization typically involves a code transformation that allows ambigu-

ous memory references to be scheduled in a potentially unsafe order, and requires a recovery

mechanism to ensure program correctness in the case where the memory references were indeed
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dependent. Speculative optimizations benefit from pointer analysis information that quantifies

the likelihood of data dependences and is therefore the target use of the probabilistic pointer

analysis proposed by this thesis. Proposed forms of data speculative optimization can be catego-

rized into two classes: (1) Instruction Level Data Speculation and (2) Thread Level Speculation

(TLS). Instruction level data speculation attempts to increase the available instruction level

parallelism or eliminate unnecessary computation by using potentially unsafe compiler trans-

formations. Thread level speculation allows the compiler to speculatively parallelize sequential

programs without proving that it is safe to do so.

2.3.1 Instruction Level Data Speculation

Due to the complexity of scaling the conventional superscalar out-of-order execution paradigm,

the processor industry started to re-examine instruction sets which explicitly encode multiple

operations per instruction. The main goal is to move the complexity of dynamic scheduling of

multiple instructions from the hardware implementation to the compiler, which does the instruc-

tion scheduling statically. One main drawback to this approach is that to extract instruction

level parallelism statically, information regarding aliasing memory references becomes essential.

As described in Section 2.2, even if the most accurate techniques are used ambiguous pointers

will persist. As a direct consequence, HP and Intel have recently introduced a new style of in-

struction set architecture called EPIC (Explicitly Parallel Instruction Computing), and a specific

architecture called the IPF (Itanium Processor Family). EPIC is a computing paradigm that

began to be researched in the 1990s. EPIC instruction sets (eg., Intel’s IA64) provide hardware

support that allows the compiler to schedule a load ahead of a potentially-dependent store, and

to specify recovery code that is executed in the event that the execution is unsafe [24,45].

The IPF uses an Advanced Load Address Table (ALAT) to track possibly dependent load and

store operations at runtime. The ALAT is a set-associative structure accessed with load/store
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addresses. The IA64 instruction set provides four instructions that interface with the ALAT to

enable many different kinds of speculative optimization: a speculative load (ld.s), a speculation

check (chk.s) an advanced load (ld.a), and an advanced load check (chk.a). Figure 2.10

illustrates a simple and relevant example on how data speculative optimization can be realized.

In this example, if the compiler is able to determine with some amount of probabilistic certainty

that pointers p and q do not alias, then it could be beneficial to eliminate the redundant load

instruction and schedule any other dependent instructions earlier to increase the instruction

level parallelism. To realize this speculative optimization an advanced load (ld.a) instruction

is used in place of a normal load, then an advanced load check (chk.a) instruction that specifies

a recovery branch if p and q where to indeed alias at runtime.

Proposed and successful speculative optimizations that allow the compiler to exploit this new

hardware support include speculative dead store elimination, speculative redundancy elimina-

tion, speculative copy propagation, speculative register promotion, and speculative code schedul-

ing [18,20,51,52,55]. Other envisioned and promising potential speculative optimizations include

speculative loop invariant code motion, speculative constant propagation, speculative common

sub-expression elimination and speculative induction variable elimination. To drive the decision

of when it is profitable to speculate, many of these techniques rely on extensive data dependence

profile information [79] which is expensive to obtain, sensitive to the input set used, possibly

inaccurate, and often unavailable. The main drawback is that this type of profiling can be very

expensive since every memory reference needs to be monitored and compared pair-wise to obtain

accurate results. Lin, et al [51, 52] proposed a lower cost alias profiling scheme to estimate the

alias probability and in addition, when alias profiling is unavailable, they used a set of effective,

and arguably a conservative, set of heuristic rules to quickly approximate alias probabilities in

common cases.
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w = *p;

*q = x;

y = *p;

z = y * 2;
...

(a) original program

ld.a w = [p];

y = w;
z = y * 2;
...

st [q] = x;

chk.a w, recover;

recover:
ld y = [p];
z = y * 2;
...

(b) speculative version

Figure 2.10: Example on an instruction level data speculative optimization using the EPIC
instruction set. If the compiler is fairly confident that the pointers p and q do not alias, then
the redundant load instruction y = *p can be eliminated speculatively and replaced with a copy
instruction y = w. The copy instruction can then be hoisted above the store *q = x to increase
ILP and enable other optimizations. To support this optimization, extra code for checking and
recovering in the event of failed speculation is inserted (shown in bold).

2.3.2 Thread Level Speculation

Performance gained through instruction level data speculation, although promising, is ultimately

limited by the available instruction level parallelism [46]. To overcome this limit, techniques

to exploit more parallelism by extracting multiple threads out of a single sequential program

remains an open and interesting research problem. This parallelism, called Thread-Level Par-

allelism (TLP), requires the compiler to prove statically that either: (a) the memory references

within the threads it extracts are indeed independent; or (b) the memory references within

the threads are definitely dependent and must be synchronized. Ambiguous pointers are again

problematic. To compensate for these shortcomings, aggressive speculative solutions have been
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(a) Sequential execution (b) Successful TLS (p!=q) (c) Failed TLS (p==q)

Figure 2.11: TLS program execution, when the original sequential program is divided into two
epochs (E1 and E2).

proposed to assist the compiler.

Hardware-supported techniques, such as thread-level speculation (TLS) [40, 47, 60, 69] and

transactional programming [37, 38] allow the speculative parallelization of sequential programs

through hardware support for tracking dependences between speculative threads, buffering spec-

ulative modifications, and recovering from failed speculation.

TLS allows the compiler to automatically parallelize general-purpose programs by supporting

parallel execution of threads, even in the presence of statically ambiguous data dependences.

The underlying hardware ensures that speculative threads do not violate any dynamic data

dependence and buffers the speculative data until it is safe to be committed. When a dependence

violation occurs, all the speculative data will be invalidated and the violated threads are re-

executed using the correct data. Figure 2.11 demonstrates a simple TLS example.

The sequential program in Figure 2.11(a), is sliced into two threads of work (called epochs),

and labeled as E1 and E2 in Figure 2.11(b) and (c). They are then executed speculatively in

parallel, even though the addresses of the pointers p and q are not known until runtime. In

essence, TLS allows for the general extraction of any potentially available thread-level paral-
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lelism. A read-after-write (true) data dependence occurs when p and q both point to the same

memory location. Since the store produces data that will be read by the dependent load, these

store and load instructions need to be executed in the original sequential program order. In

Figure 2.11(b), p and q do not point to the same location. Therefore, speculation is successful

and both speculative threads can commit their results at the end of execution. However, as

shown in Figure 2.11(c), in the unlucky event that both pointers point to the same location, a

true data dependence is detected and a violation occurs. In this case, speculation fails because it

leads to an out-of-order execution of the dependent load-store pair, which violates the sequential

program order. The offending thread is halted and re-executed with the proper data.

There are various proposed thread-level speculation systems that aim at exploiting thread-

level parallelism in sequential programs by using parallel speculative threads. Among all different

types of thread-level speculation systems that have been proposed, there are three common key

components: (i) breaking a sequential program into speculative threads—this task must be done

efficiently to maximize thread-level parallelism and minimize the overhead; (ii) tracking data

dependences—since the threads are executed speculatively in parallel, the system must be able to

determine whether the speculation is successful; (iii) recovering from failed speculation—in the

case when speculation has failed, the system must repair the incorrect architectural states and

data, and discard the speculative work. Different TLS systems have different implementations

of these three components.

In the Multiscalar architecture [31, 32, 75], small tasks are extracted by the compiler and

distributed to a collection of parallel processing units under the control of a centralized hard-

ware sequencer. The architecture originally used an Address Resolution Buffer (ARB) [30] to

store speculative data and to track data dependences. The ARB was later succeeded by the

Speculative Versioning Cache (SVC) [36] which used a different cache coherence scheme to im-

prove memory access latency. The Hydra chip multiprocessor [39, 40] uses a secondary cache

write buffer and additional bits that are added to each cache line tag to record speculation
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states. Using these components data dependences are tracked and violation detection occurs

before a thread commits. Similarly, Stampede TLS [3, 4, 66–69] leverages cache coherence to

detect failed dependence violations. The compiler, with the assistance of feedback-driven pro-

filing information, decides which part of the program to speculatively parallelize. Unlike the

other two approaches, Stampede TLS does not use any special buffer for storing speculative

data. Instead, both speculative and permanently committed data is stored in the cache system

and an extended invalidation based cache coherence scheme is used to track the speculative

state of the cache lines [66]. All of the various techniques have different tradeoffs in terms of

violation penalties, dependence tracking overhead, and scalability making a general compilation

framework or approach that much more difficult to realize.

Similar to the speculative optimizations that target Instruction Level Parallelism, the deci-

sion of when it is profitable to speculate when compiling for any TLS infrastructure remains a

nontrivial task. All techniques rely on extensive profile information which is expensive to obtain,

possibly inaccurate, and often unavailable for real world applications. Section 2.4 will discuss

some of the existing work on compiler analyses intended to aid speculative optimization.

2.4 Static Analyses Targeting Speculative Optimizations

In this section, related work in the field of static program analysis for speculative optimization

is described. Speculative optimizations have recently been proposed to bridge this persistent

disparity between safety and optimization. As described in the previous section, deciding when

to use speculative optimization remains an important and open research problem. Most proposed

techniques rely on extensive data dependence profile information, which is expensive to obtain

and often unavailable. Traditional pointer analysis and dependence analysis techniques are

inadequate because none of these conventional techniques quantify the probability or likelihood

that memory references alias. Recently, there have been some studies on speculative alias
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analysis and probabilistic memory disambiguation targeting speculative optimization.

Ju et al. [17] presented a probabilistic memory disambiguation (PMD) framework that quan-

tifies the likelihood that two array references alias by analyzing the array subscripts. The prob-

ability is calculated using a very simple heuristic based on the overlap in the equality equation

of the array subscripts. Their framework uses an intuitive profitability cost model to guide data

speculation within their compiler. Their experimental results showed a speedup factor of up to

1.2x, and a 3x slowdown if unguided data speculation is used. This approach may be sufficient

for speculating when array references are encountered, but this approach is not applicable to

pointers.

Chen et al. [13, 14] recently developed the first and only other CSFS probabilistic point-to

analysis algorithm that computes the probability of each point-to relation. Their algorithm is

based on an iterative data flow analysis framework, which is slightly modified so that proba-

bilistic information is additionally propagated. As described in section 2.1.6, an iterative data

flow framework requires that points-to information be propagated until a fixed point solution

is found; which is known not to scale when used interprocedurally. It is also unclear if a fixed

point solution is guaranteed to occur with their proposed probabilistic framework, which is no

longer a monotonic [56] framework. Their approach optionally uses control-flow edge profiling

in order to compute the various control dependence probabilities. Interprocedurally, their ap-

proach is based on Emami’s algorithm [26], which is a cloning-based approach that requires an

invocation graph. No strategy for caching and reusing shadow variable aliasing information was

described in their research. Their experimental results show that their technique can estimate

the probabilities of points-to relationships in benchmark programs with reasonably small errors,

although they model the heap as a single location set and the test benchmarks used are all

relatively small.

