
Compiler Support for Fine-Grain Software-only

Checkpointing

Chuck (Chengyan) Zhao1, J. Gregory Steffan1, Cristiana Amza1, and
Allan Kielstra2

1 Department of Electrical and Computer Engineering, University of Toronto
{czhao,steffan,amza}@eecg.toronto.edu

2 IBM Canada Toronto Laboratory {kielstra}@ca.ibm.com

Abstract. Checkpointing support allows program execution to roll-back
to an earlier program point, discarding any modifications made since
that point. Existing software-based checkpointing methods are mainly li-
braries that snapshot all of working-memory, and hence have prohibitive
overhead for many potential applications. In this paper we present a
light-weight, fine-grain checkpointing framework implemented entirely
in software through compiler transformations and optimizations. A pro-
grammer can specify arbitrary checkpoint regions via a simple API, and
the compiler automatically transforms the code to implement the check-
point at the granularity of individual stores, optimizing to remove redun-
dancy. We explore two application areas for this support. First, we inves-
tigate its application to debugging, in particular by providing the ability
to rewind to an arbitrarily-placed point in a buggy program’s execution.
A study using BugBench applications shows that our compiler-based ap-
proach is more than 100x less overhead than full-process checkpointing.
Second, we demonstrate that compiler-based checkpointing support can
be leveraged to free the programmer from manually implementing and
maintaining software rollback mechanisms when coding a back-tracking
algorithm, with runtime overhead of only 15% compared to the manual
implementation.

1 Introduction

Checkpointing [7, 16, 19, 24, 27, 30, 31] is a technique to back-up program state
such that execution can later revert to the backup, to recover from program
failure or mis-speculation. While proposed hardware-based checkpointing solu-
tions [4, 13] show promising performance, they are not yet available in commodity
systems. Software-based checkpointing solutions [16, 19, 25, 31] can be used on
commodity hardware, but can also have prohibitive overheads as they are typi-
cally coarse-grained, meaning that they back-up large ranges of memory if not
the entire process image.

In this paper we propose a software-only method for checkpointing program
execution that is implemented in a compiler. In particular, our transformations
implement checkpointing at the level of individual variables, as opposed to previ-
ous work that checkpoints entire ranges of memory or entire objects [4, 7, 16, 25].

2

Annotated

source

Enable

Checkpointing

Optimize

Checkpointing

LLVM frontend

Callsite Analysis

Inter-procedural Transformations

Intra-procedural Transformations

Handle Corner Cases

Source

code

C/C++ LLVM IR

LLVM

Backend

x86 … Power

(a) compiler framework

BEFORE AFTER

start_ckpt(); …

a = …;

memcpy(d, s, len);

foo();

…

stop_ckpt(c);

foo(…){ /* body of foo() */ }

…

start_ckpt(); …

backup(&a, sizeof(a));

a = …;

handleMemcpy(…);

memcpy(d, s, len);

foo_ckpt();

…

stop_ckpt(c);

foo(…){ /* body of foo() */}

foo_ckpt(…){

/* body of foo_ckpt()

*/ }…

(1)
(1)

(2) (2)

(3) (3)

(3)

(b) basic transformations

Fig. 1. Framework and basic transformations.

The intuition is that such fine-grain checkpointing can (i) provide many oppor-
tunities for optimizations that reduce redundancy and increase efficiency, and
(ii) facilitate uses of checkpointing that demand minimal overhead. We present a
complete checkpointing framework and optimization infrastructure that can (i)
enable software-only checkpointing over arbitrarily large and complex program
regions and (ii) leverage compiler optimizations to reduce overhead. We show
that our fine-grain scheme is more efficient than coarse-grain approaches, and
that up to 98% of checkpoint buffer space and up to 95% of backup memory
calls can be eliminated.

We demonstrate the utility of our compiler-based checkpointing infrastruc-
ture via two different applications of this support. The first is support for debug-
ging, in particular by giving the programmer the ability to roll-back execution to
repeatedly examine the state of a program prior to the manifestation of a bug.
We study several flawed applications from the BugBench [20] suite and demon-
strate the low overheads of checkpointing support for rollback. The second is
support for back-tracking algorithms, where the programmer can avoid man-
ually implementing support for rewinding data-structures, instead leveraging
compiler-based checkpointing to provide it automatically. We study VPR [5, 6],
in particular the simulated-annealing-based place-and-route algorithm for FP-
GAs, which optimistically swaps blocks and either keeps or discards the swap
depending on whether a cost function is improved. We compare the original man-
ual implementation of back-tracking support to our automatic compiler-based
approach.

