
Custom Code Generation for Soft Processors
Martin Labrecque, Peter Yiannacouras and J. Gregory Steffan

Department of Electrical and Computer Engineering
University of Toronto

Email:{martinl,yiannac,steffan}@eecg.toronto.edu

Abstract— Embedded systems designers that use FPGAs are
increasingly including soft processors in their designs (config-
urable processors built in the programmable logic of the FPGA).
While there has been a significant amount of research on adding
custom instructions and accelerators to soft processors, these are
typically used to extend an unmodified base ISA targeted by
generic compilation such as with unmodifiedgcc. In this paper
we explore several opportunities for the compiler to optimize the
code generated for soft processors through application-specific
customization of the base ISA—techniques that are orthogonal to
adding custom instructions. In particular we explore: (i) low level
software-hardware trade-offs between basic instructions; (ii)the
utility of ISA-specific features—in particular for the delay slots
and Hi/Lo registers in the MIPS ISA; and (iii) application specific
register management. We find that through these techniques that
have no hardware cost we can improve the area efficiency of soft
processors by 12% on average across a suite of benchmarks, and
by up to 47% in the best case.

I. I NTRODUCTION

As embedded systems designers increasingly employ FP-
GAs, their designs are likely to contain one or moresoft
processors—processors that are implemented in the pro-
grammable logic of the FPGA [1], [2]. Soft processors are
useful because they can easily be programmed (rather than
writing HDL), and a designer can instantiate the exact number
of processors required and can have them incorporated into the
greater design to ease placement and routing. A key advantage
of soft processors is that they can be customized to match
the target application or applications. For example, a great
deal of recent research has focused on the ability to add
custom instructionsto soft processors, where frequently exe-
cuted code segments are replaced with encapsulated hardware
implementations that can be “called” by the soft processor
to improve performance [3]–[7]. However, for many designs,
rather than improving the performance of a soft processor at
all costs, the designer desires a soft processor that is “fast
enough” for the target application, and would rather save area
for other uses—perhaps to help fit the overall design into
a given FPGA component. Recent research explores archi-
tectural area/performance/power trade-offs and customization
opportunities for a wide range of soft processor designs [8],
[9]. However, this work assumes a fixed ISA (MIPS I), and
the evaluation is based on defaultgcc compilation—missing
many important opportunities for further customization.

A. Generating Custom Code for Custom Processors

In this paper we investigate several opportunities for the
compiler to customize the code that is generated for soft

processors—to understand the range of impact of such tech-
niques, and to give designers more fine-grain control of the
area/performance trade-off space for soft processors. Using
the SPREE infrastructure (Soft Processor Rapid Exploration
Environment) [8], we study the impact of our techniques on
the wall-clock time and area of a wide range of soft processor
architectures running a set of general-purpose benchmark
applications. In particular we focus on three main areas of
customization: (i) low-level software/hardware trade-offs, for
example in shifter implementations and in hazard detection
and observation; (ii) inclusion of ISA-specific features, for
example the MIPS load and branch delay slots, andHi/Lo
multiplication result registers; and (iii) register management,
for example operand scheduling to minimize forwarding logic,
and reducing the number of architected registers. We also
study the combination of these techniques and their resulting
impact on area and performance. It is important to understand
that in this paper we do not study the addition of custom accel-
erators in the form of custom instructions and co-processors,
although these are complementary to the compiler techniques
that we propose. Finally, the initial work presented here
suggests future efforts into larger-scale compiler optimizations
for soft-processors and other customizable architectures.

B. Related Work

Some of the trade-offs we examine in this paper have
been explored previously in other contexts. Shrivastavaet.
al. demonstrated that instruction scheduling can exploit in-
complete bypassing in embedded processors [10]. The CUS-
TARD [5] customizable soft processor has the ability to cus-
tomize forwarding lines, and provides a variable size register
file and optional branch and load delay slots—although to our
knowledge these have not been specifically evaluated.

Design decisions similar to some of those we discuss in
this paper were made for commercial soft processors, although
there is no published evaluation that quantifies their value. For
example, the commercial NIOS II and Microblaze processors
implement three-operand multiplication (rather than having
special multiplication registers such as the MIPSHi/Lo regis-
ters), and the NIOS II has no delay slots while the Microblaze
supports variants of branches with and without delay slots.
Support for unaligned memory operations has recently been
added togcc, but the corresponding hardware implementation
of those operations is patented by MIPS [11].



Table 1. Benchmark applications evaluated.

Dyn. Instr.
Source Benchmark Modified Counts

MiBench [12] BITCNTS di 26,175
CRC32 d 109,414
QSORT* d 42,754

SHA d 34,394
STRINGSEARCH d 88,937

FFT* di 242,339
DIJKSTRA* d 214,408
PATRICIA di 84,028

XiRisc [13] BUBBLE_SORT - 1,824
CRC - 14,353
DES - 1,516
FFT* - 1,901
FIR* - 822

QUANT* - 2,342
IQUANT* - 1,896
TURBO - 195,914

VLC - 17,860

Freescale [14] DHRY i 47,564

RATES [15] GOL di 129,750
DCT* di 269,953

* Contains multiply
d Reduced data input set
i Reduced number of iterations

C. Contributions

This paper makes the following three main contributions:
(i) proposal and evaluation of several techniques for custom
code generation for soft processors, including software-only
and custom shifters, software hazard observation, and operand
scheduling; (ii) evaluation of the area/performance trade-offs
for several MIPS-specific ISA features, includingHi/Lo reg-
isters, load and branch delay slots; (iii) composition of those
techniques to improve on the state of the art of generating
application-specific soft processors.