Fernandez and Espasa [29] proposed a pointer analysis algorithm that targets speculation

by relaxing analysis safety. The key insight is that such unsafe analysis results are acceptable
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because the speculative optimization framework can tolerate them, converting a safety concern

into a performance concern. They gave some experimental data on the precision and the mis-

speculation rates in their speculative analysis results. Finally, Bhowmik and Franklin [7] present

a similar unsafe approach that uses linear transfer functions in order to achieve scalability. Their

approach simply ignores the shadow variable aliasing problem in order to realize a single transfer

function for each procedure. Unfortunately, neither of these last two approaches provide the

probability information necessary for computing cost/benefit trade-offs for speculative optimiza-

tions.

2.5 Summary

This chapter described the terminology and basic concepts in the fields of pointer analysis and

pointer analysis for speculative optimization. Different approaches to solving the pointer anal-

ysis problem were presented and contrasted. The tradeoffs and challenges involved in designing

a pointer analysis algorithm were also identified and discussed. We argued that the traditional

approaches to pointer analysis are overly conservative because ambiguous pointers will always

persist. Speculative optimizations, which relax safety constraints, were motivated to alleviate

the inadequacies of traditional pointer analysis approaches. Finally, the chapter also surveyed

related work in the new research area of pointer analysis for speculative optimization, which is

closely related to work presented in this dissertation. The next chapter will introduce an innova-

tive and scalable probabilistic pointer analysis algorithm that targets speculative optimization.



Chapter 3

A Scalable PPA Algorithm

This chapter describes our PPA algorithm in detail. We begin by showing an example program.

We then give an overview of our PPA algorithm, followed by the matrix framework that it

is built on. Finally, we describe the bottom-up and top-down analyses that our algorithm is

composed of.

3.1 Example Program

For the remainder of this chapter, the example program in Figure 3.1 will be used to illustrate

the operation of our algorithm. This example was created to quickly demonstrate the inter-

procedural nature of the analysis. Simple pointer assignment instructions are blended with

different types of control dependences and procedure calls to illustrate how path frequency

feedback is used to extract points-to probability information. In this sample program there

are three pointer variables (a, b, and tmp) and two variables that can be pointed at (x and

y), each of which is allocated a unique location set. We assume that edge profiling indicates

that the if statement at S3 is taken with probability 0.9, the if statement at S13 is taken

with a probability of 0.01, and the while loop at S5 iterates exactly 100 times (note that our

34
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int x, y;
int *a, *b;

void main() {

S1: a = &x;
S2: b = &y;

S3: if(...)
S4: f();

S5: while(. . . ) {
S6: g();
S7: . . . = *b;
S8: *a = . . . ;

}
}

void f() {
int *tmp;

S9: tmp = b;
S10: b = a;
S11: a = tmp;
S12: g();

}

void g() {
S13: if(...)
S14: a = &x;

}

Figure 3.1: In this sample program, global pointers a and b are assigned in various ways. The
if statement at S3 is taken with probability 0.9, the if statement at S13 is taken with a
probability of 0.01, and the while loop at S5 iterates exactly 100 times.

algorithm can proceed using heuristics in the absence of profile feedback). It is important to

note, that our algorithm currently assumes that all control dependences are independent and

that their frequencies are mutually exclusive. Initially a and b are assigned to the addresses of

x and y respectively. The function f() is then potentially called, which effectively swaps the

pointer values of a and b and then calls the function g(). The function g() potentially assigns

the pointer a to the address of x, depending on the outcome of the if at S13 which is taken 1%

of the time.

An optimizing compiler could target the loop at S5 as a potential candidate for optimization.

However, knowledge about what variables are being dereferenced at S7 and S8 is required to

safely optimize. If both instructions always dereference the same location (i.e., ∗a == ∗b), the

dereferences can be replaced by a single temporary variable. Conversely, if the dereference tar-
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gets are always different and also loop invariant then the corresponding dereference operations

can be hoisted out of the loop. If the compiler cannot prove either case to be true, which is

often the result in practice because of the difficulties associated with pointer analysis, then it

must be conservative and halt any attempted optimization. In this particular example, neither

optimization is possible. However, it would be possible to perform either optimization specu-

latively, so long as the optimized code was guarded with a check and recovery mechanism [52].

To decide whether a speculative optimization is desirable, we require the probabilities for the

various points-to relations at S7 and S8.

3.2 Algorithm Overview

The main objective of our probabilistic pointer analysis is to compute, at every program point s

the probability that any pointer α points to any addressable memory location β. More precisely,

given every possible points-to relation 〈α, ∗β〉, the analysis is able to solve for the probability

function ρ(s, 〈α, ∗β〉) for all program points s. The expected probability is defined by the

following equation

ρ(s, 〈α, ∗β〉) =
E(s, 〈α, ∗β〉)

E(s)
(3.1)

where E(s) is the expected runtime execution frequency associated with program point s and

E(s, 〈α, ∗β〉) is the expected frequency for which the points-to relation 〈α, ∗β〉 holds dynamically

at the program point s [13]. Intuitively, the probability is largely determined by the control-flow

path and the procedure calling context to the program point s—hence an approach that is both

control-flow and context sensitive1 will produce the most probabilistically accurate results.

1A context-sensitive pointer analysis distinguishes between the different calling contexts of a procedure, and
a control-flow-sensitive pointer analysis takes into account the order in which statements are executed within a
procedure.
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(a) Conventional points-to graph. (b) Probabilistic points-to graph

Figure 3.2: This is a points-to graph and the corresponding probabilistic points-to graph as-
sociated with the program point after S4 and initially into S5 (PS5) in the example found in
figure 3.1. A dotted arrow indicates a maybe points-to relation whereas a solid arrow denotes
a definite points-to relation. UND is a special location set used as the sink target for when a
pointer’s points-to target is undefined.

To perform pointer analysis, we must first construct an abstract representation of address-

able memory called a static memory model. For our PPA algorithm the static memory model is

composed of location sets [78].2 A location set can represent one or more real memory locations,

and can be classified as a pointer, pointer-target, or both. A location set only tracks its approx-

imate size and the approximate number of pointers it represents, allowing us to abstract away

the complexities of aggregate data structures and arrays of pointers. For example, fields within

a C struct can either be merged into one location set, or else treated as separate location sets.

Such options give us the flexibility to explore the accuracy/complexity trade-off space without

modifying the underlying algorithm. We also define a special location set called UND as the sink

target for when a pointer’s points-to target is undefined.

Since a location set can be a pointer, a location set can point to another location set. Such

a relation is called a points-to relation, and the set of all such relations is called a points-to

graph—a directed graph whose vertices represent location sets. Specifically, a directed edge

2Note that our algorithm itself is not necessarily dependent on this location-set-based model.
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from vertex α to vertex β indicates that the pointer α may point to the target β. In a flow-

sensitive analysis where statement order is considered when computing the points-to graph,

every point in the program may have a unique points-to graph. Our PPA algorithm computes a

probabilistic points-to graph, which simply annotates each edge of a regular points-to graph with

a weight representing the probability that the points-to relation will hold. Figure 3.2(a) shows an

example points-to graph based on the example code given in Figure 3.1, and Figure 3.2(b) gives

the corresponding annotated probabilistic points-to graph. It is important to note that the sum

of all outgoing edges for a given vertex is always equal to one in order to satisfy Equation 3.1.

To perform an inter-procedural context-sensitive analysis, and to compute probability values

for points-to relations, our PPA algorithm also requires as input an interprocedural control flow

graph (ICFG) that is decorated with expected runtime frequency; we explain the construction

of the ICFG in greater detail later in Chapter 4. The ICFG is a representation of the entire

program that contains the control flow graphs for all procedures, connected by the overall call

graph. Furthermore, all control-flow and invocation edges in the ICFG are weighted with their

expected runtime frequency. These edge weights can be obtained through the use of simple edge

profiling (eg., the output from gprof) or by static estimation based on simple heuristics.

Because our analysis is a control flow-sensitive analysis, every point s the program is said to

have a probabilistic points-to graph denoted Ps. Given a second point in the program s′ such

that a forward path from s to s′ exists, the probabilistic points-to graph Ps′ can be computed

using a transfer function that represents the changes in the points-to graph that occur on the

path from s to s′, as formulated by

Ps′ = fs→s′(Ps). (3.2)
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Figure 3.3: Fundamental PPA Equation

3.3 Matrix-Based Analysis Framework

As opposed to conventional pointer analyses which are set-based and can use analysis frameworks

composed of bit vectors or BDDs, a PPA requires the ability to track floating-point values for the

probabilities. Conveniently, the probabilistic points-to graph and transfer functions can quite

naturally be encoded as matrices, although the matrix formulation in itself is not fundamental

to the idea of PPA. The matrix framework is a simple alternative to propagating frequencies

in an iterative data flow framework [59]. We choose matrices for several reasons: (i) matrices

are easy to reason about, (ii) they have many convenient and well-understood properties, and

(iii) optimized implementations are readily available. Our algorithm can now build on two

fundamental matrices: a probabilistic points-to matrix P , and a linear transformation matrix T .

Thus we have the fundamental PPA equation

Pout = Tin→out × Pin. (3.3)

One key to the scalability of our algorithm is the fact that the transformation matrix is linear,

allowing us to compute the probabilistic points-to graph at any point in the program by simply

performing matrix multiplication—we do not require the traditional data flow framework used

by other flow-sensitive approaches [13].
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3.3.1 Points-to Matrix

We encode a probabilistic points-to graph using an N × M points-to matrix where M is the

number of location set vertices that can be pointed at, and N is the number of pointer location

sets plus the number of target location sets—therefore the vertices that act both as pointers

and pointee-targets have two matrix row entries and are hence counted twice. The following

equation formally defines the points-to matrix format:

Ps =



















p1,1 . . . p1,M

p2,1 . . . p2,M

...
. . .

...

pN,1 . . . pN,M



















pi,j =































ρ(s, 〈i′, j′〉) i ≤ N − M

1 i > N − M and i = j + (N − M)

0 otherwise

(3.4)

The rows 1 to N−M are reserved for the pointer locations sets and the rows N−M +1 to N

are reserved for the target location sets. To determine the row associated with a given pointer

or pointee variable, the row id(α) function is used. Given a pointer variable α, the function

row id(α) is equal to the matrix row mapped to the pointer α and the function row id(&α) is

equal to the matrix row mapped to the address of α. A pointer with n levels of dereferencing is

additionally mapped to n different rows, one row for each shadow variable represented in every

level the pointer can be dereferenced. For a points-to matrix, pointer-target location sets are

mapped to their corresponding column number by computing row id(&α) − (N − M). The

inner matrix spanning rows 1 to N − M fully describes the probabilistic points-to graph; the

other inner matrix spanning rows N −M +1 to N is the identity matrix, and is only included in
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order to satisfy the fundamental PPA equation. Finally, but crucially, the matrix is maintained

such that every row within the matrix sums to one—allowing us to treat a row in the matrix as

a probability vector
−→
P .