2 Basic Checkpointing

Figure 1(a) presents an overview of our checkpointing system, implemented as
passes in the LLVM [17, 18] compiler infrastructure. It takes as input a source pro-
gram with programmer annotations, and outputs transformed LLVM IR code that
can target the multiple native platforms that LLVM supports. LLVM provides

3

a C back-end that allows the conversion of optimized IR back to C source code.
This source-to-source approach allows us to capitalize on all of the optimizations
of the back-end compilers.

Programmer Interface We assume a very simple programmer interface to
checkpointing: the user delimits the desired checkpointing region via the inter-
face calls start ckpt() and stop ckpt(c), where c is a boolean variable that
indicates whether the checkpoint should be rewound/re-executed or committed.
The compiler then instruments all relevant write operations with backup calls,
each taking as arguments a pointer to the destination’s address and its size in
bytes. These backup calls are later optimized and inlined, but for now we show
them in the code for illustration.

Callsite Analysis Our compiler needs to know all user-defined functions that
may be called directly or indirectly from the checkpoint region. We call the
process of discovering such functions callsite analysis. The callsite analysis visits
each node in the application’s sub call graph originated from the annotated
checkpoint region. It recursively identifies all user-defined functions in this partial
call graph and marks them as requiring the creation of a checkpoint-enabled
version.

Intra-procedural Transformation The compiler then converts code in the
user-annotated region into its checkpoint-enabled version in three steps. Step 1
is to precede each write with code to backup the write. Figure 1(b)(1) shows
that variable a is modified and thus preceded with a backup operation. Step
2 is to handle certain system functions that have implicit memory writes. Fig-
ure 1(b)(2) illustrates the handling of one such routine, memcpy, by placing a
handling function, handleMemcpy, immediately before it. Step 3 is to rename
any user-defined function callsite within the region. Figure 1(b)(3) shows that a
user callsite foo is renamed to its checkpoint-enabled version, foo ckpt.

Inter-procedural Transformation The final step is to enable checkpoint-
ing on all user-defined routines that are identified through the callsite-analysis
phase. For each identified function, we clone its function body and rename it by
appending ckpt to its name, as shown in Figure 1(b)(3). Within the body of
the cloned function, we recursively and repetitively apply the same three actions
introduced in Intra-procedual Transformation above. In the end we produce
a checkpoint-enabled version for every user-defined function that can potentially
be called from the checkpoint region.

Handling Function Pointers Since our checkpointing scheme clones user-
defined functions, the compiler needs to identify the precise callee function at
compile time. However, calls via function pointers might only be resolved at
runtime. As shown in Figure 2(a), we handle this function pointer ambiguity by
changing from a function pointer call to a normal function wrapper call with
function pointer arguments. Within the wrapper function, each possible callee
is explicitly examined through a list of parameter-matched candidates.

Handling Early Exits Another special case deals with early exits from the
checkpointing region, as shown in Figure 2(b). A return within the checkpoint
region may prematurely terminate the checkpoint process without visiting the

4

6

FP fp; // func ptr decl

…

if (C) fp = &foo;

else fp = &bar;…

start_ckpt();

…

*fp(); // funcptr call

…

stop_ckpt(c);

BEFORE AFTER

FP fp; // func ptr decl

…

if (C) fp = &foo;

else fp = &bar;…

start_ckpt();

…

fp_wrapper(fp); //non-fpr call

…

stop_ckpt(c);

…

fp_wrapper(FP fp){

if(fp == foo) foo();

else if (fp == bar) bar();

else …

}

(a) function pointer

7

foo(…){

...

start_ckpt();

…

return k;

…

stop_ckpt(c);

…

}

BEFORE AFTER

foo(…){

int flag, T0;

...

start_ckpt();

…

flag = 1; T0 = k;

goto L0;

…

L0:

stop_ckpt(c);

if(flag) { return T0;}

…

}

(b) early exit

Fig. 2. Examples of handling function pointers and early exits.