II. I NFRASTRUCTURE FORVARYING SOFT PROCESSOR

COMPILATION , ISAS, AND ARCHITECTURES

Our compiler infrastructure is based on modified versions of
gcc 4.0.2,Binutils 2.16, andNewlib 1.14.0 that target
variations of the 32-bits MIPS I [16] ISA; integer division
is implemented in software, and for now interrupts are not
supported. Using the 20 embedded benchmark applications
described in Table 1, we evaluate our compiler techniques for
generating custom code for varying soft processor architec-
tures.

We use the SPREE system [8] to generate a wide range
of soft processor architectures (full details are available in
a previous publication [17]). SPREE takes as input ISA and
datapath descriptions and produces RTL which is synthesized,
mapped, placed, and routed by Quartus 5.0 [18] using the
default optimization settings. The generated processors target
the Altera Stratix FPGAs, in particular theEP1S40F780C5
device—a mid-sized device in the family with the fastest
speed grade. We determine the area and clock frequency of
each soft processor design using the arithmetic mean across
10 seeds (which produce different initial placements before
placement and routing) to improve our approximation of the
true mean. For each benchmark, the soft processor RTL design
is simulated using Modelsim 6.0b [19] (i) to obtain the total

F/D/R
EX/M/WB

(a) serial

F/D WBR/EX
/M

(b) pipe3

WBF D EX
/MEX

R/

(c) pipe5

DF EX EX
/M WB2WB1

EX/R

(d) pipe7

Fig. 1. Processor pipeline organizations studied. The pipeline stages are:F
for fetch, D for Decode,R for register,EX for execute,M for memory, and
WB for write-back. The arrow indicates a path for forwarding two operands
at once.

number of execution cycles, and (ii) to generate a trace
which is validated for correctness against the corresponding
execution by an emulator (MINT [20]).

For Altera Stratix FPGAs, the basic logic element (LE) is
a 4-input lookup table plus a flip-flop—hence we report the
area of these processors inequivalent LEs, a number that
additionally accounts for the consumed silicon area of any
hardware blocks (e.g., memory and multiplication units). For
the processor clock rate, we report the maximum frequency
supported by the critical path of the processor design. To
combine area, frequency, and cycle count to evaluate an
optimization, we use a metric ofarea efficiency, in million
instructions per second (MIPS) per thousand equivalent LEs.
Finally, we obtain dynamic power metrics of our benchmarks
with Quartus’ Power Play tool and report the numbers without
the I/O pins power in nano-Joules per instruction (nJ/instr).

As shown in Figure 1, the processors that we evaluate
are unpipelined (serial), 3-stage-pipelined (pipe3), 5-
stage-pipelined (pipe5), and 7-stage-pipelined (pipe7). The
unpipelined processor is the smallest (889 LEs, 67.7 MHz): it
has a multiplier and a serial shifter. The pipelined processors
all have forwarding lines for both operands by default. The 3-
stage pipeline has a shifter that is implemented with the mul-
tiplier, and is the most area-efficient processor generatedby
SPREE [9] (1174 LEs, 78.3 MHz). The 5-stage pipeline also
has a multiplier-based shifter, and implements a compromise
between area efficiency and maximum operating frequency
(1283 LEs, 86.79 MHz). The 7-stage pipeline has a barrel
shifter, is the largest processor, and has the highest frequency
(1557 LEs, 100.59 MHz).

III. L OW-LEVEL SOFTWARE-HARDWARE TRADE-OFFS

A powerful trade-off for soft processor designs is the im-
plementation of common routines in either software (through
regular instructions in the base ISA) or custom hardware
(implemented as custom instructions in addition to the base
ISA). However, for area-sensitive applications we find it can be
compelling to explore similar trade-offs in the actual baseISA



Fig. 2. Percentage of dynamic instructions that contain shift operations,
broken down by those that have a fixed shift-amount encoded in the instruction
(sll, sra, and srl), those that have a variable shift amount stored in a
register (sllv, srav, andsrlv), and thelui instruction which also has a
fixed shift-amount (16 bits left).

and architecture. For example, previously we demonstrated
that “subsetting” the base ISA—so that the hardware support
for any instructions that are not used by an application is
deleted from the processor—results in an average area reduc-
tion of 25% and up to 60% for some applications [9]. In this
section we evaluate two opportunities to further subset theISA
and hardware by having the compiler compensate in software:
(i) by removing the shift unit or replacing it with one or more
much smaller fixed-amount shift units, and (ii) by removing
the hazard detection logic and instead observing dependences
by having the compiler schedule instructions and insert no-ops.

A. Shifter Implementations

It has been shown that it is advantageous to implement
shift operations using a hard multiplier if one is available[8].
However, for an area-limited design that does not contain
a hard multiplier (opting instead for software multiplication
if needed), a dedicated shifter can consume more than 250
LEs. Instead we investigate the possibility of implementing
various shift operations either partially or entirely in software.
Shifts can be implemented entirely in software using non-shift
operations such asadd and subtract. Alternatively, we
could implement a small number of fixed-amount shifts in
hardware (in far less area than a full variable-amount shifter),
and use those operations to build up other shift amounts
through software (e.g., call a shift-right-by-four operation three
times to implement a shift-right-by-twelve operation).

