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ABSTRACT

The increased demand for on-chip communication bandwidth
as a result of the multi-core trend has made networks on-chip
(NoCs) a compelling choice for the communication back-
bone in next-generation systems [3]. However, NoC de-
signs have many power, area, and performance trade-offs
in topology, buffer sizes, routing algorithms and flow con-
trol mechanisms—hence the study of new NoC designs can
be very time-intensive. To address this challenge we propose
DART, a fast and flexible FPGA-based NoC simulation ar-
chitecture. Rather than laying the NoC out in hardware on
the FPGA like previous approaches [8, 6], our design virtu-
alizes the NoC by mapping its components to a generic NoC
simulation engine, composed of a fully-connected collection
of fundamental components (e.g., routers and flit queues).
This approach has two main advantages: (i) since FPGA
implementation is decoupled it can simulate any NoC; and
(ii) any NoC can be mapped to the engine without resynthe-
sizing it, which can take time for a large FPGA design. We
demonstrate that an implementation of DART can achieve
over 100× speedup relative to a cycle-based software simu-
lator, while maintaining the same level of simulation accu-
racy.

Categories and Subject Descriptors

C.1.2 [Computer Systems Organization]: Multiproces-
sors; Interconnection Architectures

General Terms

Design, Performance, Measurement
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1. INTRODUCTION
Modern multi-cores and systems-on-chip increasingly use

packet-switched networks-on-chip (NoCs) to meet the grow-
ing demand for on-chip communication bandwidth, as more
cores are incorporated into each chip. NoC designs are sensi-
tive to many parameters such as topology, buffer sizes, rout-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOCS ’11, May 1-4, 2011 Pittsburgh, PA, USA
Copyright 2011 ACM 978-1-4503-0720-8 ...$10.00.

ing algorithms, and flow control mechanisms. Detailed NoC
simulation is essential to accurate full-system evaluation.

Software simulation is used widely, both as stand-alone
NoC simulators [15, 4] and as the interconnect component
of large full-system simulators [7, 1]. These tools have the
advantages of being very flexible, easy to program, fast to
compile, and deterministic (making them amenable to de-
bugging). However, simulation of large NoCs in software is
slow, which adds to the already burdensome computation re-
quired to perform detailed full-system simulation. To main-
tain reasonable simulation times, the user is often forced to
reduce simulation detail.

The increased on-chip logic and memory capacities of re-
cent FPGAs allow an entire on-chip system to be imple-
mented on a single device. FPGA-based NoC emulators [6,
16, 20, 8] can reduce simulation time by several orders of
magnitude compared to software. These dramatic speedups
are possible because the emulator is constructed by laying
out the entire NoC on the FPGA, allowing the hardware
to exploit all available fine and coarse grain parallelism be-
tween the emulated events in the NoC. However, this direct-
mapped approach has three key drawbacks relative to soft-
ware simulation: (i) any change in the simulated NoC re-
quires manual redesign of the emulator HDL, (ii) redesign in
turn requires complete compilation/synthesis of the FPGA
design, which can take hours, or up to a day for a large
design, and (iii) the maximum simulatable NoC size is de-
termined by the FPGA capacity.

1.1 A Flexible NoC Simulation Acceleration
Engine

We first proposed the DART architecture for FPGA-based
NoC simulation to bridge the gap between pure software
and hardware approaches [19]. The DART architecture is
parametrized, and the parameters can be set by software at
run-time to simulate different NoCs without modifying the
hardware simulator on the FPGA. In this paper, we describe
in more detail the design decisions of DART and investigate
the performance and scalability of the DART architecture.

Fig. 1 shows the organization of a DART simulator, which
consists of a fully-connected collection of fixed-function com-
ponents that model the building blocks of an NoC: traffic
generators, routers and queues. Configurable parameters
within each node allows behaviors of individual nodes to be
altered to match nodes in the simulated NoC. The global in-
terconnect provides all-to-all communication between DART
nodes, thus allowing simulation of different topologies with-
out resynthesizing the design. Furthermore, simulated cy-
cles are decoupled from FPGA cycles through the use of a
global time counter: this counter is incremented once ev-



Figure 1: DART Simulator architecture on the
FPGA

ery simulated-cycle after all network transfers for that cycle
are simulated (which may take a variable number of FPGA
cycles). Virtualizing simulation time allows us to optimize
the DART components for area efficiency. This partially ad-
dresses the limitation on simulatable NoC size due to FPGA
capacity constraints, allowing us to easily add support for
more simulated nodes than physical DART nodes to future
versions of DART.

