Custom Code Generation for Soft Processors

Martin Labrecque, Peter Yiannacouras and J. Gregory Steffan
Department of Electrical and Computer Engineering
University of Toronto
Email:{martinl,yiannac,steffan}@eecg.toronto.edu

~ Abstract— Embedded systems designers that use FPGAs areprocessors—to understand the range of impact of such tech-
increasingly including soft processors in their designs (config- niques, and to give designers more fine-grain control of the
urable processors built in the programmable logic of the FPGA). area/performance trade-off space for soft processorsigUsi

While there has been a significant amount of research on adding . . -
custom instructions and accelerators to soft processors, thesre the SPREE infrastructure (Soft Processor Rapid Explaratio

typically used to extend an unmodified base ISA targeted by Environment) [8], we study the impact of our techniques on

generic compilation such as with unmodifiedgcc. In this paper the wall-clock time and area of a wide range of soft processor
we explore several opportunities for the compiler to optimize the architectures running a set of general-purpose benchmark
code generated for soft processors through application-spedifi 5 5jications. In particular we focus on three main areas of

customization of the base ISA—techniques that are orthogonabt tomization: (i) | | | soft /hard tradésof
adding custom instructions. In particular we explore: (i) low level customization: (i) low-level software/hardware tradéspfor

software-hardware trade-offs between basic instructions; (ithe ~€xample in shifter implementations and in hazard detection
utility of ISA-specific features—in particular for the delay slots and observation; (ii) inclusion of ISA-specific featuresy f
and Hi /Lo registers in the MIPS ISA; and (iii) application specific example the MIPS load and branch delay slots, &hd_ o
register management. We find that through these techniques tha multiplication result registers; and (iii) register maeagent,

have no hardware cost we can improve the area efficiency of softf | d scheduling t inimize f ding dogi
processors by 12% on average across a suite of benchmarks, and Or éxampie opérand scheduling to minimize forwarding ¢ogt

by up to 47% in the best case. and reducing the number of architected registers. We also
study the combination of these techniques and their regulti
l. INTRODUCTION impact on area and performance. It is important to undedstan

As embedded systems designers increasingly employ Ratin this paper we do not study the addition of custom accel
GAs, their designs are likely to contain one or maeft erators in the form of custom instructions and co-processsor
processos—processors that are implemented in the pr@lthough these are complementary to the compiler techsique
grammable logic of the FPGA [1], [2]. Soft processors ardat we propose. Finally, the initial work presented here
useful because they can easily be programmed (rather tisaggests future efforts into larger-scale compiler optations
writing HDL), and a designer can instantiate the exact numb@r soft-processors and other customizable architectures
of processors required and can have them incorporatedhato t
greater design to ease placement and routing. A key adwantag
of soft processors is that they can be customized to matgh Related Work
the target application or applications. For example, atgrea o)
deal of recent research has focused on the ability to addSome of the trade-offs we examine in this paper have
custom instructionso soft processors, where frequently exe?€en explored previously in other contexts. Shrivastaua
cuted code segments are replaced with encapsulated hardv@dr démonstrated that instruction scheduling can exploit in-
implementations that can be “called” by the soft processgPmMplete bypassing in embedded processors [10]. The CUS-
to improve performance [3]-[7]. However, for many designd ARD [5] custqm|z§1ble soft processor has t.he ab|!|ty to cus-
rather than improving the performance of a soft processor@fnize forwarding lines, and provides a variable size tegis
all costs, the designer desires a soft processor that is “f$ and optional branch and load delay slots—although to our
enough” for the target application, and would rather saea arknowledge these have not been specifically evaluated.
for other uses—perhaps to help fit the overall design into Design decisions similar to some of those we discuss in
a given FPGA component. Recent research explores ardhis paper were made for commercial soft processors, ajtiou
tectural area/performance/power trade-offs and custatiniz there is no published evaluation that quantifies their vefoe
opportunities for a wide range of soft processor designs [8xample, the commercial NIOS Il and Microblaze processors
[9]. However, this work assumes a fixed ISA (MIPS 1), anémplement three-operand multiplication (rather than hgvi
the evaluation is based on defagltc compilation—missing special multiplication registers such as the MIRSLo regis-
many important opportunities for further customization. ters), and the NIOS Il has no delay slots while the Microblaze

) supports variants of branches with and without delay slots.
A. Generating Custom Code for Custom Processors Support for unaligned memory operations has recently been

In this paper we investigate several opportunities for tredded tagcc, but the corresponding hardware implementation

compiler to customize the code that is generated for saft those operations is patented by MIPS [11].

Table 1. Benchmark applications evaluated.

Dyn. Instr.
Source Benchmark Modified Counts ‘ F/IDIR ‘ ‘R/EX
MiBench [12] BITCNTS di 26,175 EXIMIWB ™
CRC32 d 109,414 : H
: a) serial b) pipe3
QSORT d 42,754 @) (b) pip
SHA d 34,394
STRINGSEARCH d 88,937
FFT* di 242,339
DIJKSTRA* d 214,408
PATRICIA di 84,028 (c) pipe5
XiRisc [13] BUBBLE_SORT - 1,824
CRC - 14,353
DES - 1,516 EX -
= . o=] gy w2
FIR* - 822 .
QUANT* - 2,342 (d) pipe7
IQUANT* - 1,896
Tt’/fCBO - li?'gég Fig. 1. Processor pipeline organizations studied. Thelipipetages aref
- : for fetch, D for Decode,R for register,EX for execute,M for memory, and
[Freescale [14]] DHRY ‘ ! ‘ 47,564] VB for write-back. The arrow indicates a path for forwardingotaperands
RATES [15] l GOL [di [129,750 l at once.
[DCT* [di [269,953 |

* Contains multiply
d Reduced data input set

i Reduced number of iterations number of execution cycles, and (i) to generate a trace

which is validated for correctness against the correspagndi
execution by an emulator (MINT [20]).
C. Contributions For Altera Stratix FPGASs, the basic logic element (LE) is