Figure 2 shows the percentage of dynamic instructions
executed for each benchmark that perform a shift operation,for
exampleshift left logical (sll), shift right arithmetic(sra),
and load upper immediate(lui, which shifts left by 16 bits).
Some instructions have a variable shift amount stored in a
register (srav), as opposed to an immediate shift amount
encoded in the instruction (sra). The results demonstrate that
while shift instructions can be quite common (an average of
15% of dynamic instructions across all benchmarks), the vast

Fig. 3. Impact of removing the dedicated shifter unit, relative to the
corresponding default processors with software multiplies.

majority shift by a fixed amount. In general, any variable shifts
can potentially be implemented entirely in software, or else
through use of a fixed-amount unit shifter—with the possible
exception of thePATRICIA benchmark for which variable shifts
are more common (2.5% of dynamic instructions).

To further demonstrate the potential for eliminating shift
instructions, Figure 3 shows the impact of removing the
dedicated shifter unit for various processors, each relative to
the corresponding default processor with software multiplies.
We observe that removing the shifter results in significant area
savings for all processors.pipe3 and pipe5 benefit from
the largest area savings because they implement shifts witha
multiplier that can be eliminated when removing the support
for the shift operations. While the shifter is on the criticalpath
for pipe3, the clock frequency of the other processors is not
significantly affected, even if it varies somewhat due to the
impact on overall placement and routing. Given these potential
savings, we are motivated to investigate ways to eliminate shift
instructions from the base ISA, while minimizing the impact
on overall performance.

In the absence of a dedicated shift unit, shift operations can
be supported through clever use of other instructions. Left
shifts can be replaced by repeatedly adding a number to itself
as many times as the shift amount (effectively doubling the
number every time); this technique can also be applied to
the 16-bit left shift required byload-upper-immediate(lui)
instructions. The right shift operation is more challenging,
but it can be replaced by a method similar to software
division that performs successive subtractions; note thatshift
right arithmetic (sra) requires sign extension to the most
significant bits, whileshift right logical (srl) does not. We
found that supporting shift operations only in software resulted
in unacceptable cycle-time increases—orders of magnitude for
many applications; hence we are motivated to compromise
with hardware support for a small number of fixed value
shifters.

We investigate the impact of having up to two fixed-amount
hardware shifters in lieu of a variable-amount shifter, as
shown in Table 2. We decided which are the best two fixed-



Table 2. Selection and impact of the two fixed-amount hardware shifters for

each benchmark that provide the maximum cycle count improvement.The last

column represents the fraction of original shifts that are not directly translated

to a number of fixed-function shifts.

1st Shifter 2nd Shifter Relative % Shifts not
Shift Shift Increase Fully

Benchmark Type Amt. Type Amt. in Cycles Translated

bubble_sort - - - - 1 -
crc srl 24 sll 2 1.27 29%
des srl 1 sll 1 2.58 0
fft srl 1 sll 1 1.18 0
fir srl 1 sll 1 1 0

quant srl 1 sll 1 2.44 0
iquant srl 1 sll 1 1.29 0
turbo srl 2 sll 8 2.39 51%
vlc srl 1 sll 1 3.2 0

bitcnts srl 4 srl 1 1.33 0
CRC32 srl 8 sll 2 1 48%
qsort srl 1 sll 1 1 0
sha srl 1 sll 5 1.68 49%

stringsearch sra 24 sll 2 1.02 18%
FFT_MI srl 1 sll 1 1.57 0
dijkstra srl 1 sll 1 1.11 0
patricia srl 1 sll 24 1.8 61%

gol sra 24 sll 1 1.66 33%
dct srl 1 sll 1 1.47 0

dhry sra 24 sll 1 1.33 35%

amount shifters for each benchmark based on the projected
total dynamic cycle savings of each. Note that this calculation
accounts for the fact that any shift operation that requires
a multiple of one of hardware shift-amounts may be imple-
mented through a software routine that calls the hardware
shifters an appropriate number of times. From the table it
is apparent that left and right logical shifts of 1 bit are
the most beneficial, followed by shifts of 24-bits. We also
report the increase in dynamic cycles relative to the default
implementation with software multiplication (and a variable-
amount hardware shifter). The increase in cycles ranges to
negligible for 5 benchmarks to a worst case of 2.58 for
DES, and a mean increase of 1.57 across all benchmarks
which seems to be reasonable enough to be exploited as an
area/performance trade-off. Finally, we report the percentage
of original shifts that are not fully translated to a number of
fixed-function shifts instructions but rather require software
routines (that may in turn use the fixed-function hardware
shifters, in particular for divisions).

Figure 4(a) shows the area impact of gradually decreasing
hardware support for shifting for theserial processor
(default), including two common choices of fixed-amount
hardware shifter pairs (srl1 & sll1, andsra24 & srl1).
The frequency of those processors is increased by 1% when
removing the multiplication support and 8% on average when
removing the shifter or having fixed-function shifters. Fig-
ure 4(b) shows the area efficiency of processors with up
to 2 fixed-function shifters. To compute the area efficiency
of this optimization, we first use the instruction count of
the benchmarks with software multiplies to compare constant
amounts of work. We find that area efficiency is improved
by 18% on average across all benchmarks (with a standard
deviation of 37%). Also in Figure 4(b), we show the efficiency

(a) Comparison of variants of thepipe3 processor

(b) Area efficiency of up to 2 fixed-function shifters per benchmark

Fig. 4. Results showing: (a) the area cost for variants of thepipe3 processor,
including two popular fixed-amount shifter configurations from Table 2; (b)
the area efficiency for apipe3 processor in its default configuration or
equipped with up to 2 fixed-amount shifters. The source of instruction count
to compute the MIPS value is indicated. Starred benchmarks (*)require
multiplications.

of processors with fixed-function shifters when using the
instruction count of the default processors equipped with
hardware shifters. We can see that having soft multiplies and
fixed-function shifters proves to be more area efficient for
3 benchmarks that use a hardware shifter (FIR, QSORT and
DIJKSTRA).