Contributions We make two main contributions: First, we
design and evaluate a novel overlay architecture that enables
software run-time configurable NoC simulation on FPGAs.
The novelty of DART lies not in the NoC features imple-
mented but in its approach to simulation: fast and flexible
FPGA simulation without resynthesis. Second, we demon-
strate a complete implementation of the DART simulation
toolset that achieves over 100× speedup relative to the cycle-
based software simulator Booksim[4], while maintaining the
same level of simulation accuracy.

2. RELATED WORK

2.1 Software Simulation
Cycle-accurate software NoC simulators incorporate de-

tailed models of network components, and evaluate network
performance by capturing the timing of messages as they
traverse the simulated network. Software simulators exist
both as stand-alone interconnect simulators such as Book-
sim [4] and SICOSYS [15], and as the network component
in full-system simulators such as Garnet [1] of GEMS [10]
and SimFlex [7]. However, detailed full-system simulation
is slow. Recent work including ProtoFLEX [2] and RAMP
Gold [17] speed up processor simulation using FPGAs. The
NoC component can become the bottleneck in the simula-
tion of large systems.

As multi-core processors become widely available, one way
to improve software simulation speed is to leverage multi-
threading. The main challenge in parallelizing NoC simula-
tors using threads is that NoC simulation is communication
intensive. The fine-grained synchronizations can incur high

communication overhead. DARSIM [9] is a parallel NoC
simulator that achieves good scalability for up to 4 threads
in cycle-accurate mode, which requires two global synchro-
nizations per simulated cycle. Relaxing this constraint al-
lows good scaling to 8 threads at the cost of lower accuracy.

2.2 FPGA-based Emulation
Genko et al. [6] describe an emulation platform that con-

sists of programmable traffic generators and receptors that
drive a 6-switch NoC and is 2600× faster than a SystemC
simulation of the same network. While this platform sup-
ports programmable traffic patterns and statistics counters,
changing the router configuration requires resynthesis of the
emulator. DRNoC [8] circumvents this requirement by lever-
aging the partial reconfigurability of Xilinx FPGAs. The
DRNoC host FPGA is divided into grids; each grid slot can
be dynamically reconfigured to implement a different router
model. However, partial reconfiguration requires a special
design flow and incurs area overheads; it is also only avail-
able for select devices. In contrast, DART’s configuration
interface is based on a generic shift register and is portable
to any FPGA. NoCem [16] improves emulation density over
Genko et al.’s design [6] and implements a 9-node mesh net-
work on a single FPGA by eliding the router pipeline details
and virtual channels. Instead of sacrificing these important
details, we employ a simple design for each DART Router:
each has multiple input ports but only one output port, and
models the all-to-all switching in a simulated router by rout-
ing one input port per DART cycle.

Wolkotte et al. [20] virtualize a single router on an FPGA,
allowing the simulation of an NoC with multiple routers.
An off-chip ARM processor stores N contexts for the router
model and orchestrates the emulation of the N -node net-
work. This approach allows the router model to be much
more detailed. However, the off-chip ARM/FPGA commu-
nication link is a performance bottleneck. DART’s simula-
tion components are implemented completely on-chip and
DART does not suffer from this bottleneck.

AcENoCs [11] provides a novel HW/SW design for NoC
emulation. It leverages a soft-processor for traffic generation
and source queue functionality, freeing FPGA resources to
allow for more detailed routers, and enabling a network size
comparable to DART.