This paper makes the following three main contributiong 4-input lookup table plus a flip-flop—hence we report the
(i) proposal and evaluation of several techniques for gustcirea of these processors éyuivalent LEsa number that
code generation for soft processors, including softwang-o additionally accounts for the consumed silicon area of any
and custom shifters, software hazard observation, anchngerhardware blocks (e.g., memory and multiplication units)r F
scheduling; (i) evaluation of the area/performance traffie the processor clock rate, we report the maximum frequency
for several MIPS-specific ISA features, includiffy/Lo reg- Supported by the critical path of the processor design. To
isters, load and branch delay slots; (i) composition afsin Combine area, frequency, and cycle count to evaluate an

techniques to improve on the state of the art of generatifgtimization, we use a metric afrea efficiencyin million
application-specific soft processors. instructions per second (MIPS) per thousand equivalent LEs

Finally, we obtain dynamic power metrics of our benchmarks
Il. INFRASTRUCTURE FORVARYING SOFT PROCESSOR with Quartus’ Power Play tool and report the numbers without
COMPILATION, ISAS, AND ARCHITECTURES the 1/0O pins power in nano-Joules per instruction (nJ/)nstr

Our compiler infrastructure is based on modified versions of AS shown in Figure 1, the processors that we evaluate
gcc 4.0.2,Binutil's 2.16, andNewl i b 1.14.0 that target @€ unpipelined deri al), 3-stage-pipelined pi pe3), 5-
variations of the 32-bits MIPS | [16] ISA; integer divisionStage-pipelinedni pes), and 7-stage-pipelinegp(pe7). The
is implemented in software, and for now interrupts are n&fPipelined processor is the smallest (889 LEs, 67.7 MH2): i
supported. Using the 20 embedded benchmark applicatidis @ multiplier and a serial shifter. The pipelined proeess
described in Table 1, we evaluate our compiler techniques fJ! have forwarding lines for both operands by default. The 3
generating custom code for varying soft processor architéd@gde pipeline has a shifter that is implemented with the- mul
tures. tiplier, and is the most area-efficient processor generhted

We use the SPREE system [8] to generate a wide rangBREE [9] (1174 LEs, 78.3 MHz). The 5-stage pipeline also
of soft processor architectures (full details are availainl has @ multiplier-based shifter, and implements a compr@mis
a previous publication [17]). SPREE takes as input ISA afiftween area efficiency and maximum operating frequency
datapath descriptions and produces RTL which is synthesiz€1283 LES, 86.79 MHz). The 7-stage pipeline has a barrel
mapped, placed, and routed by Quartus 5.0 [18] using tpRifter, is the largest processor, and has the highest érexyu
default optimization settings. The generated processoget (1557 LEs, 100.59 MHz).
the Altera Stratix FPGAs, in particular tHeEP1S40F780C5
device—a mid-sized device in the family with the fastest
speed grade. We determine the area and clock frequency of powerful trade-off for soft processor designs is the im-
each soft processor design using the arithmetic mean acrpksnentation of common routines in either software (thioug
10 seeds (which produce different initial placements keforegular instructions in the base ISA) or custom hardware
placement and routing) to improve our approximation of th@mplemented as custom instructions in addition to the base
true mean. For each benchmark, the soft processor RTL desi§A). However, for area-sensitive applications we find it ba
is simulated using Modelsim 6.0b [19] (i) to obtain the totatompelling to explore similar trade-offs in the actual bks&

IIl. Low-LEVEL SOFTWARE-HARDWARE TRADE-OFFS

325
30
275
25
225

serial pipe3 pipe5 pipe7

—
@
£ <
: >
IS @)
=) =
<
T 20 -~
B 175 T
o
w 54—t 1—7 =
g 12.5 [fixed - I Area
o 19 [l variable LIUJ’ [l Frequency
] W lui -
c 75—ttt 1 ko)
g 5 n ’a\‘)
g 25 iH L I 2
0 L B B ST A B et S A A A B B é
£ U own LEE2ouvnvNt me s © @83 EH >C o
S5 8FEEEELSENSG LS L5068 E S =
> 3 3 =] © = =] ©
| T oo 2 o O L X £
Q@ = a O ww iz 8
2 & a
o [=4
3 =
< @

Fig. 3. Impact of removing the dedicated shifter unit, relatito the
Fig. 2. Percentage of dynamic instructions that containt siperations, corresponding default processors with software multiplies

broken down by those that have a fixed shift-amount encoddeimstruction

(sl'l, sra, andsrl), those that have a variable shift amount stored in a

register 61 | v, srav, andsr| v), and thel ui instruction which also has a

fixed shift-amount (16 bits left). majority shift by a fixed amount. In general, any variabldtshi