B. Removing Hazard Detection Logic

A nice feature of SPREE is that it automatically generates
hazard detection logic which stalls the pipeline so that register
dependences are observed. However, hazard detection logic
consumes a non-trivial fraction of processor area: roughly
10% or 110 LEs. Alternatively, the compiler could become
responsible for observing register dependences, implemented
through instruction scheduling where possible and insertion
of no-op instructions as a last resort. Figure 5 shows the
potential benefits of removing hazard detection logic, which
are an area savings of 10% forpipe3 and pipe5, and
6% for pipe7, and an increase in clock frequency of 3%
for pipe3, and 6% forpipe5 and pipe7. The serial
processor is not affected by this transformation because ithas
no hazard detection logic. Since these results are promising,
in future work we will investigate the impact on cycle count,



Fig. 5. Measurements of various soft processors with hazard detection
logic removed, normalized to the corresponding soft processors having hazard
detection logic.

code size, and overall performance of compiler scheduling and
no-op insertion. However, note that such compiler scheduling
can be non-trivial, for example to account for variable-cycle
operations such as shifts—a practical solution may be to only
partially remove hazard detection for simple cases.

IV. I MPACT OF UNIQUE ISA FEATURES

Customizable and parametric processors are often built
on a base RISC ISA, which can then be extended with
custom instructions. Depending on the base ISA, there may
be unique ISA features which may or may not benefit a given
application. Since our infrastructure is based on the MIPS
ISA, we investigate the MIPS-specific features of load and
branch delays slots,Hi/Lo registers, and unaligned memory
references; for example, the Nios II ISA is similar to MIPS,
although it does not support any of those features. Hence we
are motivated to evaluate the impact of these features.

A. Load Delay Slots

The MIPS instruction set has two delay slots: one that
follows load instructions, and one that follows branch and
jump instructions. A delay slot is a placeholder in which an
instruction may be scheduled, so long as it does not depend on
the result of a load, or will be executed regardless of whether
the corresponding branch is taken; if there is no appropriate
instruction to occupy a delay slot, a no-op instruction is
used. Delay slots are useful in helping tolerate delays due to
hazards in a processor’s pipeline. Note that there is a negligible
hardware cost for supporting load delay slots, while branch
delay slots can complicate several aspects of pipeline control
logic.

Figure 6(a) shows the impact on wall-clock time of remov-
ing the load delay slots on theserial processor. Since this
processor is not pipelined and has a one-cycle memory access
latency, load delay slots have no benefit and removing them
only improves wall-clock time. We also evaluate removal of
load delay slots for the 3-stage pipelined processorpipe3,
as shown in Figure 6(b): on average this results in a small
(1%) reduction in wall-clock time due to cycle count savings,
although the savings for some benchmarks is significant. For

(a) Removing load delay slots,serial processor

(b) Removing delay slots,pipe3 processor

Fig. 6. Impact on the wall-clock time of removing delay slots, normalized
to the corresponding default compilation/processor (with delay slots).

loop_start:
branch loop_start
nop
load
nop

(a) With the load delay slot.

loop_start:
branch loop_start
load

(b) Without the load delay slot.

Fig. 7. Code showing a load instruction scheduled into a branch delay slot
by the compiler as a side-effect of the removal of the load delayslot.

pipelined processors, the forwarding lines can reduce stalls
and make load delay slots unnecessary (again, since we have
a 1-cycle access to the memory system).

For CRC32 removing the load delay slot leads to a slow-
down of 14% due to unfortunate circumstances: as illustrated
in Figure 7, the compiler scheduled a load in a branch delay
slot, such that the load is then unnecessarily executed along
with every execution of the branch. In contrast, when a load
delay slot is supported the branch delay slot is occupied by a
no-op and the load is only executed whenever the branch is not
taken. As a solution to this problematic case we implemented
a compiler setting where the load delay slot is removed, but a
load can never be used in a branch delay slot. In Figure 6(b)



(a) CAD metrics relative to corresponding default implementation
(that implements branch delay slots).

(b) Impact on wall-clock time for thepipe7 processor, relative to the
default execution (with branch delay slots).

Fig. 8. Impact of removing the branch delay slot.

we evaluate this setting (the 2nd bar), but find that it is a
compromise: it always improves on the baseline but cannot
achieve the full benefit of simply removing the load delay slot
in some benchmarks.

B. Branch Delay Slots

A branch delay slot provides an extra cycle to compute the
target of the branch in a pipelined datapath, before the program
counter is updated with either the branch target or fall-through
locations—hence the delay slot instruction following a branch
must be executed regardless of whether the branch is taken.
Accounting for branch delay slots requires additional control
logic and increases the complexity of the processor, and hence
is a potential area/performance trade-off in itself. Figure 8(a)
shows the impact on the processor metrics of removing support
for branch delay slots, which is negligible in terms of area and
frequency except for a 13% increase in clock frequency for the
7-stage pipeline. This frequency improvement is due a change
in the critical path of the processor that occurs only for that
particular processor. Figure 8(a) also indicates thatpipe3
performs a significant amount of additional work, considering
that it should use less energy-per-cycle since the branch delay
hardware is removed.