DART is similar in spirit to the RAMP Gold [18] and
ProtoFLEX [2] processor simulators that decouple the sim-
ulator architecture on the FPGA from that of the simu-
lated system. Both RAMP Gold and ProtoFlex use host
multi-threading to simulate large-scale multi-cores on top of
a single processor pipeline. Compared to a processor, nodes
in an NoC have simpler pipelines but carry out more fine-
grained communication. To efficiently model these charac-
teristics, DART uses multiple functional components that
are synchronized to exploit the fine-grained parallelism in
NoC simulation.

A-Ports [13] separates the timing and functional models
of a processor simulator using components that communi-
cate asynchronously. DART uses a globally synchronous
approach to avoid the need of large buffers in intermedi-
ate nodes. To overcome FPGA size constraints, HAsim [14]
uses a novel time-division multiplexing scheme to simulate
a larger number of cores and large NoC design.

3. DART ARCHITECTURE
The basis of the DART architecture is to provide pro-

grammability by decoupling (i) the simulator architecture



from the architecture of the simulated NoC, and (ii) DART
cycles from simulated cycles. To provide a configurable func-
tional model for NoC simulation, we abstract common NoC
functionalities into three basic components: Traffic Gener-
ators (TGs), Flit Queues (FQs) and Routers. Components
can be mixed and matched to model more complex NoC
nodes. A given topology is then simulated by configuring
the Routers to only forward to their simulated neighbors via
the global interconnect; this configuration does not require
resynthesis.

Traffic Model A typical NoC carries two types of traf-
fic:flits (flow control units) that carry data messages and
credits that are exchanged between neighboring routers to
enforce flow control [4]. DART models flits and credits using
descriptors that contain only the information necessary to
forward them from source to destination. A 36-bit flit de-
scriptor encodes the injection and next-transfer timestamps,
source and destination addresses, and boolean flags for the
flit type (head, tail, and warmup). Warmup flits are used to
bring the network to steady state and hence do not have
their latencies recorded. Not encoding the data payload
saves area as fewer bits are stored and passed between DART
nodes. We choose 36 bits to match the port width of embed-
ded RAM blocks on the FPGA, which are used to implement
the flit buffers. Anything wider doubles the RAM usage as
two RAM blocks must be used in parallel to support the
data width. A credit descriptor encodes only a timestamp
and a virtual channel ID.

Timing Model To capture the timing of flit transfers, we
use a global time counter to synchronize all network events.
Each flit contains a timestamp that indicates when the next
transfer of this flit should happen. As a flit traverses the
network, its timestamp is updated by intermediate DART
nodes to reflect the delay due to pipeline latency and simu-
lated contention. Credit transfers are timed similarly. Upon
arrival at the destination TG, a flit’s latency is computed by
subtracting the injection timestamp from the arrival times-
tamp. The 10-bit timestamps allow DART to correctly
compute latency provided a flit’s latency does not exceed
1024 simulated cycles. We believe this is a reasonable com-
promise to keep the flit descriptors within 36 bits as most
on-chip communication takes no more than a few hundred
cycles. However, the maximum simulation length DART
supports is not limited to 1024 cycles. By using signed
subtractions to compare timestamps, we can correctly de-
termine the chronological order of timestamps within 512
simulated cycles even when the global time counter wraps
around. Since the DART design guarantees that timestamps
of all flits traversing the global interconnect fall within a N-
cycle window, where N is the simulated latency of the router
pipeline and is smaller than 512, flits will always be delivered
in correct simulation order.

Design Space Coverage The bit widths of the other de-
scriptor fields are also chosen to be minimum size while
still providing sufficient functionality coverage. The 8-bit
node addresses, 3-bit port ID and 2-bit virtual channel (VC)
ID allow DART to scale to 256 nodes, 8 ports per node
and 4 virtual channels per port. Configurations that fit
within these flit widths can be setup in software at run-time.
These widths do not fundamentally limit the size a NoC
that DART can simulate; larger sizes can be accommodated
through re-synthesis with only minor HDL changes.