can potentially be implemented entirely in software, oreels
through use of a fixed-amount unit shifter—with the possible
and architecture. For example, previously we demonstrategception of theATRICIA benchmark for which variable shifts
that “subsetting” the base ISA—so that the hardware suppafe more common (2.5% of dynamic instructions).
for any instructions that are not used by an application is To further demonstrate the potential for eliminating shift
deleted from the processor—results in an average area redgstructions, Figure |3 shows the impact of removing the
tion of 25% and up to 60% for some applications [9]. In thigedicated shifter unit for various processors, each velat
section we evaluate two opportunities to further subsetSihe the corresponding default processor with software migtipl
and hardware by having the compiler compensate in softwaige observe that removing the shifter results in significaeaa
(i) by removing the shift unit or replacing it with one or moresayings for all processori pe3 and pi pe5 benefit from
much smaller fixed-amount shift units, and (i) by removinghe |argest area savings because they implement shiftsawith
the hazard detection logic and instead observing depeedengitiplier that can be eliminated when removing the support
by having the compiler schedule instructions and insep®- for the shift operations. While the shifter is on the critipath
) _ for pi pe3, the clock frequency of the other processors is not
A. Shifter Implementations significantly affected, even if it varies somewhat due to the
It has been shown that it is advantageous to impleméRtpact on overall placement and routing. Given these piatent
shift operations using a hard multiplier if one is availaf@g Savings, we are motivated to investigate ways to eliminiaife s
However, for an area-limited design that does not contaiistructions from the base ISA, while minimizing the impact
a hard multiplier (opting instead for software multiplicat ©n overall performance.
if needed), a dedicated shifter can consume more than 250n the absence of a dedicated shift unit, shift operatioms ca
LEs. Instead we investigate the possibility of implemegtinbe supported through clever use of other instructions. Left
various shift operations either partially or entirely irfts@re. shifts can be replaced by repeatedly adding a number td itsel
Shifts can be implemented entirely in software using ndft-shas many times as the shift amount (effectively doubling the
operations such aadd and subt ract . Alternatively, we number every time); this technique can also be applied to
could implement a small number of fixed-amount shifts ithe 16-bit left shift required byoad-upper-immediatél ui)
hardware (in far less area than a full variable-amountefift instructions. The right shift operation is more challemgin
and use those operations to build up other shift amourtst it can be replaced by a method similar to software
through software (e.g., call a shift-right-by-four opévatthree division that performs successive subtractions; note shéit
times to implement a shift-right-by-twelve operation). right arithmetic (sr a) requires sign extension to the most
Figure[2 shows the percentage of dynamic instructioségnificant bits, whileshift right logical (sr1) does not. We
executed for each benchmark that perform a shift operdtion, found that supporting shift operations only in softwareuttes
exampleshift left logical (sl |), shift right arithmetic(sr a), in unacceptable cycle-time increases—orders of magnitode f
andload upper immediat@ ui , which shifts left by 16 bits). many applications; hence we are motivated to compromise
Some instructions have a variable shift amount stored invdth hardware support for a small number of fixed value
register §rav), as opposed to an immediate shift amourghifters.
encoded in the instructiors(a). The results demonstrate that We investigate the impact of having up to two fixed-amount
while shift instructions can be quite common (an average b&rdware shifters in lieu of a variable-amount shifter, as
15% of dynamic instructions across all benchmarks), thé vahown in Table 2. We decided which are the best two fixed-

Table 2. Selection and impact of the two fixed-amount hardwhiféess for

each benchmark that provide the maximum cycle count improvermbatlast 1100 4
column represents the fraction of original shifts that areduectly translated 1000 1
to a number of fixed-function shifts. 900+
Y1 800
1st Shifter 2nd Shifter Relative | % Shifts not ‘u—j 7004
Shift Shift Increase Fully 5
Benchmark | Type | Amt. | Type | Amt. | in Cycles | Translated T 600
bubble_sort | - B B s 1 B ERRES
crc sl 24 sll 2 1.27 29% w400+
des srl 1 sli 1 2.58 0 300
fft srl 1 sli 1 1.18 0 200 -
fir srl 1 sll 1 1 0 100
quant srl 1 sli 1 2.44 0 o
iquant srl 1 sll 1 1.29 0 default no mult srll+slil/ sra24+srll/ sra24 / no shifter /
turbo srl 2 sl 8 2.39 51% no mult no mult no mult no mult
vic srl 1 sli 1 3.2 0 X X i
Ditcnis Sl 7 S 1 1.33 0 (a) Comparison of variants of th@ pe3 processor
CRC32 srl 8 sli 2 1 48% 100 = g??a“r‘é <"""u5‘tt') count
gsort srl 1 sll 1 1 0 w92 [l fixed-shifters (instr.
sha srl 1 SIl 5 1.68 49% Y80 count of soft mult)
stringsearch| sra 24 sl 2 1.02 18% § 70 B fixedshitters (et
FFT_MI | 1 Il 1 1.57 0
dijkstra 2; 1 zu T 111 0 § 60
patricia srl 1 sli 24 1.8 61% s 50
gol sra 24 sll 1 1.66 33% > 40
dct sl 1 sll 1 1.47 0 2 30
(]
dhry sra 24 sll 1 1.33 35% S 20
=
w10
0
amount shifters for each benchmark based on the projecte e sg° 506°% gE=E
. . . . Qo i=4
total dynamic cycle savings of each. Note that this calautat H E

accounts for the fact that any shift operation that requires
a multiple of one of hardware shift-amounts may be imple-
mented through a software routine that calls the hardwdfig. 4. Results showing: (a) the area cost for variants opthge3 processor,

shifters an appropriate number of times. From the table "f!uding two popular fixed-amount shifter configurationerfr Table 2; (b)
the area efficiency for i pe3 processor in its default configuration or

is apparent tha_t _|eft and right Iogi_cal shifts (_)f 1 bit arquipped with up to 2 fixed-amount shifters. The source oftiesion count
the most beneficial, followed by shifts of 24-bits. We als® compute the MIPS value is indicated. Starred benchmarksejlire

report the increase in dynamic cycles relative to the defafjutiplications.
implementation with software multiplication (and a vata&b

amount hardware shifter). The increase in cycles ranges Y . . .
negligible for 5 benchmarks fo a worst case of 2.58 foortfo processors with fixed-function shifters when using the

DeEs and a mean increase of 1.57 across all benchmal struction count of the default processors equipped with
>) . rdware shifters. We can see that having soft multiplies an
which seems to be reasonable enough to be exploited as;

. 28d-function shifters proves to be more area efficient for
area/_pgrformgnce trade-off. Finally, we report the petaga 3 benchmarks that use a hardware shifter,(QSORT and
of original shifts that are not fully translated to a numbér ODIJKSTRA)
fixed-function shifts instructions but rather require safte '
routines (that may in turn use the fixed-function hardwa®. Removing Hazard Detection Logic

shifters, in particular for divisions). A nice feature of SPREE is that it automatically generates
Figure| 4(a) shows the area impact of gradually decreasihgzard detection logic which stalls the pipeline so thaisteg
hardware support for shifting for theerial processor dependences are observed. However, hazard detection logic
(default), including two common choices of fixed-amountonsumes a non-trivial fraction of processor area: roughly
hardware shifter pairsf| 1 & sl | 1, andsra24 & srl 1). 10% or 110 LEs. Alternatively, the compiler could become
The frequency of those processors is increased by 1% wtresponsible for observing register dependences, impleden
removing the multiplication support and 8% on average whéehrough instruction scheduling where possible and inserti
removing the shifter or having fixed-function shifters. Figof no- op instructions as a last resort. Figure 5 shows the
ure |4(b) shows the area efficiency of processors with yotential benefits of removing hazard detection logic, Wwhic
to 2 fixed-function shifters. To compute the area efficienare an area savings of 10% f@ pe3 and pi pe5, and
of this optimization, we first use the instruction count 06% for pi pe7, and an increase in clock frequency of 3%
the benchmarks with software multiplies to compare conistaor pi pe3, and 6% forpi pe5 and pi pe7. The seri al
amounts of work. We find that area efficiency is improvegdrocessor is not affected by this transformation becaulsast
by 18% on average across all benchmarks (with a standawa hazard detection logic. Since these results are progjisin
deviation of 37%). Also in Figure 4(b), we show the efficiencjn future work we will investigate the impact on cycle count,