Annotated

source

Enable

Checkpointing
Optimize Checkpointing

2. Pre Optimize

3. Redundancy Eliminations

4. Hoisting

6. Non Rollback Exposed Store Elimination

Source

code

C/C++ LLVM IR

1. CKPT Inlining

7. Heap Optimize

8. Array Optimize

9. Post Optimize

5. Aggregation

LLVM

Backend

x86 … Power

Fig. 3. Overview of optimization passes.

stop ckpt marker. This violates the rule that the checkpoint region markers
must be visited in pairs. Figure 2(b) suggests a possible solution: code is trans-
formed to have a goto that branches to the stop ckpt marker and reserves the
appropriate return value.

3 Optimizations

Base transformations enable checkpointing on any user-annotated region by
backing up the memory contents before each explicit or implicit write. This
creates a large number of backup calls that are potentially redundant and leaves
ample opportunities for optimization. Figure 3 provides an overview of our check-
pointing optimization framework, that takes as input the checkpoint-enabled
code produced as described in the previous section. The framework includes

5

start_ckpt();

…

backup(&a, sizeof(a));

a = …;

…

backup(&a, sizeof(a));

a = …;

…

foo_ckpt();

…

if (C){

backup(&a, sizeof(a));

a = …; …

}

…

stop_ckpt(c);

…

foo_ckpt(){

int x;

…

backup(&a, sizeof(x));

x = …;

…}

(i) code with CKPT enabled (ii) redundancy-elim case1 (iii) redundancy-elim case1+2

start_ckpt();

…

backup(&a, sizeof(a));

a = …;

…

backup(&a, sizeof(a));

a = …;

…

foo_ckpt();

…

if (C){

backup(&a, sizeof(a));

a = …; …

}

…

stop_ckpt(c);

…

foo_ckpt(){

int x;

…

backup(&a, sizeof(x));

x = …;

…}

start_ckpt();

…

backup(&a, sizeof(a));

a = …;

…

backup(&a, sizeof(a));

a = …;

…

foo_ckpt();

…

if (C){

backup(&a, sizeof(a));

a = …; …

}

…

stop_ckpt(c);

…

foo_ckpt(){

int x;

…

backup(&a, sizeof(x));

x = …;

…}

(a) cases 1 and 2

backup(&a, sizeof(a));

a= …; …

…

backup(&a, sizeof(a));

a= …; …

…

BEFORE

AFTER

a= …;

…

…

a= …;

…

backup(&a, sizeof(a));

…

(b) case 3

Fig. 4. Redundancy elimination cases 1-3 via code examples.

more than 10 different optimizations and we introduce them in order of impor-
tance.

Redundancy Elimination The most important optimizations are three cases
of redundancy eliminations (RE1, RE2, and RE3), as illustrated in Figure 4.
RE1 uses dominating relationships among backup calls. It identifies all backup
calls with the same address and length that dominate the stop ckpt region
marker (e.g., the first three backup calls in Figure 4(a)), establishes the first
in the sequence as the leading backup call, and then removes any remaining
ones that are dominated by the leader. RE2 identifies all backup operations
on a function’s non-pointer-type local variables (i.e., the fourth backup call in
Figure 4(a)). Since local variables are allocated on the stack and have no memory
footprint in its enclosing function’s calling context, it is safe to remove backups
on local variables within any checkpoint-enabled function without impacting the
correctness of checkpointing. RE3 performs similarly to common sub-expression
elimination (CSE) by finding duplicate backup operations on both sides of a
branch (as shown in Figure 4(b)). Once it finds a suitable pair, it hoists one
of the backup calls into the immediate dominator block, and removes the other
backup call.

Hoisting Hoisting optimization aims to reduce redundant backup calls within
loops (as illustrated in Figure 5(a)), by hoisting the backup of any variable
written unconditionally within a loop to the loop header (e.g., variable z in the
example). Such hoisting would not be performed by a normal compiler hoisting
pass since the write to the variable is not necessarily loop invariant. The decision
to hoist conditionally-modified backup calls is a trade-off, the conditional code
must be executed frequently enough to be worth the cost of the non-conditional
backup call in the hoisted version. Through experiment we found that it is
generally not worth hoisting such conditionally-modified variables, at least not
without profile feedback as a guide. To illustrate, in the example we choose not
to hoist variable y.