In Figure 6(b), we show that removing the branch delay slot
for the 3-stage pipeline increases the number of cycles because

multiplier

re
gi

st
er

 fi
le

M
U

X

Hi/Lo

Fig. 9. Schematic of theHi/Lo circuitry. The solid line represents the
default MIPS implementation, while the dashed line represents the proposed
elimination ofHi/Lo registers.

our processor simply assumes that branches are not taken—
i.e. all instructions executed after the branch must be squashed
when the branch is taken. In Figure 8(b) removing branch
delay slots from the 7-stage processor reduces wall-clock time
by an average of 8%, which is a significant improvement—
this is due entirely to an increase in clock frequency, as the
average cycle count actually increases in this case. We are
currently implementing more sophisticated branch prediction
support so that we may more thoroughly study the potential
of customization of branches and their delay slots.

C. 3-Operand Multiply vsHi/Lo Registers

On a 32-bit architecture, the multiplication of two registers
results in a 64-bit product of which the 32 most significant
bits are called thehigh part and the 32 least significant bits
are called thelow part. In a MIPS processor, special registers
calledHi andLo hold the result of a multiplication so the des-
tination of a multiplication is implicit. To become accessible to
the ALU, the high and low parts of the result must be loaded in
the register file by two separate instructionsmfhi andmflo.
Figure 9 shows the two registers that are used exclusively for
the multiplication (since our processors support only software
division). Those registers were originally introduced to reduce
the scheduling complexities of the multi-cycle multiply and
divide instructions and because they had hardware interlocks,
while the rest of the processor did not.

To evaluate the costs/benefit of this particular feature of the
ISA, we optionally support a three-operand multiply (similar to
the NIOS II [1] or Microblaze [2] ISAs), where the destination
register may be any general-purpose register, and is explicitly
defined in the instruction encoding. Since only one 32 bit
destination register may be specified, we require two multiply
instructions: one to compute the high part of the multiplication,
and one to compute the low part. A side-benefit of this
approach is that only one multiplication instruction need be
used if only the low part of the operation is required. We found
that only the low part of multiplication is required forFFT,
FIR, QUANT, IQUANT, andQSORTbenchmarks, whileFFT_MI ,
DIJKSTRA and DCT require 64 bit multiplication results (the
remaining benchmarks do not contain multiplies).

Figure 10(a) shows the impact of 3-operand multiplies
relative to the corresponding default multiplier implementa-
tion for the different pipelined processors. While there is
a modest area savings (2% on average) due to elimination
of the actualHi and Lo registers (which are cheap in an
Altera FPGA), processor frequency suffers significantly in



(a) CAD metrics for processors that implement only one instruction to
compute the low part (Low) or two instructions to compute both the high
and low parts (High + Low) relative to the corresponding default multiplier
implementation.

(b) Impact on wall-clock time normalized to the execution with the default
multiplier averaged over all benchmarks that contain multiplications (see
Table 1).

Fig. 10. Impact of 3-operand multiplies.

most cases because the write-back path from the multiplier
to the register file becomes a critical path. However, we find
that the average cycle count is reduced by 2% for the 3-
operand multiplication (with a standard deviation of 3%),
due to a reduction on average of the number of instructions
required for multiplication: when only the lower 32-bit result
is required, only the one 3-operand multiply instruction is
required, while for the 2-operand multiply instruction amflo
instruction is additionally required. Finally, Figure 10(a) shows
that 3-operand multiplies generally require more activityin
the processor, leading to a greater energy per instruction
consumption and countering expected dynamic power savings
due to a slower clock speed [21].

Figure 10(b) shows that wall-clock time is improved by 3%
on average for the 3-stage pipeline, but unchanged for the 7-
stage pipeline. Taking area into consideration, our conclusion
is that the 3-operand multiplication (along with the removal of
theHi/Lo registers) is beneficial only for our 3-stage pipelined
processor.

Fig. 11. Percentage of dynamic instructions removed with the addition of
the patented instructions performing unaligned memory accesses.

D. Unaligned Loads and Stores

While the instructionslwl, lwr, swl, andswr have patent
restrictions and are thus not supported by SPREE, they can be
generated bygcc. These perform unaligned memory loads
and stores, effectively comprising memory references with
shift operations. In absence of those instructions, compilers
typically use padding to align data to word boundaries. Since
padding is not always possible, it is important to measure the
cost/benefit of these instructions. In Figure 11, we show the
reduction in dynamic instructions through the addition of these
more powerful instructions. ForTURBO, SHA, andDHRY, this
savings is significant, but on average these instructions only
reduce the cycle count by 0.5% and hence are not generally
worth supporting.

V. A PPLICATION-SPECIFICREGISTERMANAGEMENT

For a soft processor, the set of architected registers in the
base ISA and their conventional uses may not necessarily
match the needs of the target application, or may miss op-
portunities for a more efficient architecture. In this section
we present and evaluate two techniques that customize the
compiler’s use of registers to applications: operand scheduling,
and limiting the use of architected registers.

A. Operand Scheduling

To reduce stalls due to data hazards between registers in
pipelined processors, designers employ forwarding lines to
forward the result computed in a later stage directly to an
earlier stage, bypassing the register file. In our soft proces-
sor designs, we optionally support one pair of forwarding
lines (see Figure 1)1. Since operands for instructions that
implement a commutative operation (such asadd may be
freely exchanged, our insight is that we could bias operands
with near-distance register dependences to favor a given
operand position in the instruction, potentially allowingus
to reduce the performance impact of removing one of the
two forwarding lines from our processors. Our algorithm for
scheduling operands is as follows. For each instruction, we

1Additional forwarding lines are not possible in these datapaths.