(b) Area efficiency of up to 2 fixed-function shifters per blemark

1.10

=

1.00

0.90
0.80 1
0.704
0.607 Harea

0.50 B Frequency

0.40

0.30

Nomalized wall-clock time

0.20

Normalized LEs / MHz / n)/Cycle

crc
des
fft

fir
vic
gsort
sha
gol
dct

0.10

quant
iquant
turbo

bitcnts
CRC32
dijkstra
dhry
mean

bubble_sort

0.00

stringsearch

pipe3 pipe5 pipe7

Fig. 5. Measurements of various soft processors with hazatdction (2) Removing load delay slotser i al processor

logic removed, normalized to the corresponding soft progedsaving hazard
detection logic.

1.60 [no load delay slots

1.55 [l no load delay slot no

1.50 loads in branch

) delay slot

[l no branch delay slot
[l no load and no

1.35 branch delay slots

code size, and overall performance of compiler schedulinth a
no-op insertion. However, note that such compiler schaduli
can be non-trivial, for example to account for variableleyc
operations such as shifts—a practical solution may be to on
partially remove hazard detection for simple cases.

Normalized wall-clock time

IV. IMPACT OF UNIQUE ISA FEATURES

= o o
c <

c & £
S 3 3
T g

dijkstra

stringsearch

Customizable and parametric processors are often bu
on a base RISC ISA, which can then be extended witi
custom instructions. Depending on the base ISA, there may (b) Removing delay slotpi pe3 processor
be unique ISA features which may or may not benefit a givefy. 6. Impact on the wall-clock time of removing delay slotsymalized
application. Since our infrastructure is based on the MIR&the corresponding default compilation/processor (wittay slots).
ISA, we investigate the MIPS-specific features of load and

branch delays slotdli /Lo registers, and unaligned memory | oop_start:

references; for example, the Nios Il ISA is similar to MIPS, g(r)anch I oop_start

although it does not support any of those features. Hence we | ogd

are motivated to evaluate the impact of these features. nop

A. Load Delay Slots (a) With the load delay slot.
The MIPS instruction set has two delay slots: one that | oop_start:

branch | oop_start

follows load instructions, and one that follows branch and | oad

jump instructions. A delay slot is a placeholder in which an

instruction may be scheduled, so long as it does not depend on (b) Without the load delay slot.

the result of a load, or will be executed regardless of witethgg. 7. code showing a load instruction scheduled into adiratelay slot

the corresponding branch is taken; if there is no appragriaty the compiler as a side-effect of the removal of the load dslay

instruction to occupy a delay slot, a no-op instruction is

used. Delay slots are useful in helping tolerate delays due t

hazards in a processor’s pipeline. Note that there is agiblgi pipelined processors, the forwarding lines can reducdsstal

hardware cost for supporting load delay slots, while braneind make load delay slots unnecessary (again, since we have

delay slots can complicate several aspects of pipeliner@onta 1-cycle access to the memory system).

logic. For CRC32 removing the load delay slot leads to a slow-
Figure 6(a) shows the impact on wall-clock time of removdown of 14% due to unfortunate circumstances: as illusirate

ing the load delay slots on theer i al processor. Since this in Figure[7, the compiler scheduled a load in a branch delay

processor is not pipelined and has a one-cycle memory accgles, such that the load is then unnecessarily executedyalon

latency, load delay slots have no benefit and removing themith every execution of the branch. In contrast, when a load

only improves wall-clock time. We also evaluate removal adelay slot is supported the branch delay slot is occupied by a

load delay slots for the 3-stage pipelined procegsiope3, no-op and the load is only executed whenever the branch is not

as shown in Figure 6(b): on average this results in a smtdken. As a solution to this problematic case we implemented

(1%) reduction in wall-clock time due to cycle count savings compiler setting where the load delay slot is removed, but a

although the savings for some benchmarks is significant. Hoad can never be used in a branch delay slot. In Figure 6(b)

1.2

V
2
&
&
S
1

multiplier

- ﬁjh

[Area

[l Frequenc
.;neqrgype?msu Fig. 9. Schematic of thédi /Lo circuitry. The solid line represents the

default MIPS implementation, while the dashed line represtrg proposed
elimination of Hi /Lo registers.

Normalized LEs / MHz / n)/Instr

our processor simply assumes that branches are not taken—

pipe3 pipes pipe? i.e. all instructions executed after the branch must be sftpch
(@) CAD metrics relative to corresponding default impleméarat when the branch is taken. In Figure 8(b) removing branch
(that implements branch delay slots). delay slots from the 7-stage processor reduces wall-cionk t
L by an average of 8%, which is a significant improvement—
12 this is due entirely to an increase in clock frequency, as the

11
1
0.9

average cycle count actually increases in this case. We are
currently implementing more sophisticated branch prézhct
support so that we may more thoroughly study the potential
of customization of branches and their delay slots.