6

foo(){

int x, y, z;

start_ckpt();

…

backup(&x, sizeof(x));

x = …;

for(…){

…

backup(&z, sizeof(z));

z = …;

if(…) {

backup(&y, sizeof(y));

y = …;

}

…

} …

stop_ckpt(c);

…

}// end of foo()

(i) code with CKPT enabled (ii) hoisting optimization (iii) aggregation optimization

foo(){

int x, y, z;

start_ckpt();

…

backup(&x, sizeof(x));

backup(&z, sizeof(z));

x = …;

for(…){

…

z = …;

if(…) {

backup(&y, sizeof(y));

y = …;

}

…

} …

stop_ckpt(c);

…

}

foo(){

int x, z, y; // reordered

start_ckpt();

…

backup(&x,

sizeof(x) + sizeof(z));

x = …;

for(…){

…

z = …;

if(…) {

backup(&y, sizeof(y));

y = …;

}

…

}…

stop_ckpt(c);

…

}

(a) hoisting and aggregation

start_ckpt();

{ …

int * p = (int *) malloc(…);

…

backup(&p[i], sizeof(p[i]));

*p[i] = …;

…

}…

stop_ckpt(c);

Heap Optimize (BEFORE) Heap Optimize (AFTER)

int A[N]; // array decl …

start_ckpt();

…

for(i=0; i<N; ++i){

backup(&A[i1], sizeof(A[i1]));

A[i1] = …;

…

backup(&A[i2], sizeof(A[i2]));

A[i2] = …; …

}…

stop_ckpt(c);

Array Optimize (BEFORE)

int A[N]; // array decl …

start_ckpt();

…

backup(&A, sizeof(A));

for(i=0; i<N; ++i){

A[i1] = …;

…

A[i2] = …; …

}…

stop_ckpt(c);

Array Optimize (AFTER)

start_ckpt();

{ …

int * p = (int *) malloc(…);

…

backup(&p[i], sizeof(p[i]));

*p[i] = …;

…

}…

stop_ckpt(c);

(b) heap and array

Fig. 5. Examples of hoisting, aggregation, heap, and array optimizations.

Aggregation Aggregation examines backup calls for variables that are adja-
cent in memory, potentially rearranging the layout of the variables to ensure that
they are adjacent. Figure 5(a)(iii) shows that two individual backup operations
on variable x and z can be merged into a single one, covering the entire mem-
ory range for both variables. 3 Aggregation reduces the overhead of managing
adjacent variables individually.

Dynamic Memory Optimization Opportunities exist for any backup call
that operates on dynamically allocated (heap) memory. If the heap allocation site
is within the checkpoint region and it dominates the write, the backup operation
on this write into heap-allocated memory can be eliminated. Figure 5(b) demon-
strates the process of removing a backup on heap-allocated variable p[i]. Since
the heap allocation happens within the checkpoint region, the heap-allocated
contents have no memory footprint before checkpoint starts. Hence such backup
calls can be eliminated since they are unneccesary.

Array Optimization More interesting cases occur among backup operations
on writes to array-based data inside a loop, as shown in Figure 5(b). Both writes
into A[i1] and A[i2] are correlated with loop index variable i. It could be
beneficial to merge multiple backups on individual array elements into a single
backup operation, potentially covering a continuous array sub-range or even the
entire array. We develop an algorithm that considers not only the array size,
loop trip count and store intensity, but also a tolerance factor that a user can
control through command-line options. Non-continuous array writes may happen
when the program executes inside the loop, thus the tolerance factor specifies
the trade-off in buffer-space used versus performance.

Non-Rollback-Exposed Store Elimination Given any variable that is writ-
ten inside the checkpoint region, if there is no read of that variable on any path
from the beginning of the region, and its address has no alias, then an optimiza-

3 Note that for a source-to-source transformation this isn’t necessarily a safe opti-
mization as the back-end compiler may further rearrange the variable layout—an
implementation in a single unified compiler would not have this problem.

7

int a;

…

start_ckpt();

…

backup(&a, sizeof(a));

/* no use of a on any path

from start_ckpt() */

a = …;

…

…

stop_ckpt(c);

BEFORE AFTER

int a;

…

start_ckpt();

…

backup(&a, sizeof(a));

/* no use of a on any path

from start_ckpt() */

a = …;

…

…

stop_ckpt(c);

(a) example transformation

INPUT: CFG of the CKPT Region or Function

OUTPUT: NRESE optimized CFG

Intermediate: AliasSet AS; cond1= false, cond2 = true

BEGIN

// 1. analyze each possible backup call:

foreach backup call bkp within CKPT region or CKPT Function do

// 2. analyze backup address alias

addr = getAddr (bkp)

AS = getAliasSet (addr)

if (AS ==) cond1 = true

// 3. check for read access on any path

foreach instruction ins between start_ckpt and bkp do

foreach operand op in instruction ins do

if (use(op, addr)) cond2 = false

// 4. operate on NRESE

if (cond1 && cond2)

remove (bkp)

END.