Example Consider the points-to graph depicted in Figure 3.2. We assume that row id(a) = 1,

row id(b) = 2, row id(tmp) = 3, row id(&x) = 4, row id(&y) = 5, and row id(UND) = 6.

We also assume that the columns correspond to x, y, and UND respectively. This produces the

corresponding points-to matrix:

PS5 =

x y UND

a

b

tmp

x

y

UND

































0.101 0.899 0

0.9 0.1 0

0 0 1

1 0 0

0 1 0

0 0 1

































This points-to matrix indicates that at the program point after S4 and initially into S5 (PS5):

(1) a points to x and y with probabilities 0.101 and 0.899 respectively; (2) b points to x and y

with probabilities 0.9 and 0.1 respectively; and (3) tmp is in an undefined state.

3.3.2 Transformation Matrix

A transfer function for a given points-to matrix is encoded using an N×N transformation matrix,

where N is the number of pointer location sets plus the number of target location sets. Each

row and column is mapped to a specific location set using the equivalent row id(α) function.

Transformation matrices are also maintained such that the values in every row always sum to

one. Given any possible instruction or series of instructions, there exists a transformation matrix

that satisfies Equation 3.3. If a statement has no effect on the probabilistic points-to graph, then
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the corresponding transformation matrix is simply the identity matrix. The following sections

describe how transformation matrices are computed.

3.4 Representing Assignment Instructions

In any C program there are four basic ways to assign a value to a pointer, creating a points-to

relation:

1. address assignment: a = &b;

2. pointer assignment: a = b;

3. load assignment: a = ∗b;

4. store assignment: ∗a = b.

For each of the four cases there exists a corresponding transformation matrix. Types (1) and (2)

generate a safe transformation matrix, whereas types (3) and (4) are modeled using a one-level

unsafe transformation. The dereferenced target that is introduced in type (3) or (4) is modeled

as a shadow variable and any ensuing shadow variable aliasing is ignored (for now), which is of

course unsafe. Since speculative optimizations do not necessitate safety we exploit the safety

requirement when multi-level pointer assignment instructions are encountered. Safety can be

added, if it is a requirement, by using some other lightweight alias analysis (this will be discussed

further in Section 3.8). For each of the four cases, a transformation matrix is computed using

the following equation:
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T[α=β,p] =
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p i = row id(α) and j = row id(β)

1 − p i = j = row id(α)

1 i = j and i 6= row id(α)

0 otherwise

(3.5)

In this equation, α represents the pointer location set on the left side of the assignment and β

denotes the location set (pointer or target) on the right side of the assignment. The probability

value p represents the binding probability for the transformation and it is equal to 1 divided

by the approximate number of pointers represented by the pointer location set α as defined

in Equation 3.6. A pointer location set can represent multiple pointers. Such a location is

required to represent the following cases: (1) an array of pointers; (2) pointers within recursive

data structures are statically modeled as a single location set; (3) pointers within C structs

are merged when a field-insensitive approach is utilized; and (4) shadow variable aliasing (as

described in Section 3.8). A heuristic is used to approximate how many pointers are represented

by a given pointer location set if this information can not be determined statically. A probability

of p = 1 is equivalent to a strong update used in a traditional flow-sensitive pointer analysis,

where as a probability of p < 1 is representative of a weak update.
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p =
1

approx # of pointers in α
(3.6)

It is important to note that the transformation matrix used for pointer assignment instructions

is simply the identity matrix, with the exception of one row that represents the left side of the

assignment.

Example The transformation matrices corresponding to the pointer assignment statements S1

and S10 from Figure 3.1 are:

TS1 = T[a=&x,1.0] =
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TS10 = T[b=a,1.0] =
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To compute the points-to matrix at S2 we use TS1 and the fundamental PPA equation as follows:

PS2 = TS1 · PS1
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The resulting points-to matrix at S2 shows that the points to relation 〈a, &x〉 exists with

probability 1, while all other pointers (b and tmp) are undefined.

3.5 Representing Basic Blocks

For a basic block with a series of instructions S1 . . . Sn whose individual transformation matrices

correspond to T1 . . . Tn, we can construct a single transformation matrix that summarizes the

entire basic block using the following:

Tbb = Tn · . . . · T2 · T1. (3.7)

Therefore, given any points-to matrix at the inbound edge of basic block, the points-to matrix

at the outbound edge can be computed simply by performing the appropriate matrix multipli-

cations. Note that the construction of a transformation matrix is a backward-flow analysis: to

solve for the transformation matrix that summarizes an intraprocedural path from s to s′, the

analysis starts at s′ and traverses backwards until it reaches s.

Example The basic block that contains statements S1 and S2 from Figure 3.1 can be summa-

rized as:

Tbb(S1−S2) = TS2 · TS1
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Assume that we are given the points-to matrix for the start of the basic block at S1 in

Figure 3.1; also assume that all pointers are undefined at that point. The points-to matrix at

the end of the basic block (i.e., at S3) can be computed as follows:

PS3 = Tbb(S1−S2) · PS1 =
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The resulting points-to matrix indicates that at S3 the points-to relations 〈a, &x〉 and 〈b, &y〉

exist with a probability of 1.

3.6 Representing Control Flow

The main objective of this matrix-based PPA framework is to summarize large regions of code

using a single transformation matrix. To summarize beyond a single basic block, our trans-

formation matrices must be able to represent control flow. Recall that the construction of a
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(a) Forward edge (b) Back-edge, outside (c) Back-edge, inside

Figure 3.4: Control flow possibilities

transformation matrix proceeds backwards, from s′ backwards to s. When the start of a ba-

sic block is encountered during this backwards analysis, the analysis must categorize the basic

block’s incoming edges. For now we consider the following three non-trivial cases for each edge:

1. the edge is a forward edge (Figure 3.4(a));

2. the edge is a back-edge and s′ is outside the region that the back-edge spans (Figure 3.4(b));

3. the edge is a back-edge and s′ is within the region that the back-edge spans (Figure 3.4(c)).

The following considers each case in greater detail.

3.6.1 Forward Edges

When there exists a single incoming forward edge from another basic block the transformation

matrix that results is simply the product of the current basic blocks transformation matrix

and the incoming blocks transformation matrix. When there are exactly two incoming, forward

edges from basic blocks γ and δ, we compute the transformation matrix as follows:

Tif/else = p · Tγ + q · Tδ (3.8)
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Tγ and Tδ represent the transformation matrices from the program point s to the end of each

basic block γ and δ respectively. The scalar probability p represents the fan-in probability from

basic block γ, and q represents the fan-in probability from basic block δ. It is required that p

and q sum to 1. This situation of two forward incoming edges typically arises from the use of

if/else statements. In this case we compute the transformation matrix as follows:

Tcond = pi

∑

Ti (3.9)

This equation is simply a generalized version of Equation 3.8 with the added constraint that

∑

pi = 1.

Example From Figure 3.1 the function g() can be fully summarized using Equation 3.9:

Tg() = 0.01 · TS14 + 0.99 · I =
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The identity matrix I is weighted with a probability 0.99 since there is no else condition.

Recall that the if statement at S13 executes 1% of the time. This matrix indicates that after

the function g() executes, a has 1% chance of pointing at x and 99% chance of remaining the

same.

3.6.2 Back-Edge with s′ Outside it’s Region

When a back-edge is encountered and s′ is outside the region that the back-edge spans, we

can think of the desired transformation matrix as similar to that for a fully-unrolled version
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of the loop—eg., the same transformation matrix multiplied with itself as many times as the

trip-count for the loop. In the case where the loop trip-count is constant, we can model the

back-edge through simple exponentiation of the transformation matrix. Assuming that Tx is

the transformation matrix of the loop body, and C is the constant loop trip-count value, we can

model this type of back-edge with the following:

Tloop = Tx
C (3.10)

When the loop trip-count is not a constant, we estimate the transformation matrix by com-

puting the distributed average of all possible unrollings for the loop. Assuming that the back-

edge is annotated with a lower-bound trip-count value of L and an upper-bound value of U , the

desired transformation matrix can be computed efficiently as the geometric series averaged from

L to U :

Tloop =
1

U − L + 1

U
∑

L

Tx
i (3.11)

Example Consider the while loop found at statement S5 in Figure 3.1. The transformation

matrix for the path from S5 to S8 is:

TS5→S8 = (TS6→S8)
100 = (Tg())
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This matrix indicates that after the loop fully iterates, a has a 63% chance of pointing at x and

a 37% chance of remaining unchanged.
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3.6.3 Back-Edge with s′ Inside it’s Region

The final case occurs when the edge is a back-edge and s′ is inside the region that the back-

edge spans, as shown in Figure 3.4(c). Since s′ is within the loop the points-to relations at s′

may change for each iteration of that loop. In this case we compute the desired transformation

matrix using a geometric series such that U is the maximum trip-count value:

Tloop =
1

U

U−1
∑

0

Tx
i (3.12)

Example In Figure 3.1 this scenario occurs if we require the transformation matrix for the

path S1 to S7, since in this case s′ is S7, which is within the while loop at S5. The required

transformation matrix can be computed as follows:

TS1→S7 = Tg() · 1
100

∑99
0 (TS6→S8)

i · TS1→S5

3.7 Bottom Up and Top Down Analyses

We have so far described a method for computing probabilistic points-to information across

basic blocks, and hence within a procedure. To achieve an accurate program analysis we need a

method for propagating a points-to matrix inter-procedurally. To ensure that our analysis can

scale to large programs, we have designed a method for inter-procedural propagation such that

each procedure is visited no more than a constant number of times.

We begin by computing a transformation matrix for every procedure through a reverse

topological traversal of the call graph—eg., a bottom-up (BU) pass. Recursive edges in the

call-graph are weakened and analyzed iteratively to ensure that an accurate transformation

matrix is computed. The result of the bottom-up pass is a linear transformation matrix that

probabilistically summarizes the behavior of each procedure.
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In the second phase of the analysis, we initialize a points-to matrix by (i) computing the

result of all statically defined pointer assignments, and (ii) setting all other pointers to point

at the undefined location set (UND). We then propagate the points-to matrix throughout the

entire program using a forward topological traversal of the call-graph (eg., a top-down (TD)

pass). When a load or store instruction is reached, the probability vector for that dereference

is retrieved from the appropriate row in the matrix. When a call instruction is reached we

store the points-to matrix at that point for future use. Finally, we compute the initial points-to

matrix into every procedure as the weighted average of all incoming points-to matrices that were

previously stored.