Figure 2: Data path of canonical wormhole VC
router

3.1 Flit Queue (FQ)
The Flit Queue component models the VC buffers at a

router’s input ports and the bandwidth/latency constraints
of the link feeding the port. The buffers are independent
FIFO (first-in-first-out) queues that are implemented by stat-
ically partitioning a single block-RAM among the VCs. A
Verilog parameter controls the number of VCs to incorpo-
rate. Each incoming flit is queued according to its VC af-
ter its timestamp is updated to reflect the delay it expe-
riences traversing the link due to latency and bandwidth
constraints – both parameters are configurable per FQ. A
flit is forwarded to the next-hop Router when it gets to the
front of the FIFO and the global simulation time is equal
to its timestamp. This ensures all flits arrive at a Router
in chronological order, which is required for correct simula-
tion of resource contention. A separate FIFO is used for the
credit channel. Similar to the flits, a credit can leave an FQ
only during its scheduled dequeue time.

3.2 Traffic Generator (TG)
When enabled, the Traffic Generator component injects

traffic in one of two modes: synthetic or dynamic. The for-
mer is useful for stress testing the simulated network. The
latter provides an interface to incorporate DART into a full-
system simulator. The mode is configurable per TG. In
synthetic mode, a TG injects flits in bursts of fixed-sized
packets using a Bernoulli process. Packet size (minimum
2 flits), destination node address, and injection interval are
configurable per TG. In dynamic mode, a TG receives packet
descriptors from the host PC and injects packets according
to the descriptors. Packet size can be varied from 2 to 256
flits in powers of 2. Packet descriptors can be generated
from either a memory access trace or a processor simulator
running concurrently with DART.

In addition to the injection state machines, each TG also
contains two FQs: the input buffer models the last-hop delay
to the TG, and the output buffer models the source queue.
We use the same technique from Dally and Towles [4] and
allow the injection state machine to lag behind the current
simulation time when the output buffer is full, to model an
infinite source queue. TGs also serve as traffic sinks and
record the number of packets received and the cumulative
packet latency. More statistics counters can be easily added.

3.3 Router
State-of-the-art NoCs use the classic wormhole VC router

(Fig. 2), which is composed of per-VC flit buffers, routing
logic, VC and switch allocators and a crossbar. Since the
FQs model the flit buffers, the Router component only en-
capsulates the routing and allocation logic. Fig. 3 shows the
Router datapath. A Verilog parameter controls the number



Figure 3: DART Router datapath

Figure 4: DART’s global interconnect. Nodes are
grouped into partitions so the crossbar needed is
small.

of ports. Table-based routing is used to allow different rout-
ing algorithms and facilitate the simulation of a wide range
of topologies. The table contents are configurable after syn-
thesis by a host PC.

A 4-bit counter for each output VC is used to implement
credit-based flow control. Initial credit values represent the
number of entries in the input buffer at the downstream
router. The counter is decremented when a flit is routed,
and incremented when a credit is received. The values are
configurable for each VC and Router.

Area-Speed Trade-off The allocators and the crossbar
in the classic router are complex structures [12]. The vir-
tualized simulation time in DART allows us to implement
the same functionality in the DART Router using simple
arbiters and a multiplexer by trading off simulation speed.
The Router component routes one flit per DART cycle. By
routing the input VCs one at a time while holding the global
time counter, the DART router can model any multi-ported
classic router. A round-robin scheme selects an input VC
to route in each DART cycle. Delay due to failed VC allo-
cation or credits is modeled by incrementing the timestamp
of the flit while it remains in the FQ. When a flit is finally
routed, its timestamp is incremented by a fixed pipeline la-
tency. This pipeline latency is configurable per Router.

3.4 Global Interconnect
The global interconnect provides uniform-latency commu-

nication between all DART nodes. By configuring the rout-
ing tables appropriately, DART can simulate any topology.
The maximum node radix is limited by the number of ports
configured in the Router components. Fig. 4 shows the in-
terconnect organization, where nodes are grouped into par-
titions and the partitions are connected by a small crossbar.

We choose this organization over a full crossbar to conserve
area. A separate, narrower, but otherwise identical intercon-
nect carries the credit traffic. Both intra- and inter-partition
arbitration use round-robin arbiters, with priority given to
flits with timestamps equal to the current simulation time.
These flits must be forwarded first before ticking the global
time counter to prevent late flits, which may cause out-of-
order flits at the next Router. Flits with timestamp ahead
of the current simulation time can be forwarded out-of-order
across the global interconnect because flits destined for each
FQ remain in order. The priority is implemented by having
two separate sets of arbiters. Because it takes a cycle to
detect that all flits with the current timestamp have crossed
the interconnect, each simulated cycle takes at least 2 DART
cycles.