(b) algorithm

Fig. 6. Non-rollback-exposed store elimination optimization (NRESE).

tion can remove the respective backup operation for this variable without im-
pacting checkpointing correctness. We call this optimization non-rollback-exposed
store elimination (NRESE). Figure 6(a) shows an example of NRESE. Notice
that the backup operation on variable a can be safely removed, since there are
no direct or aliased reads of a along any path from the beginning of the check-
point region. The value of a is recomputed each time and this re-computation
is essentially independent of the current value of a. The algorithm presented in
Figure 6(b) relies on performing an alias analysis to that a has no alias—we use
the basic alias analysis (basic aa) provided with LLVM.

Miscellaneous Optimizations Inlining is applied to all remaining backup

operations, allowing later standard optmiizations to schedule and optimize the
contained instructions. Pre-Optimize and Post-Optimize passes perform mis-
cellaneous clean-up operations, such as removing zero-length backup calls).

4 Buffering Implementation

The most important design decision in a checkpointing scheme is the approach to
buffering: whether it will be based on write-buffering [11, 21] or undo-logging [14,
23]. A write-buffer approach buffers all writes from main memory, and therefore
requires that the write-buffer be searched on every read. Should the checkpoint
commit, the write-buffer must be committed to main memory; should the check-
point fail, the write-buffer can simply be discarded. Hence for a write-buffer
approach the checkpointed code proceeds more slowly, but with the benefit that
parallel threads of execution can be effectively checkpointed and isolated (e.g., for
some forms of optimistic transactional memory [11, 22]). An undo-log approach
maintains a buffer of previous values of modified memory locations, and allows
the checkpointed code to otherwise read or write main memory directly. Should
the checkpoint commit, the undo-log is simply discarded; should the checkpoint
fail, the undo-log must be used to rewind main memory. Therefore an undo-log
approach is best for the case of single-threaded code where checkpoint-rewind is

8

(i) empty checkpoint data buffer and meta buffer

(ii) checkpoint buffers populated with data

a …127 31

char a = ‘a’;

int b = 127;

short c = 31;

…

backup(&a, sizeof(a));

backup(&b, sizeof(b));

backup(&c, sizeof(c));

…

…meta buffer …
0

&a

1

&b

5

&c

…

…
idx

addr
…

meta buffer:

data buffer:

meta buffer:

data buffer:

(a) 1D-array

int * addr;

int len;

struct hashNode * next;

char * data;

1

0

(i) hash node (ii) hashtable design

bucket array

3

2

…

…

N

&i 4

&c 1

&ld 12

backup of data i

backup of data c

backup of data ld

(b) hash table, pointer-to-data node

int * addr;

int len;

struct hashNode * next;

union { char * data_ptr;

char data[4]; }

1

0

(i) hash node (ii) hashtable design

bucket array

3

2

…

…

N

&c 4 data_c

backup of data ld

&i 4 data_i

&ld 4

(c) hash table, inline/union node

int * addr;

int len;

struct hashNode * next;

char data[4];

1

0

(i) hash node (ii) hashtable design

bucket array

3

2

…

…

N

&c 4 data_c

&i 4 data_i

&ld 4 data_ld

&ld 4 data_ld

&ld 4 data_ld

“i”

node

“c”

node

“ld”

nodes

(d) hash table, fixed-size node

Fig. 7. Design options for an undo-log implementation.

uncommon, hence we focus solely on an undo-log approach for the remainder of
this paper.

Figure 7(a)(i) illustrates a straightforward design of an undo-log based on the
use of 1D arrays, where we have divided the undo-log buffer into two structures:
(i) an array that is a concatenation of all backed-up data values of arbitrary
sizes; and (ii) a meta-data array that stores the length and starting address of
each element. As an example, Figure 7(a)(ii) shows the contents of an undo-log
after three backup calls. When a checkpoint commits, we simply move the data
and meta-data pointers back to the start of each array; when a checkpoint must
be rewound, we use the meta buffer to walk backwards through the data buffer,
writing each data element back to main memory.