Example The call graph for our example dictates that in the bottom-up phase of the analysis

the procedure-level transformation matrices are computed in the following order: Tg(), Tf(), and

then Tmain(). This is intuitively necessary since Tf() requires Tg(); and Tmain() requires both Tf()

and Tg(). The algorithm then proceeds into the top-down phase which visits the procedures in

the reverse order. Initially, the following input points-to matrix into main() is used since there

are no static declarations:
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The algorithm propagates and updates this matrix forward until a pointer dereference or a

procedure call instruction is reached. At S4, the points-to matrix PS4 is cached so that when

the procedure f() is analyzed the points-to matrix representing the initial state of f() will be
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available.

Pf() in = PS4 =
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Similarly, the points-to matrices PS6 and PS12 are also stored in order to analyze procedure g()

during the top-down phase. These matrices are later merged using a weighted sum based on

the fan-in frequencies from their respective callee procedures:

Pg() in = 100 × PS6 + PS12

3.8 Safety

At this point our algorithm does not necessarily compute a safe result in all circumstances:

for certain code, the theoretical points-to transfer function may contain non-linear side effects

which are not captured by our linear transformation matrix encoding. Non-linear effects occur

when multiple levels of dereferencing are used to assign to pointers: (i) load assignment: a = ∗b;

(ii) store assignment: ∗a = b. We optionally handle multi-level dereferencing by instantiating

shadow variable pointer location sets, a technique that is similar to invisible variables [26]. These

shadow variable location sets can potentially alias with other pointer location sets and cause

unsafe behavior if ignored. In this case we want to handle these nonlinearities safely, we use

a lightweight, context-insensitive and flow insensitive unification based alias analysis [65] to

precompute any shadow variable aliasing that can potentially occur. We assume that aliasing
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between location sets occurs with a probability that is inversely-proportionally to the size of

the aliasing set. All transformations involving shadow variables that alias are amended safely

to handle these nonlinearities. However, it is important to note that since we are supporting

speculative optimizations, we also have the option of ignoring safety.

3.9 Summary

This chapter describes the PPA algorithm that provides the foundation for our LOLIPoP infras-

tructure. The points-to matrix and the transformation matrix were introduced as components

used to track and store probabilistic points-to graphs. A simple example was used to show

how transformation matrices can be derived and used to summarize a single instruction, a basic

block, any path, and an entire procedure. A method for leveraging our matrix-based framework

inter-procedurally using a bottom-up and top-down flow was also described. Additionally, a

simple method that utilized a FICI pointer analysis for multiple levels of pointer dereferences

was described as a means of obtaining a safe analysis. The next chapter will describe our design

decisions in greater detail and present the details of our implementation of LOLIPoP.



Chapter 4

The LOLIPoP PPA Infrastructure

This chapter presents the Linear One-Level Interprocedural Probabilistic Pointer (LOLIPoP)

analysis infrastructure. We begin by highlighting and discussing the features that the infras-

tructure offers. The design decisions made and important implementation details to realize this

infrastructure are also discussed in this chapter.

4.1 Implementing LOLIPoP

Figure 4.1 shows a block diagram of the LOLIPoP infrastructure, which operates on C source

code. The LOLIPoP infrastructure is our prototype implementation of the algorithm described

in Chapter 3. The foundation of LOLIPoP is a SUIF 1.3 compiler pass [74]. The SUIF front

end parses the code into the SUIF intermediate representation (SUIF-IR). Using the generated

SUIF-IR, LOLIPoP executes in four sequential phases:

1. Interprocedural Control Flow Graph (ICFG) construction;

2. Static Memory Model (SMM) generation;

3. Bottom-Up (BU) call graph traversal to collect all the procedure-level transformation

54
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Figure 4.1: The LOLIPoP infrastructure.

matrices;

4. Top-Down (TD) call graph traversal to propagate the points-to matrices.

This section will describe these four phases. For reference purposes, a simplified version of

the source-code implementation of the BU phase can be found in Appendix A, which presents

source level details on the methods that are invoked to compute a transformation matrix.

4.1.1 Interprocedural Control Flow Graph (ICFG)

The pass begins by building the Interprocedural Control Flow Graph (ICFG) [49] using the

SUIF-IR as input. An ICFG is a collection of control flow graphs linked together with a global

call graph. The ICFG is able to fully represent the complete flow of execution through a given

input program. By linking all control flow graphs together in one data structure, the compiler

is able to perform various interprocedural analyses. We have developed a light-weight edge-

profiler which instruments C source code to track control flow edge counts, invocation edge

counts, and indirect function call targets. Our ICFG is optionally annotated with any available

profile information, which is obtained through the use of the edge profiler. The analysis is
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optionally able to operate without this profile information through the use of simple static

heuristics, which is discussed further in Section 4.1.5. The ICFG provides a convenient API

so that subsequent phases can easily query for information or traverse the embedded graphs

in various ways. The most important type of traversal predominantly utilized by the BU and

TD phases is a topological traversal of the call graph. However, as a result of recursion, call

graphs may have cyclic components. This prevents us from performing a topological traversal in

the general sense because a topological sorting algorithm requires a directed acyclic call graph.

Therefore, we must somehow remove all cycles. We accomplish this using edge weakening.

Weakening means that we iteratively tag edges within SCCs [72] as ‘weakened’ and then ignore

them during the topological traversal. The implication is that a weakened edge is a recursion-

causing invocation edge.

4.1.2 Static Memory Model (SMM)

After building our ICFG, the next step is to build the static memory model (SMM). The

SMM uses the SUIF symbol table and the ICFG to construct an abstract representation of the

program’s addressable memory space. LOLIPoP uses location sets [78] as defined in Chapter 2 to

abstractly model real memory locations. For our purposes, as described in Chapter 3, a location

set need only track its approximate size and the approximate number of pointers it represents.

Through a linear pass of the SUIF symbol table and ICFG, location sets are extracted, merged,

and represented based on various settings specified by the user. For example, the user is able

to specify how the heap is to be managed: (1) as a single location set, or (2) as a unique

location set that maps every call of malloc(), calloc(), realloc(), etc. to its own location

set. All aggregate structures and arrays are optionally merged into a single location set for a

field-insensitive analysis. This system also allows for a field-sensitive analysis that separates C

struct fields into individual location sets. Recursive data structures are merged into one data
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structure after one level of recursion. If necessary, the SMM is responsible for performing a

shadow variable alias analysis pass to guarantee an overall safe analysis. LOLIPoP currently

uses Steensguard’s [65] unification based CIFI alias analysis to extract this alias information.

The various optional user level settings that our SMM provides allow for a fair comparison with

other pointer analysis techniques. They also permit us to further study the various tradeoffs

between efficiency and accuracy.

4.1.3 Bottom-up (BU) Pass

Phase three of our analysis is the bottom-up (BU) pass. The bottom-up pass, as described in

Section 3.7, computes a probabilistic summarizing transformation matrix for every procedure

through a reverse topological traversal of the call graph. We exploit the sparse matrix library

available through MATLAB’s runtime library to perform all matrix operations. The matrices

are cached in an indexable data structure that intelligently monitors its memory usage. If

memory becomes scarce, this storage data structure swaps matrices to disk using traditional

caching algorithms.

At the intraprocedural level, the key method required for the BU phase of the analysis is the

method to compute a transformation matrix given any valid intraprocedural path. This method

fully encapsulates the intraprocedural algorithm described in Chapter 3. The source code can

be found in Section A.4 of Appendix A. This recursive method takes in any two connected

basic blocks and returns the transformation matrix that summarizes the path between those

two basic blocks. Quite naturally, this recursive method is used to compute the transformation

matrix for an entire procedure by passing in the initial and final basic blocks associated with that

procedure1. An important optimization added to the implementation of the algorithm previously

described in Chapter 3 is the use of memoization. To avoid duplicate path computations when

1The ICFG normalizes all control flow graphs so that they have exactly one initial and one final synthetic
basic block [56].
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recursively analyzing the same control flow graph, transformation matrices are hashed into a

global table using the path as the hashing index. Because this algorithm is recursive, this

optimization is required to prevent an exponential evaluation of all paths which helps to achieve

scalability.

A further and essential optimization that enables both increased performance and accuracy is

UND-termination. UND-termination sets all local variables, parameters, and return value location

sets to point at UND (the undefined location set) when they can no longer be referenced—

i.e. when they are popped off the program stack. This optimization is completely safe since

location sets local to a procedure no longer point to valid memory locations once the procedure

returns. Although this subtle optimization appears to be inconsequential, its main objective is to

maintain matrix sparsity when calculating other transformation matrices. Without it, matrices

quickly become non-sparse which causes the amount of memory required to grow exponentially.

An example program that has been refactored using UND-termination can be found in Figure 4.2.

4.1.4 Top-down (TD) Pass

The fourth and final stage of the analysis is the top-down (TD) phase. In this phase we visit

every procedure in a forward topological traversal of the call graph. MATLAB’s sparse matrix

runtime library is again utilized to perform all the basic matrix mathematical operations. At

the entry point to every procedure being analyzed we initialize an input points-to matrix. As

described in Section 3.7, this matrix is the weighted sum of all points-to matrices that exist

when this procedure is called. If a procedure has no callee’s, such as the main() procedure, we

initialize an input points-to matrix by (i) computing the result of all statically defined pointer

assignments, and (ii) setting all other pointers to point at the undefined location set (UND).

At the intraprocedural level, the points-to matrix is also propagated in a top-down traversal

of the control flow graph using an equivalent traversal algorithm as the one used at the inter-
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void swap(int **x, int **y) {
int *tmp;

S1: *tmp = *x;
S2: *x = *y;
S3: *y = *tmp;

}

void foo() {
int **a, *b;

. . .

S4: swap(a, &b);
. . .

}

(a) Original program

int **swap x, **swap y;
void swap() {

int *tmp;

S1: *tmp = *swap x;
S2: *swap x = *swap y;
S3: *swap y = *tmp;

tmp = UND;
}

void foo() {
int **a, *b;
. . .
swap x = a; swap y = &b;

S4: swap();
*a = *swap x; b = *swap y;
swap x = UND; swap y = UND;
. . .

}

(b) After applying UND-termination

Figure 4.2: In the simple program found in (a), the function swap is called from foo. The refac-
tored code in (b) is a version of (a) with UND termination applied. The SMM pass conceptually
promotes all function parameters into global variables. All location sets are assigned to point
at the undefined location set when they are no longer needed.

procedural level. The points-to matrix into every basic block is computed using a weighted sum

of all the output points-to matrices from all predecessor basic blocks. Memoization is again

used to avoid the duplicate calculations. Within a basic block, the points-to matrix for the

program points of interest (i.e. pointer dereferences and call instructions) are computed. When

a pointer dereference instruction is reached (which maps to a load or store instruction in SUIF),

the probability vector for that dereference is retrieved from the appropriate row in the matrix.

The probability vector is annotated to the SUIF-IR and subsequently becomes the output of our

entire LOLIPoP system. Recall that our main objective is to accurately predict the probability
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of each points-to relation at every pointer dereference program point. When a call instruction

is reached we store the points-to matrix at that point for future use. The data structure that

stores these matrices performs the interprocedural merge operation immediately to reduce the

total number of matrices required for storage.