The partitions are the throughput bottleneck because only
one flit can be sent and received by a partition per DART
cycle. For a fixed number of DART nodes, varying the size of
the partition trades off the global interconnect throughput
for implementation area. For our current 9-node implemen-
tation, we use 8 partitions connected by an 8 × 8 crossbar.
In general, the largest crossbar that fits in the device once
the nodes are implemented should be chosen.

3.5 Configuration and Data Collection
DART nodes are configured by connecting the configurable

fields in a 16-bit shift register chain. A small finite state ma-
chine for each routing table is also connected to the chain. It
captures the data that is shifted in and populates the routing
table. The configuration byte-stream is generated on a host
PC and sent to the FPGA via the serial port. We use a cus-
tom 16-bit command protocol, which can be implemented
on any physical interface. Similarly, performance counters
are read back by shifting them through a 16-bit-wide chain.
Currently three counters are incorporated per TG to record
the number of injected and received packets (32 bits) and
the cumulative packet latency (64 bits). More counters can
be easily added to this shift register chain.

3.6 Software Tools
The DART software tools run on a host PC connected to

the FPGA where the hardware simulator resides. They al-
low the dynamic reprogramming of the hardware simulator
after it is implemented on the FPGA. The DARTgen tool
creates the configuration byte-stream from two input files
that specify the on-chip DART architecture and the user
network to be simulated respectively. Nodes and links in
the user network are mapped to Routers and Flit Queues.
We use a round-robin scheme to balance the number of used
DART nodes across different partitions. This provides suf-
ficient load balancing because the on-chip communication
bottleneck is within each partition, where the nodes con-
tend for the shared access to the inter-partition crossbar.
Each DART node is annotated with the properties of the
corresponding user network node. The configuration byte-
stream is generated by writing the contents of the config-
uration registers to a file. It is used by the DARTportal
tool, which provides a command-based interactive interface
to configure, run and collect data from the simulator.

4. IMPLEMENTATION
We design the DART components in Verilog HDL. Device

specific constructs are avoided whenever possible so the sim-
ulator core can be implemented on different FPGA systems
with minimal changes. To demonstrate the functionality of



Table 1: Resource utilization breakdown of a 9-node
DART on a XC2VP30 FPGA

Module
Per-Module Resource Util. % of Total

4-LUTs FFs BRAMs 4-LUTs

Traffic Gen. 691 500 2 24.7%
Flit Queue 305 145 1 43.5%

Router 612 201 0.5 21.8%
Global Inter. 2144 104 0 8.5%
Control Unit 152 70 0 0.6%

UART interface 208 171 1 0.8%

Total 26,38 13,192 99 100%
% of Available 96% 48% 72%

Table 2: 3×3 mesh configuration parameters

Topology 3 × 3 mesh
Link latency 1 flit cycle

Router architecture Input queue
Routing algorithm Dimension-order (XY)
# of VCs per port 2

VC Allocation Round-robin
Input VC buffer size 5

Router pipeline latency 5 flit cycle
Traffic pattern Permutation traffic

Packet size 2 flits

DART and to obtain real measurement of simulation speed,
we implement a 9-node DART on a Xilinx University Pro-
gram Virtex-II Pro Development System (XUPV2P) [21].
We use the Xilinx ISE 10.1 software suite for synthesis and
implementation. Note that the global interconnect size and
flit descriptor size can be trivially extended to implement a
larger DART system.

Table 1 shows the resource breakdown of DART compo-
nents as implemented on the XUPV2P platform. Because
every two Routers share a dual-ported routing table to make
efficient use of the dual-ported block-RAM, each Router
uses 0.5 block-RAMs on average. The maximum number
of DART nodes that fit on this FPGA is nine. Each node
consists of one TG, one 5-ported Router, and four FQs with
2 VCs each. We use 8 partitions in the global interconnect.