:5

:
]
:|

C. 3-Operand Multiply v /Lo Registers

On a 32-bit architecture, the multiplication of two registe
results in a 64-bit product of which the 32 most significant
bits are called thénigh part and the 32 least significant bits
(b) Impact on wall-clock time for thepi pe7 processor, relative to the are called thaow part In a MIPS processor, special registers
default execution (with branch delay slots). calledHi andLo hold the result of a multiplication so the des-

Fig. 8. Impact of removing the branch delay slot. tination of a multiplication is implicit. To become accdssito
the ALU, the high and low parts of the result must be loaded in
the register file by two separate instructiarfshi andnf | o.
Figure 9 shows the two registers that are used exclusively fo

we evaluate this setting (the 2nd bar), but find that it is € multiplication (since our processors support onlysafe
compromise: it always improves on the baseline but canrf@¥ision). Those registers were originally introduced éduce
achieve the full benefit of simply removing the load delayt sidhe scheduling complexities of the multi-cycle multiplydan

Normalized wall-clock time
o
o
|

bubble_sort
cre

des

fft

fir

quant
iquant
turbo

vic

bitcnts
CRC32
qsort

sha
stringsearch
FFT_MI
dijkstra

gol

dct

dhry

mean

in some benchmarks. divide instructions and because they had hardware intes]oc
while the rest of the processor did not.
B. Branch Delay Slots To evaluate the costs/benefit of this particular featurénef t

A branch delay slot provides an extra cycle to compute th8A, we optionally support a three-operand multiply (seniio
target of the branch in a pipelined datapath, before therpmg the NIOS Il [1] or Microblaze [2] ISAs), where the destinatio
counter is updated with either the branch target or falbdigh register may be any general-purpose register, and is ékplic
locations—hence the delay slot instruction following a lotan defined in the instruction encoding. Since only one 32 bit
must be executed regardless of whether the branch is takeestination register may be specified, we require two multip
Accounting for branch delay slots requires additional oant instructions: one to compute the high part of the multiplama,
logic and increases the complexity of the processor, andehemnd one to compute the low part. A side-benefit of this
is a potential area/performance trade-off in itself. FegBfa) approach is that only one multiplication instruction nees b
shows the impact on the processor metrics of removing stippesed if only the low part of the operation is required. We fbun
for branch delay slots, which is negligible in terms of arad a that only the low part of multiplication is required f@FT,
frequency except for a 13% increase in clock frequency fer tifIR, QUANT, IQUANT, andQSoORTbenchmarks, whilerFT_mi,
7-stage pipeline. This frequency improvement is due a ohanDIJKSTRA and DCT require 64 bit multiplication results (the
in the critical path of the processor that occurs only fort th@emaining benchmarks do not contain multiplies).
particular processor. Figure 8(a) also indicates thiape3 Figure|10(a) shows the impact of 3-operand multiplies
performs a significant amount of additional work, considgri relative to the corresponding default multiplier implerteen
that it should use less energy-per-cycle since the braniely detion for the different pipelined processors. While there is
hardware is removed. a modest area savings (2% on average) due to elimination

In Figure 6(b), we show that removing the branch delay slof the actualHi and Lo registers (which are cheap in an
for the 3-stage pipeline increases the number of cyclesusecaAltera FPGA), processor frequency suffers significantly in

6.5

E 6
< 5.5
= .5
o wadd ek £
£ - 4
S il nLnl S 35
P RN P P PR PR R | 2
% I I I I I I I =/::ee:uency % -2

[l EnergyPerinstr a 15
5 RN P P PR PR R | 1
- HERRRR R " "

T T T T T T T T T T T T
2 g 53 O s 58
Low High Low High Low High Low High g g
+Low +Low +Low +Low
oorl pped opes ppe7 Fig. 11. Percentage of dynamic instructions removed with thditian of

. . L the patented instructions performing unaligned memory aesess
(a) CAD metrics for processors that implement only one insimacto

compute the low partLow) or two instructions to compute both the high
and low partsfligh + Low) relative to the corresponding default multiplier

implementation.

1.2

Normalized wall-clock time
o
o
|

D. Unaligned Loads and Stores

While the instructions Wl , | wr, swl , andswr have patent
restrictions and are thus not supported by SPREE, they can be
generated bygcc. These perform unaligned memory loads
and stores, effectively comprising memory references with
shift operations. In absence of those instructions, cargpil
typically use padding to align data to word boundaries. &inc
padding is not always possible, it is important to measuee th
cost/benefit of these instructions. In Figlrg 11, we show the
reduction in dynamic instructions through the additionrefde
more powerful instructions. FOTURBO, SHA, andDHRY, this

savings is significant, but on average these instructiomg on
reduce the cycle count by 0.5% and hence are not generally
worth supporting.

serial

pipe5 pipe7

pipe3

(b) Impact on wall-clock time normalized to the execution witle default
multiplier averaged over all benchmarks that contain muttgilons (see

Table[1). V. APPLICATION-SPECIFICREGISTERMANAGEMENT

Fig. 10. Impact of 3-operand multiplies.

For a soft processor, the set of architected registers in the
base ISA and their conventional uses may not necessarily
match the needs of the target application, or may miss op-
portunities for a more efficient architecture. In this sewati

we present and evaluate two techniques that customize the

most cases because the write-back path from the m“'“"'l‘,f’dmpiler’s use of registers to applications: operand safireg)
to the register file becomes a critical path. However, we fing,4 limiting the use of architected registers.

that the average cycle count is reduced by 2% for the 3-
operand multiplication (with a standard deviation of 3%)A\. Operand Scheduling

due to a reduction on average of the number of instructionsyy, reqyce stalls due to data hazards between registers in
_requwe(_j for multiplication: when only the Iqwer _32—b|t ms pipelined processors, designers employ forwarding lires t
is required, only the one 3-operand multiply instruction ig,\yarg the result computed in a later stage directly to an
required, while for the 2-operand multiply instruction&l 0 ojier stage, bypassing the register file. In our soft woce
instruction is additionally required. Finally, Figure 206hows ¢ designs, we optionally support one pair of forwarding
that 3-operand mult!plles generally require more gctnmy lines (see Figurﬂﬂ) Since operands for instructions that
the processor, leading tp a greater energy per mstruc_tlmlplemem a commutative operation (such @d may be
consumption and countering expected dynamic power savifigge\y exchanged, our insight is that we could bias operands
due. to a slower clock speed [21]. o with near-distance register dependences to favor a given
Figure| 10(b) shows that wall-clock time is improved by 3%perand position in the instruction, potentially allowing
on average for the 3-stage pipeline, but unchanged for thetd-reduce the performance impact of removing one of the
stage pipeline. Taking area into consideration, our caioiu o forwarding lines from our processors. Our algorithm for

is that the 3-operand multiplication (along with the rem@# scheduling operands is as follows. For each instruction, we
theHi /Lo registers) is beneficial only for our 3-stage pipelined

processor. 1Additional forwarding lines are not possible in these dathg.