4.1.5 Heuristics

To a large extent, the probabilistic points-to information extracted at every pointer dereference

point is dependent on the edge-profile information used to guide the analysis—the assumption

being that the degree of accuracy used in obtaining edge profile information is directly related to

the final probabilistic accuracy. The exact impact of an accurate edge-profile pass was unclear

at the outset of our investigation and the actual measured impact will be discussed later in

Chapter 5. Our analysis requires four different types of information from the edge profiler: (i)

the fan-in probability of all control flow graph edges (ignoring back edges); (ii) the upper and

lower bound trip counts for all back edges per loop invocation; (iii) the fan-in probability of

all invocation call graph edges; and (iv) the probability of indirect function call targets. For

experiments when edge-profile information is not available, simple heuristics are used in its place.

The following three compile-time heuristics are used: (i) we assume that fan-in probability is a

uniform distribution between all incoming branches; (ii) when the upper and lower bound for the

trip count of a loop cannot be determined through a simple inspection of the loop bounds, we

assume that the lower bound is zero and the upper bound is ten; and (iii) we assume that fan-in

call graph invocation edge counts have a uniform distribution between all callee procedures. For

this thesis we do not yet use a heuristic for indirect function call targets and therefore require

the edge-profiler to always provide that information.
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4.2 Accuracy-Efficiency Tradeoffs

During the design and implementation of LOLIPoP, many important design decisions involving

accuracy/efficiency tradeoffs were encountered. Many of these tradeoffs are common to all

pointer analysis algorithms, as discussed in Section 2.1.6. Our system was designed so that

whenever possible, and especially when no approach was clearly favourable, the trade-off was

left for the eventual client of LOLIPoP to control. This section will briefly discuss some of the

important tradeoffs encountered and the approach taken.

4.2.1 Safe vs Unsafe Analysis

Because our analysis targets a speculative client optimization, safety is not a firm requirement.

That said, safety can potentially aid a speculative optimization by reducing the number of

memory references which must be treated as speculative. For example, reordering loads and

stores using the EPIC instruction set requires the memory references to always be speculative

instructions if an unsafe analysis is used. In contrast, if a safe analysis is used the compiler would

be able to, in certain cases, guarantee that an optimization is safe and could avoid the overhead

that results from tracking speculative loads and stores. Clearly a tradeoff exists here between

accuracy and efficiency. Performing a safe analysis adds complexity and increases the run time of

our algorithm for three reasons: (i) the added time required to perform the shadow variable alias

analysis pass; (ii) the increased complexity in deriving and computing transformation matrices

that represent instructions where an operand aliases with another location set; and (iii) the

decrease in matrix sparsity as a consequence of adding and tracking many likely false points-to

relations. For the reasons described here, LOLIPoP was designed to allow the user to optionally

decide if a safe or unsafe analysis should be performed.
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4.2.2 Field Sensitivity

Field sensitivity or aggregate modeling is a classic example that illustrates how pointer analysis

accuracy can be traded off for increased algorithmic performance. Aggregate structures with

multiple pointer type fields, such as C structs are merged and handled as a single pointer

location set in a field-insensitive analysis. Conversely, a field-sensitive analysis handles every

field and subsequently every subfield as a separate and unique field. Clearly, a field sensitive

analysis provides more accuracy than a field insensitive analysis. With regards to performance,

LOLIPoP is particularly susceptible to this field-sensitivity tradeoff because the number of

location sets extracted by the Static Memory Model determines the size N of all transformation

matrices. A larger value of N causes more memory to be used and requires added complexity to

all matrix operations performed. LOLIPoP currently only supports field insensitivity, but that

support for field-sensitivity can easily be added in the future.

4.2.3 Other Tradeoffs

LOLIPoP provides many other interesting user level runtime options that are very minor and

beyond the scope of our discussion. In this section we will briefly highlight some of these

tradeoffs. Appendix B outlines all of the possible runtime options currently available to the

user. The user is able to model the heap as a single location set or model each heap allocation

callsite site as a unique location set; unique callsite allocation is the default choice. No support is

yet provided for unique context-sensitive callsite heap modeling or shape analysis. The analysis

is also optionally allowed to fully trust the edge-profiler, which enables it to ignore all paths

that have a probability of zero. This results in both improved performance and accuracy;

unfortunately it also produces an unsafe and heavily profile biased result. Finally, the user

is able to substitute the more expensive geometric series operation with an unsafe and more

efficient linear interpolation operation.
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4.3 Optimizations

To meet our objective to scale to the entire SPEC 2000 integer benchmark suite, we put a

great deal of effort into optimizing the execution of LOLIPoP. In particular we exploit sparse

matrices, we compress matrices before exponentiating, we perform aggressive memoization of

matrix results at the intraprocedural level, and we use an efficient implementation for computing

the geometric series for Equations 3.11 and 3.12. This section describes the main optimizations

utilized to realize our scalability objective.

4.3.1 Matrix Representation

The typical data structure used for a matrix is a two dimensional array. Each entry in the

array represents an element ai,j of the matrix and can be accessed by the two indices i and

j. For our purposes, the matrices are almost always sparse, and implementing them using this

naive approach is an inefficient use of memory. In this regard, we exploit the fact that our

matrices are sparse and therefore encode them using Matlab’s sparse matrix library [41, 53].

We also take special care, as discussed previously, to ensure that the matrices remain sparse to

effectively take advantage of the Matlab library. A sparse matrix contains many zero entries.

The basic idea when storing sparse matrices is to only store a representation of non-zero entries

as opposed to storing all entries. Depending on the number and distribution of the non-zero

entries, different data structures can be used and yield huge savings in memory when compared

to a naive approach.

Matlab encodes sparse matrices using the Yale Sparse Matrix Format [25, 35]. It stores an

initial sparse N × N matrix M in row form using three arrays: PR, IR, and JC. The variable

NZ denotes the number of nonzero entries in matrix M . PR is an array of type double that

stores all nonzero entries within M . This array is therefore at least length NZ and we ensure

that it does not grow beyond 2 × NZ (surprisingly, Matlab does not maintain this for us).
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The array IR is also at least of length NZ. It is an integer array that stores the row offsets

associated with the values in PR. JC is an integer array of length N +1. IR stores at JC[i] the

position of the first element of row i in the sparse array PR. The length of row i is determined

by JC[i + 1] − JC[i].

4.3.2 Matrix Operations

A further optimization we use is matrix compression. The matrices we maintain have the

property that all rows sum to 1.0, which implies that they contain at least N nonzero entries—

therefore, we don’t fully take advantage of the sparsity features provided by Matlab. Whenever

storing transformation matrices, we compress them by subtracting the identity matrix. Since

most transformation matrices are very close to the identity matrix, this causes them to become

much more sparse. They are therefore stored using a more memory efficient means, which

indirectly results in improved performance.

When performing exponentiation or the geometric series operation we utilize a different type

of matrix compression. We compress the matrix into a smaller matrix by eliminating all rows and

columns that will remain unchanged after the operation is performed [16]. We then perform the

exponentiation or geometric series operation on the smaller matrix. The matrix is then repaired

back into its former state by reinserting the rows and columns that were removed. This type of

matrix compression can be performed on the Yale matrix type quite easily and matlab performs

much more efficiently when exponentiating a smaller matrix.

For performing the expensive operation of exponentiation, LOLIPoP relies on the Matlab

library for which it is undocumented how exponentiation is performed efficiently. Furthermore, it

is hypothesized that LOLIPoP could improve upon Matlab’s implementation of exponentiation

by further utilizing the various properties of the transformation matrix—this is left for future

work. The geometric series operation is implemented by LOLIPoP as an extension to the
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exponentiation operation. More information on how to map a geometric series operation into

an exponentiation operation can be found in Appendix C.

4.4 Summary

This chapter presented the LOLIPoP infrastructure. We described the four phases used by

the LOLIPoP framework: (1) Interprocedural Control Flow Graph (ICFG) construction; (2)

Static Memory Model (SMM) generation; (3) Bottom-Up (BU) traversal; and (4) Top-Down

(TD) traversal. We highlighted the features that the infrastructure offers. We discussed the

different tradeoffs involved, including field sensitivity and safe vs unsafe analysis. We also

provided insight into the important implementation details and optimizations that we applied

such as: memoization, UND-termination, and matrix compression. The next chapter will discuss

the experimental framework used and the accuracy and performance results we obtained.



Chapter 5

Evaluating LOLIPoP

In this chapter we evaluate LOLIPoP’s running-time, the accuracy of the pointer analysis results

in a conventional sense, and the accuracy of the resulting probabilities.

5.1 Experimental Framework

The following describes our framework for evaluating LOLIPoP. All timing measurements were

obtained using a 3GHz Pentium IV with 1GB of RAM and 1GB of swap space. We report

results for all of the SPECint95 and SPECint2000 benchmarks [19] except for the following:

252.eon, which is written in C++ and therefore not handled by our compiler; 126.gcc, which

is similar to 176.gcc; and 147.vortex, which is identical to 255.vortex. Table 5.1 describes

both the ref and train inputs used for each benchmark.

5.2 Analysis Running-Time

LOLIPoP meets our objective of scaling to the SPECint95 and SPECint2000 benchmark suites.

Table 5.2 shows the running-times for both the safe (where shadow variable alias analysis is per-

66
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Table 5.1: Benchmark inputs used.

Benchmark Train Input Ref Input Description

S
P

E
C

in
t2

00
0

bzip2 default default compression/decompression
crafty default default chess board solver
gap default default group theory interpreter
gcc default expr.i compiler
gzip default default compression/decompression
mcf default default combinatorial optimization
parser default default natural language parsing
perlbmk diffmail.pl diffmail.pl perl interpreter
twolf default default place and route for standard cells
vortex default bendian1.raw OO database
vpr default default place and route for FPGAs

S
P

E
C

in
t9

5 compress default reduced to 5.6MB compression/decompression
go default 9stone21.in game playing, AI, plays against itself
ijpeg default vigo.ppm image processing
li default default lisp interpreter
m88ksim default default microprocessor simulator
perl jumble.pl primes.pl perl interpreter
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Table 5.2: LOLIPoP measurements, including lines-of-code (LOC) and transformation matrix
size N for each benchmark, as well as the running times for both the unsafe and safe analyses.
The time taken to obtain points-to profile information at runtime is included for comparison.