While simple, a 1D-array-based undo-log suffers from redundancy, as each
new backup call simply appends a value to the log without searching for an ex-
isting entry for that location; to search the array linearly would be prohibitively
expensive. An alternative is to use a hash-table to allow fast search of prior en-
tries for matches, to eliminate all redundancy in the undo-log. There will be a
trade-off in the performance savings of reduced storage (due to reduced redun-
dancy) versus the performance cost of hash-lookups.

9

0

0.5

1

1.5

2

2.5

3

3.5

1 10 25 40 55 70 85

Pointer-To-Data

Inline/Union

Fixed-Size

N
o

rm
a

li
ze

d
 B

a
ck

u
p

 P
e

rf
o

rm
a

n
ce

slower

faster

Redundancy Rate: 1% - 99%

Fig. 8. Performance impact of four different buffer schemes over a wide range of redun-
dancy rates. The x-axis represents redundancy rate from 1% to 99%; the y-axis is the
relative checkpoint performance normalized to using a 1D-array. The figure represents
checkpoint buffer with 1024 unique backup addresses, with only 4-byte backup length.

Hence we consider three hash-table designs, as illustrated in Figure 7, based
on the options for the design of a hash table node: pointer-to-data (PTD), that
stores a pointer to dynamically-allocated data storage; inline/union (union),
that stores a union field that can be used either to directly store a 32-bit value
inline, or instead as a pointer to dynamically-allocated data storage larger than
32 bits; and fixed-size (fixed), that always stores 32 bits of data per node and
requires a list of nodes to store larger data values.

To compare the potential undo-log implementations we measure their redun-
dancy rate, defined as follows. Let Access(R) denote the total number of backups
of a particular variable R that is written at least once within the checkpoint re-
gion, then the redundancy rate (RR) for this region can be defined as

RR =

∑
n

1
(Access(Ri) − 1)

∑
n

1
Access(Ri)

(1)

where n is the total number of unique addresses that are checkpointed within
the region. RR quantifies the amount of checkpointing redundancy as a floating
point value between 0 and 1. In an ideal region where each unique variable
address is checkpointed exactly once, its RR rate will be 0. The higher the RR
rate, the more redundancy remains.

In Figure 8 we evaluate the trade-offs between the four buffering implemen-
tations above on microbenchmarks. We vary the microbenchmark access pat-
terns to produce redundancy rates that vary from 1% to 99%, and report check-

10

32

P: root cause of a bug

Q: place where the bug manifests

(a user or programmer notices the bug

at this point)

T: safe point, literally earlier than P, the

program can reach through checkpoint

recovery

CKPT

Region

(1)

(2)

(3)

(a) debugging

Initial guessInitial guess

Obtain a new result Obtain a new result

Check resultCheck result

commit and continuecommit and continue abort and try nextabort and try next

……

good
bad

(b) back-tracking, for VPR

Fig. 9. Overview of applications enabled by fine-grained checkpointing support.

point performance normalized to that of using a 1D array. Overall, the solution
based on a 1D array almost always outperforms all hashtable-based solutions.
All three curves converge at a very high RR rate (close to 99%). With increasing
redundancy rates, the performance difference among different backup schemes
diminishes. The three different hashtable-based implementations have perfect
storage behaviors; however this comes at a performance cost, mainly due to the
poor cache locality of their link-list accesses. Union and fixed are both heavily
optimized for dynamic memory management, thus their performance is consid-
erably and consistently better than PTD. In summary, because of its superior
performance, we focus on the 1D-array implementation of the undo-log for the
remainder of this paper.

5 Checkpoint-enabled Applications

Our compiler-based fine-grained checkpointing scheme can be leveraged in a
wide range of applications. In this section, we introduce two important appli-
cation domains that can benefit by either gaining additional functionality or
through a simplified programming interface: checkpoint support for debugging,
and checkpoint-enabled automatic back-tracking.

5.1 Checkpoint Support for Debugging

Program debugging is used to identify and resolve software bugs. A normal de-
bugging session begins with user placing breakpoints at multiple pre-determined
program locations, and stops execution at each location to examine the pro-
gram’s logic and states. However, once execution passes a certain breakpoint, it
is normally difficult to rewind execution to a previous location though a user
may often find that the root cause of a bug is likely located close to a previous
breakpoint. Frequently restarting execution can be impractical because it may
take a long time to reach the suspicious bug location.