Table 3. Percentage cycle count savings of forwarding liaed operand
scheduling, relative to the corresponding default pramessth no forwarding

lines (and no scheduling), averaged across all benchmaeksQ® means no 11
. o1
cycle savings). Eog, 1 - —. ﬂ —.
[Processor| Fwd A | Fwd A + Scheduling | Fwd AB | os = 1. = = =
pipe3 | 10% 11% 14% 3 5 1§ 0}

. — 0.6 Area
pipes | 12% 14% 17% el 81 BB B ency
pl pe7 9/0 11/0 15/0 E 0a I I I I I [l EnergyPerinstr

sl B 11 1g
o TN I O T
traverse a history of instructions in the static programeord Z 01 = = = = =
from the most recent to the oldest—to find read-after-write 0
dependences, and to adjust the order of the operands to ta.. AR
pipe3 pipe5 pipe7

advantage of the supplied forwarding lines. Care is takdn no
to affect the register allocation which could counter/umdp (&) CAD metrics for forwarding lines (either A, or both A and,B)

. normalized to the corresponding processors without foringriines.
operand scheduling.

Tablel 3 shows the impact of forwarding lines and operan
scheduling on the 3, 5, and 7 stage pipelines. We find thi
the addition of a single forwarding line improves the averag
cycle count by 9 to 12 percent for the different processors
and that the addition of compiler operand scheduling pesid

an additional 1 or 2 percent average improvement (but up 1 Whaa
8% for some benchmarks). Note that we observed gjzat B wd AB

already favors one operand, hence our scheduling effoets
on top of that bias. Addition of a second forwarding line
further improves cycle count by 3 to 5 percent. In summary
while operand scheduling provides an improvement over
single forwarding line at no hardware cost, it cannot eque

the benefits of an additional forwarding line.) . ,) .
Alth h | ithm i th ffecti f b) Comparison of the area efficiency of thepe3 processor with forwarding
ougn our algorithm Improves the enectuveness Or gy one operand fivd A), plus operand schedulingwd A + S, and with

single forwarding line, unexploited forwarding opportiigé forwarding for both operandsvid AB.
still remain for two reasons: (i) for each instruction we can
only choose one permutation of its operands; and (ii) our
algorithm does not predict control flow. Figure 13 illusest
the three situations where missed forwarding opportuitie
occur. On average with the 3, 5 and 7 stage pipelines with
a single forwarding line, the breakdown of missed forwagdin
opportunities after operand scheduling is as follows: 8% fo
commutative operations with forward branches (Figure 3(a
10% for commutative operations with backward branches- (Fig

Efficiency (MIPS/1000 LEs)

—
e e e e e e e s
e e e e e |

bubble_sort
crc

des

fft

fir
quant
iquant
turbo
vic
bitcnts
CRC32
gsort
sha
stringsearch
FFT _MI
dijkstra
patricia
gol

dct
dhry
mean

Fig. 12. Impact of forwarding lines and operand scheduling.

. X rt =r2 +r3 ri=r2+r3
ure| 13(b)); 82% for non-commutative operands (Figure 33(c) branch start | oop_start:
The most frequently occurring non-commutative instrutdio ra =rl + 4 r3=rl+r4
that result in missed forwarding opportunities are store in start: 4 =r3+1
structions §b, sw), and the set-less-than instructicsi ¢ and rs =r4+rl branch |oop_start
sl tu set a register if a comparison is true). These results (a) Forward branch. (b) Backward branch.
motivate future improvements to our algorithm to schedule 1 =r2 +r3
non-commutative operands. One available option would be r4 =r5 - r1
to change the ISA definition on a per-application basis to
choose the best average operand permutation for some non- gcp)eran dSNO”'CommUta“"e

commutative instructions. A s of missed 1 i s, 1tm6d e
. . . . ig. 13. xamples of missed forwarding opportunities. register
Figure 12(8-) shows the Impact of forward'ng lines on th|%1mes show a register that is written then read. Assuming sugpo

maximum frequency, the area and the energy-per-cycle of abtwarding the operand in the first source position, the isatiuction has the

pipelined processors. Area is increased in all cases byHags register as 2 Secog‘d Opefa”fd because °ff°thhe'f operand ohexinstraints
. . . a) an , Or because of properties of the instructians

10% and energy-per-instruction is reduced on average by 8'5'/0(,) (b) prop s (

meaning that the forwarding logic consumes less energy than

14 22 ST registers assumed by the MIPS ISA: om¥s incurs an ob-
135 B can't use sd-s7 servable slowdown when removing 2 registers from the defaul
B e compilation. The fact that thBITCNTS and PATRICIA bench-
marks encounter a small speedup is an unexpected side-effec
of register allocation, instruction scheduling and forsiag
opportunities. The unpipelined processor in Figure 14essff
the most from fewer registers among our reference procgssor
because memory spills due to register pressure resulttigirec
in additional processor waiting cycles for memory. We vedfi
that some benchmarks did not use any ofdlde s7 registers
with the default optimized compilation. Removing some & th
10 callee saved registers(- t 9) was not yet attempted.