5. ANALYSIS
In this section we validate DART’s simulation results us-

ing Booksim as a reference. Because Booksim is widely used
among NoC researchers, we hope this choice of baseline pro-
vides more confidence in DART’s correctness and perfor-
mance potential. We measure DART’s speedup over Book-
sim using our Virtex-II Pro implementation. We also in-
vestigate the performance cost of a programmable simulator
architecture and DART’s scalability.

5.1 Correctness
We developed a cycle-accurate DART architecture sim-

ulator in C++ prior to building the FPGA architecture to
explore different design options and to verify the correctness
against Booksim. The architecture simulator also serves as
the design specification to verify the hardware design. Re-
sults shown in this section are obtained from this architec-
ture simulator.

We simulate a 9-node network and compare the average
packet latency of Booksim and DART (Fig. 5). Table 2
shows the parameters of the simulated network. To inves-
tigate the accuracy loss DART incurs by not modeling the
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Figure 7: DART performance: (a) Booksim simu-
lation speed, (b) Speedup achieved by DART vs.
Booksim

delay through each stage separately, we simulate two router
configurations in Booksim: booksim has a 5-cycle routing de-
lay and zero switch and VC allocation delay, while booksim2
has a 4-cycle routing delay, 1-cycle switch allocation delay
and zero VC allocation delay. We simulate 15,000 warm-
up cycles, 30,000 measurement cycles and a draining phase.
The flit injection rate is varied from 0.01 until saturation.
DART tracks Booksim closely at low injection rates. At
higher injection rates, the one-stage pipeline in the Router
results in a less accurate latency measurement. This is ev-
ident in that DART latency is enveloped by the two Book-
sim configurations that have the same overall router latency
but different latencies at each stage. To further investigate
the mismatch, Fig. 6 shows the distribution of packet la-
tencies at 0.4 flits per cycle. The peaks at 8, 14, 20, 26,
and 32 correspond to the zero-load latencies for 0, 1, 2, 3,
and 4-hop paths. The lower peaks reflect the queuing delay
and resource contention packets experience at the routers.
Booksim has a much longer tail than DART. Because all con-
tentions (buffer, VC, and switch) are modeled in one stage in
the DART Router, DART may under predict the latency for
a flit to acquire all resources. However, the similar overall
shapes of the two distributions increases our confidence that
DART produces useful predictions of network performance
trends.

5.2 Speedup vs. Software Simulation
In Fig. 7 we evaluate the 3×3 mesh benchmark described

in Table 2 on the XUPV2P DART implementation and com-
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Figure 8: Overhead of the DART interconnect and
simplified Router model for a (a) 9-node and (b) 64-
node DART. 3×3 and 8×8 mesh with random per-
mutation traffic simulated

pare the simulation speed to Booksim. For the Booksim
baseline, we measure the execution time of the main loop,
excluding network setup, on a 2.66 GHz Core 2 Quad Linux
workstation. Each data point is an average over 20 runs.
We measure DART’s execution time in DARTportal from
the sending of the “Run” command and until the end-of-
simulation signal is received back from the simulator. Con-
figuration time is excluded. The speedup is the ratio of the
number of cycles simulated per second in DART to that
in Booksim. We observe that Booksim’s simulation speed
decreases with increasing injection rate. DART’s speed is
roughly constant, with all measured runtimes falling within
3% (0.528 ms) of the average (20.5 ms for 50,000 cycles)—
this is because DART’s execution time increases slowly with
traffic, and is largely masked by the high IO overhead to send
and read-back commands to/from the simulator, which ac-
counts for over 50% of the measured time (about 11.7 ms).
As a result, DART achieves greater speedup at higher packet
injection rates. The IO overhead can also be amortized in
longer-running simulations of networks larger than the 3×3
mesh used here.