Table 3. Percentage cycle count savings of forwarding linesand operand

scheduling, relative to the corresponding default processor with no forwarding

lines (and no scheduling), averaged across all benchmarks (i.e., 0% means no

cycle savings).

Processor Fwd A Fwd A + Scheduling Fwd AB
pipe3 10% 11% 14%
pipe5 12% 14% 17%
pipe7 9% 11% 15%

traverse a history of instructions in the static program order—
from the most recent to the oldest—to find read-after-write
dependences, and to adjust the order of the operands to take
advantage of the supplied forwarding lines. Care is taken not
to affect the register allocation which could counter/undoour
operand scheduling.

Table 3 shows the impact of forwarding lines and operand
scheduling on the 3, 5, and 7 stage pipelines. We find that
the addition of a single forwarding line improves the average
cycle count by 9 to 12 percent for the different processors,
and that the addition of compiler operand scheduling provides
an additional 1 or 2 percent average improvement (but up to
8% for some benchmarks). Note that we observed thatgcc
already favors one operand, hence our scheduling efforts are
on top of that bias. Addition of a second forwarding line
further improves cycle count by 3 to 5 percent. In summary,
while operand scheduling provides an improvement over a
single forwarding line at no hardware cost, it cannot equal
the benefits of an additional forwarding line.

Although our algorithm improves the effectiveness of a
single forwarding line, unexploited forwarding opportunities
still remain for two reasons: (i) for each instruction we can
only choose one permutation of its operands; and (ii) our
algorithm does not predict control flow. Figure 13 illustrates
the three situations where missed forwarding opportunities
occur. On average with the 3, 5 and 7 stage pipelines with
a single forwarding line, the breakdown of missed forwarding
opportunities after operand scheduling is as follows: 8% for
commutative operations with forward branches (Figure 13(a));
10% for commutative operations with backward branches (Fig-
ure 13(b)); 82% for non-commutative operands (Figure 13(c)).
The most frequently occurring non-commutative instructions
that result in missed forwarding opportunities are store in-
structions (sb, sw), and the set-less-than instruction (slt and
sltu set a register if a comparison is true). These results
motivate future improvements to our algorithm to schedule
non-commutative operands. One available option would be
to change the ISA definition on a per-application basis to
choose the best average operand permutation for some non-
commutative instructions.

Figure 12(a) shows the impact of forwarding lines on the
maximum frequency, the area and the energy-per-cycle of our
pipelined processors. Area is increased in all cases by lessthan
10% and energy-per-instruction is reduced on average by 8%,
meaning that the forwarding logic consumes less energy than

(a) CAD metrics for forwarding lines (either A, or both A and B),
normalized to the corresponding processors without forwarding lines.

(b) Comparison of the area efficiency of thepipe3 processor with forwarding
for one operand (fwd A), plus operand scheduling (fwd A + S), and with
forwarding for both operands (fwd AB).

Fig. 12. Impact of forwarding lines and operand scheduling.

r1 = r2 + r3
branch start
r4 = r1 + 4

start:
r5 = r4 + r1

(a) Forward branch.

r1 = r2 + r3
loop_start:

r3 = r1 + r4
r4 = r3 + 1
branch loop_start

(b) Backward branch.

r1 = r2 + r3
r4 = r5 - r1

(c) Non-commutative
operands.

Fig. 13. Examples of missed forwarding opportunities. Italicized register
names show a register that is written then read. Assuming support for
forwarding the operand in the first source position, the readinstruction has the
register as a second operand because of other operand scheduling constraints
in (a) and (b), or because of properties of the instructions (c).



Fig. 14. Impact on wall-clock time of increasingly limiting thenumber of
registers available to the compiler for theserial processor.

what is wasted on stall cycles due to data hazards. Surprisingly,
certain processor configurations have an improved maximum
operation frequency which should be considered within the
noise margin of the placement and routing of the FPGA. As
seen in Figure 12(b), because of the area cost of having two
forwarding lines, compiler support allows some benchmarks
(such asBUBBLE_SORT, DES and STRINGSEARCH) to be
equally or more efficient with a single forwarding line than
with two forwarding lines. While compiler support improves
area efficiency of this processor by 2% on average (and up to
5% for FIR), a single forwarding line remains less area efficient
than two forwarding lines overall (3% degradation).

B. Limiting Use of Architected Registers

Not all applications require the use of all architected reg-
isters in a base ISA to maintain good performance, and for
other applications limiting the number of registers accessible
by the compiler has a tolerable impact on performance. For an
FPGA-based soft processor, since the register file is typically
implemented using a block memory, the memory space freed
by reducing the number of architected registers is not easily
reclaimed by the rest of the FPGA design. However, these
free register locations could potentially be exploited by new
custom instructions or functional units, for a tighter integration
with the processor.

In this section we evaluate the impact of limiting the use
of certain architected registers for the base MIPS ISA, using
gcc with full optimization (-O3). In particular, for now we
examine the MIPS convention of reserving two registers for
operating system purposes (k0-k1), and eight registers for
caller-saving across a function call (s0-s7). We modified
gcc to usek0-k1 as general purpose registers but observed
no significant application speedup over all our benchmarks,
meaning that an increased number of registers was not helpful.
We thus revertedgcc to not usingk0-k1 and modified it so
that it does not use some registers in thes0-s7 register range.