=
w

1.25

1.2

wall-clock time

1.15

=
=

1.05

-
|

0.95 +

Normalized

o
©
L

dijkstra
patricia

VI. COMBINING CUSTOMIZATION TECHNIQUES

bubble_sort
stringsearch

In this section we evaluate the impact of combining the com-
piler optimizations described in this paper, and theirriaté&on
with application-specific architecture and ISA subsettasy
detailed in a previous publication [9].

what is wasted on stall cycles due to data hazards. Surgiysin N Figure 15, the first bar shows the area efficiency for the
certain processor configurations have an improved maximuthPe3 processor, since overall it is the most area efficient
operation frequency which should be considered within tiver all our benchmarks. In other words, we would choose
noise margin of the placement and routing of the FPGA. A4 pe3 if we required the one most efficient processor to
seen in Figure 12(b), because of the area cost of having t@igPPort all benchmarks. We uge pe3 as the comparison
forwarding lines, compiler support allows some benchmarfkgsis for our application-specific optimizations. For taeand
(such asBUBBLE_SORT, DES and STRINGSEARCH to be bar A, we select the most area-efficient processor archi-
equally or more efficient with a single forwarding line tharecture for each application (considering as design option
with two forwarding lines. While compiler support improvesshifter implementations, pipeline depth and forwardine4,
area efficiency of this processor by 2% on average (and uph@rdware vs software multiplication support), in a similar
5% for FIR), a single forwarding line remains less area efficiedfanner to earlier work [9] but with the addition of forwardin

Fig. 14. Impact on wall-clock time of increasingly limiting tmeimber of
registers available to the compiler for teer i al processor.

than two forwarding lines overall (3% degradation). lines as a design option. Choosing an application-specific
o)) processor design improves efficiency by 11% on average,
B. Limiting Use of Architected Registers illustrating the power of customization for soft processdtor

Not all applications require the use of all architected reghe third bar AS + Subsgt to the best application-specific
isters in a base ISA to maintain good performance, and fprocessor we additionally apply ISA subsetting (removal of
other applications limiting the number of registers acit#ss the processor support for any instructions that are unuged b
by the compiler has a tolerable impact on performance. For #rat application [9]). Subsetting further improves effrag by
FPGA-based soft processor, since the register file is tifpicaan additional 8% on average, although for some applications
implemented using a block memory, the memory space fregdch asrFiR and BUBBLE_SORT, the benefit is much greater
by reducing the number of architected registers is not yasflince they have a large number of unused instructions.
reclaimed by the rest of the FPGA design. However, theseFor the fourth bar AS + Op), to the best application-
free register locations could potentially be exploited wn specific processor we apply the most effective combinatfon o
custom instructions or functional units, for a tighter gr@tion the following compiler techniques: (i) custom fixed-amount
with the processor. shifters, (ii) delay slot removal, (iii) 3-operand muligdtion,

In this section we evaluate the impact of limiting the usand (iv) operand scheduling—the remaining optimizations
of certain architected registers for the base MIPS ISA, gusiticompiler-managed hazard detection, unaligned memory ac-
gcc with full optimization ¢ G3). In particular, for now we cesses, and register elimination) are not evaluated hesribe
examine the MIPS convention of reserving two registers fthe SPREE infrastructure does not yet either support ooéxpl
operating system purposek0- k1), and eight registers for them. The table in Figuré 15 shows the combination of
caller-saving across a function cab(@- s7). We modified compiler optimizations selected for each application. Gpr
gcc to usek0- k1 as general purpose registers but observeignizations provide an average improvement of 7 MIPS/1000
no significant application speedup over all our benchmarksEs (12%) over the application-specific processag(the
meaning that an increased number of registers was not helpfaaximum improvement (for CRC32) is 25 MIPS/1000 LEs
We thus revertegjcc to not usingk0- k1 and modified it so (47%), mostly due to the effectiveness of the fixed-function
that it does not use some registers insie s7 register range. shifters.

For our embedded benchmark set, Figure 14 shows thafor the fifth and final barAS + Opt + Subséf we eval-
several applications do not fully take advantage of the 3fte the combination of our optimizations and subsetting on

Load
120 [pipe3 Fixed Delay
110]} W As Amount Slot 3-0p | Oper
100 U M AS + Subset Benchmark | Shifters | Removal | Mult. Sched.
90 - W AS + Opt bubble_sort v
Il AS + Opt + Subset crc v
80 + des
fft
fir v
quant
iquant
turbo
vic
bitcnts
CRC32
gsort
sha
stringsearch
FFT_MI
dijkstra
patricia
gol
dct
dhry

NN

Efficiency (MIPS/1000 LEs)

gol
dct
dhry
mean

SNIESENENEN

gsort
sha

)
[
©
>
O

FFT_MI
dijkstra
patricia

stringsearch

v v

SNENENENENENENENENENENENANENENENENENENEN
<\

Fig. 15. Area efficiency of th@i pe3 processor, best application-specific proces#d),(and the best application specific processor with: subgethS
+ Subse); compiler optimization (em AS + Opt); and both improvememS (+ Subset + Opt The table describes which optimizations were beneficidl an
hence enabled for each benchmark.