5.3 Cost of Programmability
The main alternative to DART’s programmable architec-

ture is one that is directly laid-out in the FPGA fabric. In
this section we measure the performance cost of DART’s
programmability by measuring the overhead (extra cycles
required) of DART’s global interconnect and the simplified
Router model, relative to a model with a dedicated inter-
connect and full routers. As shown in Fig. 8, we measure
for a 9-node and a 64-node DART all combinations of the
two types of interconnect and two types of router:

• dedicated: Baseline interconnect with dedicated links
between connected ports on neighboring nodes

• global: DART interconnect with 8 partitions

• 5port: True 5-ported router

• 1port: DART Router that routes 1 flit per DART
cycle

Fig. 8a shows the number of DART cycles required per
simulated cycle for the 3×3 mesh benchmark from Table 2.
The baseline (dedicated+5port) has a constant cycles per
second (CPS) of 1 as it corresponds to a direct mapping
of the 9-node mesh NoC. Global+5port shows the perfor-
mance loss due to the DART interconnect. The timer incre-
ment bubble, described in Section 3.4, limits the minimum
CPS to 2. Increased traffic causes more contention over
the interconnect and lower CPS. Dedicated+1port shows the
performance loss due to the serial processing of input VCs
in the Router. CPS increase with network traffic, as each
Router has more input VCs in use. Global+1port shows that
for 9 nodes, because of the small number of nodes and low
throughput of the Router, the global interconnect is not the
performance bottleneck. However, Fig. 8b shows that with
more nodes contention increase for the global interconnect
and it can become the bottleneck. An appropriate inter-
connect size should be chosen for each DART implementa-
tion. DART’s interconnect uses more area than dedicated
links, but the overhead is compensated for by the simplified
Router. Thus, the overall area cost is comparable to pub-
lished results from existing direct mapped emulators [6, 16].
We believe the performance penalty is a worthwhile trade-
off for the ability to reconfigure the simulator at run-time
without any hardware modification.

5.4 Scalability
We explore the scalability of DART beyond 9 nodes on

a larger FPGA. In comparison to the 2VP30 device, the
Virtex 5 LX330T provides 10× more LUTs and FFs but
only 4× more 18Kb block-RAMs. Each 18Kb block-RAM
can accommodate 4 FQs with 2 VCs allowing DART to scale
to 64 nodes, limited by the amount of logic resources on the
FPGA.

We explore the performance of larger DART implementa-
tions using the architecture simulator. The predicted run-
time does not include communication overhead to and from
the host PC. Fig. 9 highlights the different scaling trends of
Booksim and DART for four different size mesh networks.
The aggregated flit transfers per simulated cycle is the prod-
uct of the flit rate, average number of hops between source
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Figure 9: Booksim (a) and DART (b) simulation
speed for various networks
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Figure 10: Two microbenchmarks: (a) 4×2 mesh
with express links, and (b) 2-level tree

and destination pairs and number of nodes. It measures the
overall amount of in-flight traffic that traverses the network
every cycle. Booksim’s simulation speed depends on both
the size of the simulated network and the amount of net-
work activity because it must simulate every cycle includ-
ing those when the simulated network is idle. This over-
head dominates simulation time for large networks and the
network activity becomes an insignificant factor for perfor-
mance. DART’s simulated time advances faster when the
simulated network is idle. Its simulation speed thus depends
only on the amount of network activity. As a result, DART’s
speedup over Booksim varies from 300× for the 3×3 mesh to
2000× for the 8×8 mesh. These estimates are higher than
the measured speedup from Section 5.2 due to the overhead
of sending commands to the FPGA. In long-running simu-
lations, this overhead can be amortized. The design focus
for DART is on improving area efficiency so more simulator
nodes can be implemented on a given FPGA.

6. CASE STUDIES
We choose two examples (Fig. 10) to demonstrate DART’s

ability to simulate different network configurations without
resynthesis. The results presented in this section are sim-
ulated using a randomly generated permutation traffic pat-
tern. All configurations are implemented on the same 9-node
DART described in Section 4.