Matrix Running Time (min:sec)
Benchmark LOC Size Unsafe Safe PT-Profile

S
P

E
C

in
t2

00
0

bzip2 4686 251 0:0.3 0:0.3 13:34
crafty 21297 1917 0:5.5 0:5.5 14:47
gap 71766 25882 54:56 83:38 55:56
gcc 22225 42109 309:40 N/A 39:58
gzip 8616 563 0:0.71 0:0.77 3:48
mcf 2429 354 0:0.39 0:0.61 19:46
parser 11402 2732 0:30.7 0:50.0 84:52
perlbmk 85221 20922 44:15 89:43 N/A
twolf 20469 2611 0:16.6 0:20.6 N/A
vortex 67225 11018 3:59 4:56 0:0.7
vpr 17750 1976 0:9.3 0:10.3 197:0

S
P

E
C

in
t9

5 compress 1955 97 0:0.1 0:0.1 1:55
go 29283 651 0:2.9 0:3 5:58
ijpeg 31457 4491 0:23.4 0:24.9 7:12
perl 4686 5395 5:3 7:49 8:37
li 27144 3868 0:28.8 0:59.15 72:5
m88ksim 19933 1932 0:4.9 0:5.24 0:0.2
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formed) and unsafe analyses. Each running-time includes the bottom-up and top-down phases

of the overall analysis, but ignores the time taken to build the interprocedural control flow graph

and static memory model—but note that this time is negligible in most cases. The runtimes

range from less than a second for four benchmarks up to 5 hours for the challenging bench-

mark (gcc). These results are promising especially given that this is an academic prototype

implementation of PPA.

For speculative optimizations, the alternative to pointer analysis is to use a points-to profiler

which instruments the source code to extract points-to frequency information at runtime—for

comparison purposes, we have implemented a points-to profiler. Our points-to profiler instru-

ments the source code so that the memory addresses of all location sets can be tracked and

queried at runtime. This involves two key instrumentation techniques: (1) overloading library

function calls to alloc and free to track heap location set addresses; and (2) storing the

addresses of every stack variable (whose address is taken) when it gets put on the program’s

runtime stack. Every pointer dereference is also instrumented with a wrapper function that

enables the points-to profiler to determine which location set is being referenced during the

dereference operation. The points-to profiler queries the set of available addresses, which takes

O(n · log(n)) time, to determine which runtime point-to relation is executing—the frequency

of this points-to relation is then incremented. Points-to profiling is a computationally intense

analysis and furthermore has no ability to provide safety in the resulting alias information it

provides.

The results in Table 5.2 show that in most cases, our analysis approach is much faster than

the profiler. In fact, for two cases (perlbmk and twolf) the profiler did not terminate after

two weeks of execution. It is also important to note that the profiling approach is very dependent

on the input set used, both in the results it provides and on the profiler’s runtime. For gcc and

vortex reduced reference input sets were used to ensure a tractable profiler time (described in

Table 5.1)—in these cases the profiler outperforms LOLIPoP because LOLIPoP must analyze
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Figure 5.1: Average dereference size comparison with GOLF for the SPECInt95 benchmarks:
L is LOLIPoP, and G is GOLF. LOLIPoP’s results are safe, except for gcc which reports an
unsafe result. LOLIPoP’s results are more accurate than GOLF for all benchmarks.

the entire program while the profiler only analyzes the subset of code that is exercised by the

reduced input set. For the more challenging benchmarks (gap, gcc, and perlbmk), there is a

significant increase in running-time to compute safe results—i.e., to handle pointer assignments

with multiple levels of dereferencing as described in Section 3.8.

5.3 Pointer Analysis Accuracy

The accuracy of a conventional pointer analysis algorithm is typically measured and compared

by computing the average cardinality of the target location sets that can be dereferenced across

all pointer dereference sites in the program—in short, the average dereference size. To ensure

that LOLIPoP is indeed accurate, in Figure 5.1 we compare the average dereference size for

LOLIPoP’s safe result with those reported by Das for the GOLF algorithm [22]. We choose

GOLF for comparison for two main reasons: (i) it is one of the few analyses that scales to even

SPECint95 benchmarks; (ii) GOLF is safe, one-level context-sensitive, field-insensitive, and
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Table 5.3: LOLIPoP Measurements.

Avg. Dereference Size
Benchmark Safe p > 0.001 Unsafe

bzip2 1.00 1.00 1.00
compress 1.080 1.08 1.08
crafty 1.830 1.40 1.83
gap 143.84 77.61 6.21
gcc N/A N/A 2.64
go 3.290 2.15 3.29
gzip 1.41 1.31 1.45
ijpeg 6.740 2.46 1.33
li 80.10 14.70 4.34
m88ksim 1.82 1.66 1.84
mcf 1.51 1.51 1.51
parser 42.52 2.09 3.23
perlbmk 18.48 5.45 3.10
perl 88.98 8.40 35.35
twolf 1.26 1.25 1.19
vortex 6.06 3.61 6.13
vpr 1.18 1.10 1.09

callsite-allocating—matching those aspects of LOLIPoP. However, our goal is not to compete

with GOLF since there are several reasons such a comparison would not be fair: (i) LOLIPoP

is flow-sensitive while GOLF is not; (ii) LOLIPoP relies on profiling to identify the targets

of function pointers; and (iii) LOLIPoP does not yet model all library calls, while GOLF does.

Flow-sensitivity is the main reason that LOLIPoP does not scale as well as GOLF, although this

is also the main source of LOLIPoP’s significantly improved accuracy as reported in Figure 5.1.

In summary, even without considering probability information LOLIPoP provides an accurate

approach to performing pointer analysis.

Table 5.3 shows the average dereference sizes for all benchmarks studied, showing the safe

result, the result when any points-to relation with a probability less than 0.001 is ignored, and
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the unsafe result (when shadow variable aliasing is ignored)—average maximum certainty will

be discussed later in Section 5.4.1. One very interesting result is that the benchmarks with

a relatively large average dereference size for the safe analysis (gap, li, parser, perlbmk,

perl) show a dramatic decrease when unlikely points-to relations are ignored (i.e., those for

which p < 0.001). This result suggests that many points-to relations are unlikely to occur at

runtime, underlining the strong potential for speculative optimizations. As expected, a similar

result is observed for the unsafe version of the analysis since the safe analysis introduces many

inaccuracies through the flow-insensitive, context-insensitive pass that addresses shadow variable

aliasing. These inaccuracies create many low probability points-to relations that are unlikely to

ever occur at runtime. For example, the safe average dereference size for gap is relatively high

at 143.84, while the unsafe size is only 6.21.

5.4 Probabilistic Accuracy

We now measure the accuracy of the probabilities computed by LOLIPoP by comparing the

two probability vectors
−→
P s and

−→
P d at every pointer dereference point.

−→
P s, as defined in

Section 3.3.1, represents the probability vector reported by LOLIPoP—the static probability

vector.
−→
P d represents the dynamic probability vector calculated by the points-to profiler. In

particular, we want to quantify the accuracy of the probability vectors
−→
Ps that are statically

computed at every pointer dereference. For comparison, we use the results of the profiler where

each benchmark (using it’s ref input) is instrumented to track—for each pointer dereference

location—a frequency vector that indicates the frequency that each location set is the target.

Each resulting dynamic frequency vector is then normalized into a dynamic probability vector

(
−→
P d) so that it may be compared with the corresponding probability points-to relation vector,

as described in Equation 3.1. To compare the two vectors in a meaningful way, we compute the

normalized average Euclidean distance (NAED) as defined by:
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Figure 5.2: SPECint95 - Normalized Average Euclidean Distance (NAED) relative to the dy-
namic execution on the ref input set. D is a uniform distribution of points-to probabilities, Sr is
the safe LOLIPoP result using the ref input set, and the U bars are the unsafe LOLIPoP result
using the ref (Ur) and train (Ut) input sets, or instead using compile-time heuristics (Un).

NAED =
1√
2
·

∑ ‖−→P s −
−→
P d‖

(# pointer dereferences)
(5.1)

This metric summarizes the average error uniformly across all probability vectors at every pointer

dereference on a scale that ranges from zero to one, where a zero means no discrepancy between

dynamic and static vectors, and a one means there is always a contradiction at every dereference.

Figures 5.2 and 5.3 show the NAED for the SPECint95 and SPECint2000 benchmarks rela-

tive to the dynamic execution on the ref input set (results for gap, perlbmk, and twolf are

omitted because their dynamic points-to profile information could not be tractably computed).
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Figure 5.3: SPECint2000 - Normalized Average Euclidean Distance (NAED) relative to the
dynamic execution on the ref input set. D is a uniform distribution of points-to probabilities,
Sr is the safe LOLIPoP result using the ref input set, and the U bars are the unsafe LOLIPoP
result using the ref (Ur) and train (Ut) input sets, or instead using compile-time heuristics (Un).

In the first experiment (D) we distribute probability uniformly to every target in the static

points-to probability vector
−→
Ps, making the naive assumption that all targets are equally likely.

This experiment is used to quantify the value-added of probability information, and leads to an

average NAED across all benchmarks of 0.32 relative to the dynamic result. It is important to

notice that for bzip2, compress, and go even the uniform distribution (D) is quite accurate.

For bzip2 and compress this is an expected result since the average dereference size (shown

in Figure 5.3) is very close to 1.0.

The second experiment (Sr) plots the NAED for the safe analysis using edge-profile in-
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formation from the ref input set. Comparing the static and dynamic results using the same

input set allows us to defer the question of how representative the profiling input set is. With

LOLIPoP we improve the NAED to an average of 0.25 across all benchmarks, although that

average can be misleading. For about half of the benchmarks probability information does

not make a large difference (bzip2, compress, go, m88ksim, mcf, vpr), while for the remaining

benchmarks probability information significantly improves the NAED. For li, the probability

information slightly increases the NAED. The li benchmark contains a tremendous amount of

shadow variable aliasing—we know this because of the large gap between the safe and unsafe

average dereference sizes shown in Figure 5.3. The spurious points-to relations introduced by

the ‘safe’ analysis appear to corrupt the useful probability information. A similar result would

be expected for gap. Using a more accurate shadow variable analysis pass would help to reduce

this effect. Also, applying field-sensitivity would also help because it would drastically reduce

the amount of shadow variable aliasing.

The next experiment (Ur) shows the NAED for the unsafe analysis, also using edge-profile

information from the ref input set. Comparing with the safe experiment (Sr), surprisingly we see

that on average the unsafe result is more accurate (with an NAED of 0.24): this result implies

that safety adds many false points-to relations, and can actually be undesirable in the context

of speculative optimizations. The exception to this is gzip, where the NAED deteriorates when

transitioning from safe to unsafe. This implies that gzip frequently utilizes and relies on many

levels of pointer dereferencing.

The final two experiments plot the NAED for the unsafe analysis when using the train

input set (Ut), and when using compile-time heuristics instead of edge-profile information (Un).

Surprisingly, the average NAED when using the train input set (Ut) is slightly more accurate

than with the ref input set (Ur): this indicates that there are aliases which occur rarely during

the ref execution, which when profiled and fed back into LOLIPoP, become a source of inaccuracy

compared to the lesser coverage of the train input set. Finally, we see that the unsafe approaches
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are more accurate with edge-profiling information than when compile-time heuristics are used

(Un), although even with the heuristic approach LOLIPoP is more accurate than the uniform

distribution (D).