the application-specific processors, which improves efficy customized architecture of our soft processors, we cordbine
over subsetting alone by 13% on average. We also find tlsaveral of these optimizations and obtained an 12% addition
our optimizations and subsetting can be complementary: farea efficiency increase on average (and up to 47% in the best
example, forFIR the efficiency of optimizations and subsettingase). By including subsetting and our optimizations, tleam
is greater than the sum of the gain of each individuallynprovement is 13% but the maximum is 51%.
by 18 MIPS—a result of improved FPGA placement and In the future, we will study in greater depth the potential fo
routing. The best improvement (either relative or absdluteptimizations that focus on branch prediction and the mgmor
over the best application-specific processor with sulgp(BS system. We also plan to develop methods for automatically de
+ Subse} is 29 MIPS (51%) for CRC32. This illustrates thatiding at compile time the best optimizations and architesdt
our optimizations can significantly impact design decisiorfeatures for a specific application.
when area, frequency and wall-clock time must be taken into
consideration.
VIIl. A CKNOWLEDGEMENTS
VIl. CONCLUSIONS . .
This research is supported by grants from Altera Corpora-
In this paper we have presented a customization approdicin and NSERC; Martin Labrecque and Peter Yiannacouras
that consists of adapting code generation to make it monee partially supported by FCAR and NSERC scholarships
efficient by revisiting traditional architectural and ISAs-a respectively.
sumptions. We have illustrated several trade-offs between
area, power, operating frequency and wall-clock time. We REFERENCES
found: (i) that we can improve area efficiency by replacing
a variable-amount shifter with two fixed-amount shiftei§; ([1] J. Ball, “The Nios Il Family of Configurable Soft-Core Pessors,” Hot
that hazard detection logic hinders the processor's area an_ Chips. Altera, August 2005. _ .
ting freduency: (iii) that we can eliminate load dela] Xilinx Inc., “MicroBlaze RISC 32-Bit Soft Processor,” dgust 2001.
opera_ g aq Y . 3] P. Yu and T. Mitra, “Scalable custom instructions idénétion for
slots in most cases; (iv) that branch delays slots can be instruction-set extensible processors, GASES '04: Proceedings of the
removed in a 7-stage pipeline even with no branch predigtion 2004 international conference on Compilers, architectamed synthesis
(v) that 3-operand multiplies are only justified for our 3- gog_‘;g"_be‘jded systemsNew York, NY, USA: ACM Press, 2004, pp.
stage processor (and that otherwideLo registers are best); [4] Altera Corporation, “Nios Il C-to-Hardware Accelerati Compiler,’
(vi) that unaligned memory loads and stores do not provide hitp://iwww.altera.com/c2h.
[N . . (viil5] R. Dimond, O. Mencer, and W. Luk, “CUSTARD - A Customisable
a S|gn|f|cant performance benefit for Ou_r be.nChm_arkS_’ (V“j Threaded FPGA Soft Processor and Tools,Iriternational Conference
that we are able to remove one forwarding line with simple o Field Programmable Logic (FPL)August 2005.
operand scheduling and improve area efficiency; and (viiils] R. Lysecky and F. Vahid, “A Study of the Speedups and Coitipetess
that we can limit the compiler’s use of a significant fraction °f FPGA Soft Processor Cores using Dynamic Hardware/Soétwar
f th 2 hi d . f b h K ith Partitioning,” in DATE '05: Proceedings of the conference on Design,
of the 3 architected registers OI.’ many enc _n_1ar S WIthout Aytomation and Test in EuropéNashington, DC, USA: IEEE Computer
degrading performance. To maximize the efficiency of the Society, 2005, pp. 18-23.

(7]

8]

(9]

(20]

(1]

[12]

J. Cong, Y. Fan, G. Han, A. Jagannathan, G. Reinman, anchang,
“Instruction set extension with shadow registers for canfidple pro-
cessors,” inFPGA '05: Proceedings of the 2005 ACM/SIGDA 13th
international symposium on Field-programmable gate asray New
York, NY, USA: ACM Press, 2005, pp. 99-106.

P. Yiannacouras, J. Rose, and J. G. Steffan, “The michi@cture of
FPGA-based soft processors,” @ASES '05: Proceedings of the 2005
international conference on Compilers, architectures aydthesis for

embedded systemsNew York, NY, USA: ACM Press, 2005, pp. 202- [16]

212.

P. Yiannacouras, J. G. Steffan, and J. Rose, “Applicagpecific cus-
tomization of soft processor microarchitecture,"RRGA'06: Proceed-
ings of the internation symposium on Field programmable gatays
New York, NY, USA: ACM Press, 2006, pp. 201-210.

A. Shrivastava, E. Earlie, N. Dutt, and A. Nicolau, “Qp#on tables for
scheduling in the presence of incomplete bypassingC@DES+ISSS
'04: Proceedings of the 2nd IEEE/ACM/IFIP internationalrderence
on Hardware/software codesign and system synthediew York, NY,
USA: ACM Press, 2004, pp. 194-199.

MIPS Technologies Inc., “The MIPS RISC
http://www.mips.com, MIPS Technologies.

architecture,”

M. Guthaus and et al., “ MiBench: A free, commercially repentative [21]

embedded benchmark suite,”lim Proc. IEEE 4th Annual Workshop on
Workload CharacterisationDecember 2001.

(14]

(18]

(17]

(18]
(19]

(20]

[13] F. Campi, R. Canegallo, and R. Guerrieri, “IP-reusaki®eb8 VLIW

RISC core,” inProc. of the 27th European Solid-State Circuits Gonf
September 2001, pp. 456-459.

R. Weiker, “Dhrystone 2.1,SIGPLAN Notices23(8), Freescale, August
1988.

L. Shannon and P. Chow, “Standardizing the performassessment of
reconfigurable processor architectures,”IHEE Symposium on Field-
Programmable Custom Computing Machin2803, pp. 282-283.

S. A. Przybylski, T. R. Gross, J. L. Hennessy, N. P. Jougmd
C. Rowen, “Organization and VLSI implementation of MIPS,” igtad
University, Stanford, CA, USA, Tech. Rep., 1984. [OnlinA}ailable:
http://historical.ncstrl.org/litesite- data/stan/GIR-84-259. pdf

P. Yiannacouras, “The Microarchitecture of FPGA-Bhsoft Proces-
sors,” Master's thesis, University of Toronto, 2005.

Altera Corporation, “Quartus Il,” San Jose, CA, USA téxh.

Mentor Graphics Corp., “Modelsim SE,” http://www.mda®m, Mentor
Graphics, 2004.

J. Veenstra and R. Fowler, “MINT: a front end for efficiesimulation
of shared-memory multiprocessors,”Rmoceedings of the Second Inter-
national Workshop on Modeling, Analysis, and Simulatioi€ofmputer
and Telecommunication SysterhkC, USA, January 1994, pp. 201-207.
L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic powemnsomp-
tion in Virtex™-Il FPGA family,” in ACM/SIGDA 10th International
Symposium on Field-programmable gate arralonterey, California,
USA, February 2002.

http://historical.ncstrl.org/litesite-data/stan/CSL-TR-84-259.pdf

	Introduction
	Generating Custom Code for Custom Processors
	Related Work
	Contributions

	Infrastructure for Varying Soft Processor Compilation, ISAs, and Architectures
	Low-Level Software-Hardware Trade-Offs
	Shifter Implementations
	Removing Hazard Detection Logic

	Impact of Unique ISA Features
	Load Delay Slots
	Branch Delay Slots
	3-Operand Multiply vs Hi/Lo Registers
	Unaligned Loads and Stores

	Application-Specific Register Management
	Operand Scheduling
	Limiting Use of Architected Registers

	Combining Customization Techniques
	Conclusions
	Acknowledgements
	References