6.1 Mesh with Express Links
Fig. 10a illustrates a simplified version of express cube [5].

The solid lines represent local links and the dashed lines rep-
resent express links that allow non-local traffic to bypass in-
termediate nodes. Fig. 11 shows the average packet latency
for the following configurations:

• NOEX BUF5: No express link, 5 flits/VC input buffer

• EX1 BUF5: With express links, 5 flits/VC input
buffer
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Figure 11: Express links performance: (a) 2-flit
packets, and (b) 16-flit packets
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Figure 12: Tree performance: (a) 2-flit packets, and
(b) 16-flit packets

• EX1 BUF4: With express links, 4 flits/VC input
buffer

• EX2 BUF4: EX1 BUF4 with 2-cycle express links

For both small (2-flit) and large (16-flit) packets, the ex-
press links reduce packet latency because flits traverse fewer
hops. The increased bisection bandwidth afforded by the
added links also allows the network to accept higher load
before saturating. To compensate for the additional area
the added express link port incurs in each router, we re-
duce the input buffer size from 5 flits to 4 flits (EX1 BUF4
vs. EX1 BUF5). The resulting performance degradation is
more pronounced for large packets because they are more
bursty, hence more sensitive to buffer space. Because the
express links span two hops, we increase their latency to
2 cycles while keeping the latency of other links at 1 cycle
(EX2 BUF4). This configuration causes higher latency for
large packets because credits take longer to replenish on the
slower express links. However, the network still saturates
later than the NOEX BUF5 baseline. We also experimented
with 4-flit and 8-flit packets, and the results are in line with
the trend shown here.

6.2 Tree
Fig. 10b illustrates a tree where two sub-trees are linked

by a root router, where the bold lines represent global links.
This organization captures the essence of building blocks in
a hierarchical on-chip network. Only the leaf nodes generate
and receive traffic, and 50% of the generated traffic cross the
root router. Fig. 12 shows the average packet latency for the
following configurations:



• BUF5 BW1: Unit latency and bandwidth for all links,
5 flits/VC input buffer

• BUF5 BW2: BUF5 BW1, bandwidth = 2 flits/cycle
on global links

• BUF10 BW1: BUF5 BW1 with 10 flits/VC input
buffer

• BUF10 BW2: BUF5 BW2 with 10 flits/VC input
buffer

For both small and large packets, increasing the global
link bandwidth (BUF5 BW2 vs. BUF5 BW1, BUF10 BW2
vs. BUF10 BW1) does not significantly improve packet la-
tency because all flits crossing the global links must be first
stored in the buffers of the gateway routers (nodes 1 and
2), which form the performance bottleneck. Increasing the
buffer space to 10 flits significantly reduces latency. Again
the reduction is greater for largest packets because bursty
traffic is more sensitive to buffer sizes. Moreover, Fig. 12b
shows that once the buffer space bottleneck is removed, in-
creasing global link bandwidth can provide additional per-
formance improvement.

7. EXTENDING DART
DART can and will be extended in the following three

ways. First, the maximum size of NoC that can be simulated
by the current realization of DART is limited by the amount
of on-chip resources. However, it is relatively straightfor-
ward to extend DART by virtualizing each DART node to
support the contexts of multiple simulated nodes, freeing
DART to simulate a larger number of nodes than there are
physical nodes on the FPGA. A similar approach has been
used to study large scale multi-processor systems using FP-
GAs [2, 17, 14]. Second, the router model can be extended to
support adaptive routing algorithms and more sophisticated
router architectures such as speculative routing by using soft
processors as Router nodes. While an off-the-shelf soft pro-
cessor may not meet the area and timing constraint of the
DART Router node, there is potential for a reduced-feature
soft processor that is optimized for routing operations. Fi-
nally, DART can be integrated into an existing full-system
simulator to enable more comprehensive studies of the NoC
and other system components.

8. CONCLUSIONS
We introduced a software-programmable overlay architec-

ture for NoC simulation on FPGAs. By decoupling the
simulator architecture from the architecture of the simu-
lated NoC and virtualizing simulation time, DART improves
upon existing FPGA-based emulators by eliminating the
high cost of modifying and resynthesizing the hardware em-
ulator when simulating different NoCs. At the same time,
DART is significantly faster than software NoC simulators.
Using an implementation of a 9-node DART simulator on a
Virtex II Pro FPGA, we demonstrate over 100-fold speedup
over Booksim while maintaining similar level of accuracy.
Through two examples, we also show that irregular NoCs
can be easily set up and simulated on DART.
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