5.4.1 Average Maximum Certainty

To further evaluate the potential utility of points-to probability information provided by LOLIPoP,

we use a measure average maximum certainty:

Avg. Max. Certainty =

∑

(Max Probability Value)

(# pointer dereferences)
(5.2)

This equation takes the maximum probability value associated with all points-to relations

at every pointer dereference and averages these values across all pointer dereference sites. Data

speculative optimizations benefit from increased certainty that a given points-to relation exists:

since the probabilities across a probability vector sum to one, if there is one large probability

it implies that the probabilities for the remaining location sets are small. In other words, the

closer the average maximum certainty value is to one, the more potential there is for successful

speculative optimization. The average maximum certainty for each SPEC benchmark is given

in Table 5.4, and in general these values are quite high: the average value across all benchmarks

is 0.899. This indicates that on average, at any pointer dereference, there is likely only one

dominant points-to relation. Therefore a client analysis using LOLIPoP will be very certain

of which points-to relation will exist at a given pointer dereference. The actual average max

certainty values appear to be directly correlated to the average dereference size. If the average

dereference size is quite high for a given benchmark then it’s max certainty value is relatively

smaller. Intuitively, this is an expected result.
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Table 5.4: LOLIPoP Average Maximum Certainty Measurements.

Avg.
Maximum

Benchmark Certainty

bzip2 1.00
compress 0.96
crafty 0.95
gap 0.78
gcc 0.96
go 0.94
gzip 0.90
ijpeg 0.90
li 0.76
m88ksim 0.83
mcf 0.92
parser 0.97
perlbmk 0.79
perl 0.87
twolf 0.90
vortex 0.91
vpr 0.95
Average 0.899
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5.5 Summary

This chapter discussed the experimental framework we used in evaluating LOLIPoP. The run-

ning times for both the safe and unsafe version of our PPA algorithm when applied to the

SPECint2000 and SPECint95 benchmarks were presented. We showed that these results were

on average much faster than the running times of our points-to profiler. We also presented the

accuracy of our algorithm using the traditional average dereference size metric. We compared

these results to the results obtained by GOLF [22]. This showed that even without considering

probability information, that LOLIPoP provides an accurate approach to performing pointer

analysis. We also showed that many of the probabilistic points-to relations observed had very

small probability values, underlining the strong potential for speculative optimizations. We also

showed that on average, the compiler is fairly certain about the location sets being referenced,

which also motivates the use of speculative optimization. Finally, we used the NAED metric to

present the accuracy of the reported probabilities relative to the runtime frequencies observed.



Chapter 6

Conclusions

As speculative optimization becomes a more widespread approach for optimizing and paralleliz-

ing code in the presence of ambiguous pointers, we are motivated to be able to accurately predict

the likelihood of points-to relations without relying on expensive dependence profiling. We have

presented LOLIPoP, a probabilistic pointer analysis algorithm that is one-level context-sensitive

and flow-sensitive, yet can still scale to large programs including the SPECint2000 benchmark

suite. The key to our approach is to compute points-to probabilities through the use of linear

transfer functions that are efficiently encoded as sparse matrices.

We have used LOLIPoP to draw several interesting conclusions. First, we found that even

without considering probability information, that LOLIPoP provides an accurate approach to

performing pointer analysis. Second, we demonstrated that many points-to relations are unlikely

to occur at runtime, underlining the strong potential for speculative optimizations. Third, we

found that the unsafe version of our analysis is more probabilistically accurate, implying that

safety adds many false points-to relations, and can actually be undesirable in the context of

speculative optimizations. Finally, we showed that LOLIPoP still produces reasonably accurate

probabilities when using compile-time heuristics instead of edge-profile information.
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6.1 Contributions

This thesis makes the following contributions.

1. A novel algorithm for probabilistic pointer analysis based on sparse transformation matri-

ces.

2. An accurate, one level context-sensitive and flow-sensitive pointer analysis that scales to

the SPEC integer benchmarks.

3. A method for computing points-to probabilities that does not rely on dependence-profiling,

and can optionally use control flow edge-profiling.

4. An infrastructure (LOLIPoP) for performing this analysis (as well as a points-to profiler)

for use in future research.

6.2 Future Work

In the future, we plan to (i) further explore the trade-offs between scalability and accuracy; (ii)

improve the flexibility of our static memory model to allow for field-sensitivity and improved

models for recursive data structures; (iii) improve the efficiency of the algorithm by optimizing

the matrix framework, capitalizing on the specific properties of the underlying transformation

matrices; and (iv) apply LOLIPoP to a client speculative optimization to evaluate its overall

effectiveness.



Appendix A

LOLIPoP Source Code

This appendix provides a high level pseudo code description of the Bottom-Up phase of our

LOLIPoP infrastructure. The code is presented in c++. Many implementation details are omit-

ted for simplicity and clarity. Figure A.1 illustrates the LOLIPoP infrastructure at a high

level as it was described in Chapter 4. The pass begins by building an Interprocedural Con-

trol Flow Graph (ICFG) that is annotated with any available profile information. The static

memory model (SMM) is then built by extracting location sets from SUIF’s symbol tables. We

then perform the bottom-up (BU) and top-down (TD) phases of the analysis as described in

Section 3.7.
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Figure A.1: The LOLIPoP infrastructure.

The following source code represents our implementation of the high level block diagram

shown in Figure A.1.

void

LOLIPoP( Su i f IR ∗ i r )
{

/∗ Construct the i n t e r p r o c edu ra l c on t r o l f l ow graph ∗/
i n t e r p r o c e du r a l c f g ∗ICFG = build ICFG ( i r ) ;

i f ( e d g e p r o f i l e e n ab l e d )
ICFG−>ep s e t (< e d g e p r o f i l e f i l e >);

/∗ Construct the s t a t i c memory model ∗/
static mem model ∗SMM = build SMM( i r , ICFG) ;

/∗ Bottom Up Phase to c o l l e c t a l l procedure summarizing t f matr ices ∗/
tmtrx depot ∗TMD = bo t t om up t f c o l l e c t (ICFG, SMM) ;

/∗ Top Down Phase to propagate point−to in format ion ∗/
top down pt propagate (ICFG, SMM, TMD) ;

/∗ Sui f IR i s now annotated wi th a l l p r o b a b i l i s t i c po ints−to in format ion ∗/
}

The remainder of this appendix will present the important source code for the Bottom Up

analysis phase of LOLIPoP. This algorithm was fully described in Chapter 3.
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A.1 Suif Instruction to Transformation Matrix

The following method summarizes a single SUIF instruction into a transformation matrix. Only

the unsafe version of this method is presented here.

t r an s f e r f n mt r x ∗
g e t t f mt rx ( S u i f i n s t r u c t i o n ∗ s i )
{

i f ( ! ICFG−>h a s p o i n t s t o g r a p h s i d e e f f e c t s ( s i ) )
return Ident i ty Mtrx ;

t r an s f e r f n mt r x ∗ tfm = Spar se Ident i ty Mtrx ;

/∗ Get matrix row−i d f o r the l o c a t i o n s e t on the l e f t s i d e o f the asgn . ∗/
int l s l o c i d = StaticMemoryModel−>g e t l s l o c i d ( s i ) ;

/∗ Get matrix row−i d f o r the l o c a t i o n s e t on the r i g h t s i d e o f the asgn . ∗/
int r s l o c i d = StaticMemoryModel−>g e t r s l o c i d ( s i ) ;

/∗ Construct the matrix ∗/

double p = 1 / StaticMemoryModel−>number o f ptrs ( l s l o c i d ) ;

i f ( l s l o c i d != r s l o c i d )
{

tfm−>s e t ( l s l o c i d , l s l o c i d ) = 1 − p ;
tfm−>s e t ( l s l o c i d , r s l o c i d ) = p ;

}

/∗ Handle func t i on c a l l i n s t r u c t i o n s ∗/
i f ( s i−> i s f u n c t i o n c a l l )
{

S u i f f u n c t i o n c a l l ∗ f c = s i−>g e t f u n c t i o n c a l l ( )
tfm = tfm ∗ g e t t f mt rx ( f c ) ;

}

return tfm ;
}
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A.2 Function Call to Transformation Matrix

The following method summarizes a single SUIF function call instruction into a transformation

matrix.

t r an s f e r f n mt r x ∗
g e t t f mt rx ( S u i f f u n c t i o n c a l l ∗ f c )
{

/∗∗ TMD−>g e t t f m t r x ( ) qu e r i e s the t f matrix s t o rage data s t r u c t u r e .
∗ − I f the t a r g e t o f the func t i on c a l l i s a l i b r a r y funct ion , then
∗ g e t t f m t r x ( ) re turn i t ’ s Transformation matrix i f i t i s
∗ a v a i l a b l e . Otherwise i t r e turns the i d e n t i t y matrix .
∗ − I f the matrix i s ye t to be s t o r ed in the t f matrix s t o rage
∗ data s t r u c t u r e ( occurs because o f r ecur s ion ) , then the i d e n t i t y
∗ matrix i s re turned and the current c on t r o l f l ow graph i s marked
∗ so t ha t the ana l y s i s w i l l l a t e r re−ana lyze t h i s c on t r o l f l ow graph .
∗/

t r an s f e r f n mt r x ∗ tfm ;

i f ( fc−>i sD i r e c tFunc t i onCa l l ) /∗ does not use func t i on po in t e r ∗/
{

tfm = Spar se Ident i ty Mtrx ;

/∗ Get the ID as s o c i a t e d wi th the t a r g e t c f g be ing c a l l e d ∗/
int f n c a l l e e i d = ICFG−>g e t f u n c t i o n c a l l e e i d ( f c ) ;

/∗ Create matrix ensur ing to map and unmap arguments to parameters ∗/

tfm = get t f mtrx map args to params ( fc , f n c a l l e e i d ) ∗ tfm ;

tfm = TMD−>g e t t f mt rx ( f n c a l l e e i d ) ∗ tfm ;

tfm = get t f mtrx map params to args ( fc , f n c a l l e e i d ) ∗ tfm ;
}
else i f ( fc−>i s I nd i r e c tFucn t i onCa l l ) /∗ uses func t i on po in t e r ∗/
{

tfm = Sparse Zero Mtrx ;

for ( int i = 0 ; i < ICFG−>g e t numbe r o f c a l l e e s ( f c ) ; i++)
{

/∗ Get one o f the IDs a s s o c i a t e d wi th a t a r g e t c f g be ing c a l l e d ∗/
int f n c a l l e e i d = ICFG−>g e t f u n c t i o n c a l l e e i d ( fc , i ) ;
double c a l l e e p r o b = ICFG−>g e t f u n c t i o n c a l l e e p r o b ( fc , i ) ;
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t r an s f e r f n mt r x tmp tfm = Spar se Ident i ty Mtrx ;

tmp tfm =
get t f mtrx map args to params ( fc , f n c a l l e e i d ) ∗ tmp tfm ;

tmp tfm = TMD−>g e t t f mt rx ( f n c a l l e e i d ) ∗ tmp tfm ;

tmp tfm =
get t f mtrx map params to args ( f n c a l l e e i d , f n c a l l e r i d ) ∗ tmp tfm ;

tfm += tmp tmf ∗ c a l l e e p r o b ;
}

}

i f (ICFG−>i sRe cu r s i v e ( f c ) )
{

/∗ I f r e cur s i v e , make t h i s a weak update (RECURSIVE BINDING PROB = 0.6) ∗/
tfm = tfm ∗ RECURSIVE BINDING PROB;