For our embedded benchmark set, Figure 14 shows that
several applications do not fully take advantage of the 32

registers assumed by the MIPS ISA: onlyDES incurs an ob-
servable slowdown when removing 2 registers from the default
compilation. The fact that theBITCNTS and PATRICIA bench-
marks encounter a small speedup is an unexpected side-effect
of register allocation, instruction scheduling and forwarding
opportunities. The unpipelined processor in Figure 14 suffers
the most from fewer registers among our reference processors
because memory spills due to register pressure result directly
in additional processor waiting cycles for memory. We verified
that some benchmarks did not use any of thes0-s7 registers
with the default optimized compilation. Removing some of the
10 callee saved registers (t0-t9) was not yet attempted.

VI. COMBINING CUSTOMIZATION TECHNIQUES

In this section we evaluate the impact of combining the com-
piler optimizations described in this paper, and their interaction
with application-specific architecture and ISA subsettingas
detailed in a previous publication [9].

In Figure 15, the first bar shows the area efficiency for the
pipe3 processor, since overall it is the most area efficient
over all our benchmarks. In other words, we would choose
pipe3 if we required the one most efficient processor to
support all benchmarks. We usepipe3 as the comparison
basis for our application-specific optimizations. For the second
bar (AS), we select the most area-efficient processor archi-
tecture for each application (considering as design options
shifter implementations, pipeline depth and forwarding lines,
hardware vs software multiplication support), in a similar
manner to earlier work [9] but with the addition of forwarding
lines as a design option. Choosing an application-specific
processor design improves efficiency by 11% on average,
illustrating the power of customization for soft processors. For
the third bar (AS + Subset), to the best application-specific
processor we additionally apply ISA subsetting (removal of
the processor support for any instructions that are unused by
that application [9]). Subsetting further improves efficiency by
an additional 8% on average, although for some applications,
such asFIR and BUBBLE_SORT, the benefit is much greater
since they have a large number of unused instructions.

For the fourth bar (AS + Opt), to the best application-
specific processor we apply the most effective combination of
the following compiler techniques: (i) custom fixed-amount
shifters, (ii) delay slot removal, (iii) 3-operand multiplication,
and (iv) operand scheduling—the remaining optimizations
(compiler-managed hazard detection, unaligned memory ac-
cesses, and register elimination) are not evaluated here because
the SPREE infrastructure does not yet either support or exploit
them. The table in Figure 15 shows the combination of
compiler optimizations selected for each application. Ourop-
timizations provide an average improvement of 7 MIPS/1000
LEs (12%) over the application-specific processor (AS); the
maximum improvement (for CRC32) is 25 MIPS/1000 LEs
(47%), mostly due to the effectiveness of the fixed-function
shifters.

For the fifth and final bar (AS + Opt + Subset), we eval-
uate the combination of our optimizations and subsetting on



Load
Fixed Delay

Amount Slot 3-op Oper.
Benchmark Shifters Removal Mult. Sched.

bubble_sort X X

crc X X

des X

fft X X

fir X X

quant X X

iquant X X

turbo X

vlc X

bitcnts X X

CRC32 X X

qsort X X

sha X

stringsearch X X

FFT_MI X X X

dijkstra X X

patricia X

gol X

dct X X X

dhry X

Fig. 15. Area efficiency of thepipe3 processor, best application-specific processor (AS), and the best application specific processor with: subsetting (AS
+ Subset); compiler optimization (em AS + Opt); and both improvements (AS + Subset + Opt). The table describes which optimizations were beneficial and
hence enabled for each benchmark.

the application-specific processors, which improves efficiency
over subsetting alone by 13% on average. We also find that
our optimizations and subsetting can be complementary: for
example, forFIR the efficiency of optimizations and subsetting
is greater than the sum of the gain of each individually
by 18 MIPS—a result of improved FPGA placement and
routing. The best improvement (either relative or absolute)
over the best application-specific processor with subsetting (AS
+ Subset) is 29 MIPS (51%) for CRC32. This illustrates that
our optimizations can significantly impact design decisions
when area, frequency and wall-clock time must be taken into
consideration.

VII. C ONCLUSIONS

In this paper we have presented a customization approach
that consists of adapting code generation to make it more
efficient by revisiting traditional architectural and ISA as-
sumptions. We have illustrated several trade-offs between
area, power, operating frequency and wall-clock time. We
found: (i) that we can improve area efficiency by replacing
a variable-amount shifter with two fixed-amount shifters; (ii)
that hazard detection logic hinders the processor’s area and
operating frequency; (iii) that we can eliminate load delay
slots in most cases; (iv) that branch delays slots can be
removed in a 7-stage pipeline even with no branch prediction;
(v) that 3-operand multiplies are only justified for our 3-
stage processor (and that otherwiseHi/Lo registers are best);
(vi) that unaligned memory loads and stores do not provide
a significant performance benefit for our benchmarks; (vii)
that we are able to remove one forwarding line with simple
operand scheduling and improve area efficiency; and (viii)
that we can limit the compiler’s use of a significant fraction
of the 32 architected registers for many benchmarks without
degrading performance. To maximize the efficiency of the

customized architecture of our soft processors, we combined
several of these optimizations and obtained an 12% additional
area efficiency increase on average (and up to 47% in the best
case). By including subsetting and our optimizations, the mean
improvement is 13% but the maximum is 51%.

In the future, we will study in greater depth the potential for
optimizations that focus on branch prediction and the memory
system. We also plan to develop methods for automatically de-
ciding at compile time the best optimizations and architectural
features for a specific application.