}

return tfm ;
}

A.3 Basic Block to Transformation Matrix

The following method summarizes an entire basic block into a transformation matrix.

t r an s f e r f n mt r x ∗ g e t t f mt rx ( Bas i c b l o ck ∗bb)
{

i f ( ! bb−>h a s p o i n t s t o g r a p h s i d e e f f e c t s ( ) )
return Spar se Ident i ty Mtrx ;

/∗ memoization t a b l e i s a c t u a l l y checked here , but t h i s code i s omit ted ∗/

t r an s f e r f n mt r x ∗ tfm = Spar se Ident i ty Mtrx ;
for ( int i = 0 ; i < bb−>number o f i n s t r s ( ) ; i++)
{

Su i f i n s t r u c t i o n ∗ s i = bb−>g e t i n s t r ( i ) ;

tfm = ge t t f mt rx ( s i ) ∗ tfm ;
}
return tfm ;

}
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A.4 Control Flow Path to Transformation Matrix

This method returns the transformation matrix associated with any control flow path within

a single function. Many minor details to handle specific corner case conditions such as cycles

caused by goto statements are omitted for clarity. The function takes in two main parameters

– bb start and bb end, which represent the initial and final basic blocks represented by the

intraprocedural control-flow path of interest. Our ICFG normalizes all control flow graphs such

that they have a single synthetic and empty entry and exit. This trivially allows us to compute

the transformation matrix for an entire procedure using this method.

t r an s f e r f n mt r x ∗ g e t t f mt rx ( Bas i c b l o ck ∗ bb star t , Bas i c b l o ck ∗bb end )
{

/∗ Check the memoization t a b l e to see i t t h i s path has a l r eady
been computed ∗/

i f ( memoize tbl−>e x i s t s ( bb s tar t , bb end ) )
{

return memoize tbl−>get ( bb star t , bb end ) ;
}

/∗∗
∗ Recurs ive Base Case :
∗ I f the i n i t i a l b a s i c b l o c k in the path i s the same as
∗ the f i n a l b a s i c b l o c k in the path then re turn the matrix
∗ r ep r e s en t i n g t h i s b a s i c b l o c k
∗/

i f ( bb s tar t−>equa l s ( bb end ) )
{

t r an s f e r f n mt r x ∗ tfm = ge t t f mt rx ( bb s t a r t ) ;

i f ( bb s tar t−>i s l o o p h e ad e r ( ) )
{

Loop lp = bb star t−>ge t l o op ( ) ;
t r an s f e r f n mt r x ∗

t fm loop = ge t l o op t f mt r x ( loop , i s f i n a l b b e n d i n p a t h ) ;

tfm = tfm ∗ t fm loop ;
}

memoize tbl−>memoize ( tfm , bb star t , bb end ) ;
return tfm ;
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}

/∗ Get the d i r e c t dominator o f bb end ∗/
Bas i c b l o ck bb end dd = ICFG−>ge t d i r e c t domina to r ( bb end ) ;

/∗∗
∗ Recurs ive c a l l to g e t the t f matrix r epre sen t ed by the path
∗ from b b s t a r t to bb end ’ s d i r e c t dominator (=> t fm s t a r t t o e n d d d )
∗/

t r an s f e r f n mt r x ∗ t fm s ta r t t o end dd = ge t t f mt rx ( bb star t , bb end dd ) ;

/∗∗
∗ We now must compute the t f matrix r epre sen t ed by the path
∗ from bb end ’ s d i r e c t dominator to bb end (=> t fm end dd to end )
∗/

t r an s f e r f n mt r x ∗ t fm end dd to end = Sparse Zero Mtrx ;

for ( int i = 0 ; i < bb end−>num or predeces sor s ; i++)
{

t r an s f e r f n mt r x ∗
tfm tmp = ge t t f mt rx ( bb end dd , bb end−>g e t p r ed e c e s s o r ( i ) ) ;

/∗ s c a l e the matrix based on the fan−in edge p r o b a b i l i t y ∗/
tfm tmp ∗=

ICFG−>g e t f a n i n e d g e p r o b ab i l i t y ( bb end−>g e t p r ed e c e s s o r ( i ) , bb end ) ;

t fm end dd to end += tfm tmp ;
}

t r an s f e r f n mt r x ∗ tfm end = ge t t f mt rx ( bb end ) ;

i f ( bb end−>i s l o o p h e ad e r ( ) )
{

Loop lp = bb end−>ge t l o op ( ) ;
t r an s f e r f n mt r x ∗

t fm loop = ge t l o op t f mt r x ( loop , i s f i n a l b b e n d i n p a t h ) ;

tfm end = tfm end ∗ t fm loop ;
}

tm end dd to end = tfm end ∗ tm end dd to end ;

/∗ Compute the f i n a l t rans format ion matrix ∗/
t r an s f e r f n mt r x ∗ tfm = tm end dd to end ∗ tm sta r t to end dd
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/∗ Memoize t h i s r e s u l t ∗/
memoize tbl−>memoize ( tfm , bb star t , bb end ) ;

return tfm ;
}



Appendix B

LOLIPoP from the Command Line

LOLIPoP is a command line utility invoked with the command ppa. The ppa utility takes in

a suif-linked SUIF-IR formatted file (*.spl) as an input and generates an annotated SUIF-IR

file (*.spx). In this appendix we list the various runtime options available to the user. Here we

show what prints out when a user invokes the ppa --help command.

Usage: ppa -.{OUTPUT_SUFFIX} [OPTIONS] [FILES]

For every pointer dereference, this analysis probabilistically identifies

which static location sets are being referenced.

Example:

scc -.spd file1.c file2.c file3.c

linksuif file1.spd file1.spl file2.spd file2.spl file3.spd file3.spl

ppa -.spx file1.spl file2.spl file3.spl

OPTIONS:

[--help], defines the various feature enabling flags

provided by this application

[-ppa_debug], outputs debugging & warning information

[-output_file <string>], specify PPA pointer dereference results
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file

[-stats_file <string>], specify PPA performance & accuracy statistics

results file

[-matlab_file_out <string>], outputs a matlab transformation matrix

debugging script

[{-pgm_analyze <string>}*], debug a specific function using a pgm matrix

output

[-benchname <string>], specify the name of the benchmark being

evaluated

[{-ep_file <string>}*], specify control flow edge profiling data

see ep --help for more info about generating

such a file

[-icall_file <string>], specify a file to be used for tracking

the targets of indirect function calls

[default=ppa_icall.xml]

[-quiet], minimizes the amount of print statements

& warnings

[-conserve_memusage], performs the analysis with minimal heap

memory usage [disables aggressive_memusage

flag]

[-aggressive_memusage], performs the analysis aggressively with

respect to heap memory usage [disables

conserve_memusage flag]

[-icfg_dot_outfile <string>], outputs the ICFG in .dot format

[-trust_profile_info], a probability of zero is assigned to profiled

edges that are not taken during the profiling
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phase

[-merge_heap_callsites], merges all heap callsites into one location

set

[-merge_temp_strings], merges all temp string variables into one

location set

[-field_sensitive], enables field sensitivity for C structs

[-pt_contexts <int>], specify the number of points-To contexts

per function to be stored [default=1]

[-use_inaccurate_gstf], enables a faster (unsound) geometric series

transform

[-phase_execute <int>], indicates upto which phase the analysis

should execute: 1 - build ICFG; 2 - build

Static Memory Model; 3 - Bottom Up Analysis;

4 - Top Down Analysis; [default=4; executes

all 4 phases]

[-evaluate_unreachable], forces the analysis of functions that are

statically deemed unreachable

[-safe_sva], perform shadow variable alias (sva) analysis

(makes the analysis multi-level safe)

[-blobs_supported <int>], when performing sva, specify the maximum

number of blobs that can be used [default=5]

[-blob_size_threshold <int>], when performing sva, specify the minimum

blob size [default=15]

[{-custom_alloc <string>}*] specify custom allocator functions that

return unique heap memory



Appendix C

Matrix Exponentiation and Geometric

Series Transformations

This appendix explains how the matrix geometric series operation can be directly mapped to

solving the exponentiation operation. A given loop has a transformation matrix equal to An,

where A is the transformation represented by the body of the loop and n is the number of

iterations. For example, consider the transformations that are applied to a simple for loop:

for ( i = 0 ; i < k ; i++)
{

. . .
}

CASE 1 Assuming the loop has an inner transformation matrix defined by the square n × n

matrix A and the loop iterates a constant k times. Therefore the overall transformation matrix

defined by this for loop is equal to Ak. Ak can be efficiently computed using diagonalization or

eigenvalue decomposition.

Definition A square matrix A is diagonizable if there is an invertible matrix P such that

P−1AP is a diagonal matrix; the matrix P is said to diagonalize A.

92



A.4. Control Flow Path to Transformation Matrix 93

D = P−1AP

A = PDP−1

This can be used in computing powers of a matrix:

A2 = PDP−1PDP−1

A2 = PDIDP−1

A2 = PD2P−1

In General, for any positive integer k:

Ak = PDkP−1

Using this property, taking a power of a diagonal matrix is trivial.

Dk =



















dk
1 0 . . . 0

0 dk
2 . . . 0

...
...

. . .
...

0 0 . . . dk
n



















CASE 2 Assuming the loop has an inner transformation matrix defined by the square n × n

matrix A and the loop iterates a variable amount of times ranging from 0 to k. Therefore

the overall transformation matrix defined the by this for loop is equal to 1
k+1

∑k
i=0 Ai. This

geometric series expression can also be efficiently computed using diagonalization.

1
k+1

∑k
i=0 Ai = 1

k+1
[A0 + A1 + A2 + ... + Ak]

1
k+1

∑k
i=0 Ai = 1

k+1
[PD0P−1 + PD1P−1 + PD2P−1 + ... + PDkP−1]

1
k+1

∑k
i=0 Ai = 1

k+1
P [D0 + D1 + D2 + ... + Dk]P−1
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1
k+1

∑k
i=0 Ai = 1

k+1
P [

∑k
i=0 Di]P−1

k
∑

i=0

Di =



















∑k
i=0 di

1 0 . . . 0

0
∑k

i=0 di
2 . . . 0

...
...

. . .
...

0 0 . . .
∑k

i=0 di
n



















k
∑

i=0

Di =



















1−dk

1

1−d1

0 . . . 0

0
1−dk

2

1−d2

. . . 0

...
...

. . .
...

0 0 . . .
1−dk

n

1−dn


















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