VIII. A CKNOWLEDGEMENTS

This research is supported by grants from Altera Corpora-
tion and NSERC; Martin Labrecque and Peter Yiannacouras
are partially supported by FCAR and NSERC scholarships
respectively.

REFERENCES

[1] J. Ball, “The Nios II Family of Configurable Soft-Core Processors,” Hot
Chips, Altera, August 2005.

[2] Xilinx Inc., “MicroBlaze RISC 32-Bit Soft Processor,” August 2001.
[3] P. Yu and T. Mitra, “Scalable custom instructions identification for

instruction-set extensible processors,” inCASES ’04: Proceedings of the
2004 international conference on Compilers, architecture, and synthesis
for embedded systems. New York, NY, USA: ACM Press, 2004, pp.
69–78.

[4] Altera Corporation, “Nios II C-to-Hardware Acceleration Compiler,”
http://www.altera.com/c2h.

[5] R. Dimond, O. Mencer, and W. Luk, “CUSTARD - A Customisable
Threaded FPGA Soft Processor and Tools,” inInternational Conference
on Field Programmable Logic (FPL), August 2005.

[6] R. Lysecky and F. Vahid, “A Study of the Speedups and Competitiveness
of FPGA Soft Processor Cores using Dynamic Hardware/Software
Partitioning,” in DATE ’05: Proceedings of the conference on Design,
Automation and Test in Europe. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 18–23.



[7] J. Cong, Y. Fan, G. Han, A. Jagannathan, G. Reinman, and Z. Zhang,
“Instruction set extension with shadow registers for configurable pro-
cessors,” inFPGA ’05: Proceedings of the 2005 ACM/SIGDA 13th
international symposium on Field-programmable gate arrays. New
York, NY, USA: ACM Press, 2005, pp. 99–106.

[8] P. Yiannacouras, J. Rose, and J. G. Steffan, “The microarchitecture of
FPGA-based soft processors,” inCASES ’05: Proceedings of the 2005
international conference on Compilers, architectures andsynthesis for
embedded systems. New York, NY, USA: ACM Press, 2005, pp. 202–
212.

[9] P. Yiannacouras, J. G. Steffan, and J. Rose, “Application-specific cus-
tomization of soft processor microarchitecture,” inFPGA’06: Proceed-
ings of the internation symposium on Field programmable gate arrays.
New York, NY, USA: ACM Press, 2006, pp. 201–210.

[10] A. Shrivastava, E. Earlie, N. Dutt, and A. Nicolau, “Operation tables for
scheduling in the presence of incomplete bypassing,” inCODES+ISSS
’04: Proceedings of the 2nd IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis. New York, NY,
USA: ACM Press, 2004, pp. 194–199.

[11] MIPS Technologies Inc., “The MIPS RISC architecture,”
http://www.mips.com, MIPS Technologies.

[12] M. Guthaus and et al., “ MiBench: A free, commercially representative
embedded benchmark suite,” inIn Proc. IEEE 4th Annual Workshop on
Workload Characterisation, December 2001.

[13] F. Campi, R. Canegallo, and R. Guerrieri, “IP-reusable 32-bit VLIW
RISC core,” inProc. of the 27th European Solid-State Circuits Conf,
September 2001, pp. 456–459.

[14] R. Weiker, “Dhrystone 2.1,”SIGPLAN Notices, 23(8), Freescale, August
1988.

[15] L. Shannon and P. Chow, “Standardizing the performance assessment of
reconfigurable processor architectures,” inIEEE Symposium on Field-
Programmable Custom Computing Machines, 2003, pp. 282–283.

[16] S. A. Przybylski, T. R. Gross, J. L. Hennessy, N. P. Jouppi, and
C. Rowen, “Organization and VLSI implementation of MIPS,” Stanford
University, Stanford, CA, USA, Tech. Rep., 1984. [Online].Available:
http://historical.ncstrl.org/litesite-data/stan/CSL-TR-84-259.pdf

[17] P. Yiannacouras, “The Microarchitecture of FPGA-Based Soft Proces-
sors,” Master’s thesis, University of Toronto, 2005.

[18] Altera Corporation, “Quartus II,” San Jose, CA, USA, Altera.
[19] Mentor Graphics Corp., “Modelsim SE,” http://www.model.com, Mentor

Graphics, 2004.
[20] J. Veenstra and R. Fowler, “MINT: a front end for efficient simulation

of shared-memory multiprocessors,” inProceedings of the Second Inter-
national Workshop on Modeling, Analysis, and Simulation ofComputer
and Telecommunication Systems, NC, USA, January 1994, pp. 201–207.

[21] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic power consump-
tion in VirtexTM -II FPGA family,” in ACM/SIGDA 10th International
Symposium on Field-programmable gate arrays, Monterey, California,
USA, February 2002.

http://historical.ncstrl.org/litesite-data/stan/CSL-TR-84-259.pdf

	Introduction
	Generating Custom Code for Custom Processors
	Related Work
	Contributions

	Infrastructure for Varying Soft Processor Compilation, ISAs, and Architectures
	Low-Level Software-Hardware Trade-Offs
	Shifter Implementations
	Removing Hazard Detection Logic

	Impact of Unique ISA Features
	Load Delay Slots
	Branch Delay Slots
	3-Operand Multiply vs Hi/Lo Registers
	Unaligned Loads and Stores 

	Application-Specific Register Management
	Operand Scheduling
	Limiting Use of Architected Registers

	Combining Customization Techniques
	Conclusions
	Acknowledgements
	References