11

Debuggers enhanced with our checkpointing support can help alleviate this
situation. We expose the checkpoint APIs on the source-code level so that a
programmer can selectively mark a checkpoint region that likely contains the
bug, as shown in Figure 9(a). The programmer first inserts a end-region marker
slightly after the bug-trigger location. Properly identifying a start-region position
requires some understanding of the code. The region needs to be big enough to
contain the root cause of the bug, but can’t be too big so that the programmer is
lost in unrelated details. In practice, we often place breakpoints overlapping with
the checkpoint region boundaries. Once execution reaches the end of the region,
the programmer decides whether he wants to finish debugging this region (by
issuing a commit ckpt command), or rewind and re-examine the current region
(by issuing an abort ckpt command).

Debuggers with our checkpointing support can rewind execution to a previ-
ously identified program location and re-examine the program region with unlim-
ited number of retries. There is no restriction on the size of the region because we
checkpoint into main memory and can dynamically grow the checkpoint buffer
when needed. Eliminating program restart not only avoids all problems related
with non-deterministic execution and availability of input, but also helps to re-
duce debugging cycle time. In practice we find it easy to use such rewind-capable
debugger. The restart-free debugger with checkpointing support leads to shorter
debugging cycle – allowing a programmer to rapidly identify root causes of a
bug, thus converting the checkpointing capability into improved productivity.

5.2 Checkpoint Support for Automated Back-tracking

Back-tracking refers to a set of algorithms that search for solutions in a given
space of possible choices. A partial result may be either committed or discarded,
depending on the evaluation result from it.

We study Versatile Placement and Route (VPR) [5, 6], a CAD tool for gener-
ating high-quality circuit layouts on array-based FPGAs. VPR places and routes
on a wide variety of FPGAs and facilitate comparisons among different archi-
tectures. VPR implements a software back-tracking algorithm in its placement
phase, as shown in Figure 9(b). The algorithm starts as its input a randomly
generated guess. It evaluates the result based on this attempted input. If the
result is positive, it will be incorporated into the current system. Otherwise, the
negative result is discarded. This process continues until a desired terminating
condition is satisfied. Current implementation of VPR saves all necessary pro-
gram states before attempting a new input. Shell a discard happen, it manually
restores all saved program states from various complex data structures. VPR de-
signers need to understand not only the placement algorithms, but also pay close
attention to details of manually save and restore necessary program states. This
is a tedious and error-prone process that often has a negative impact on pro-
ductivity, especially when improving the algorithm that results data structure
changes.

By exposing the checkpoint APIs at the source-code level, our fine-grain
checkpoint framework frees VPR from details of conducting back-tracking op-

12

Table 1. Benchmarks and Checkpoint Region Properties

Apps Region avg insts avg source lines entries

bc-1.05
S 2.2 K 3 3
M 208 K 430* 1
L 305 K 1200* 1

gzip-1.24
S 0.9 K 1 1
M 2.7 K 89* 1
L 194 M 119* 1

man-1.5h1
S 1.4 K 14 1
M 1.6 K 30* 1
L 645 K 89* 1

ncompress-4.2
S 0.8 K 2 1
M 149 K 149* 1
L 231 K 163* 1

polymorph-0.4.0
S 1.5 K 2 1
M 3.1 K 49* 1
L 148 K 76* 1

VPR-5.02 67.1 K 268* 371 K

erations. VPR designers can ignore all details of manual checkpointing and in-
stead call abort ckpt() or commit ckpt(), which performs checkpoint abort
and commit actions respectively. The simple APIs enable automatic software
back-tracking on VPR, as well as all applications that have a need to perform
back-tracking. VPR designers can instead focus on improving the algorithm –
an step that simplifies application programming interface and improves end-user
productivity.

6 Evaluation

In this section we evaluate our fine-grain software-only checkpointing framework.
Our compiler infrastructure builds on the LLVM [17, 18] open-source compiler
infrastructure release 2.9—all analyses, transformations, and optimizations are
organized as LLVM passes. For debugging support we consider Bugbench [20]
applications, a suite containing various known software bugs plus program inputs
that trigger them; we select five BugBench applications that contain buffer-
overflow bugs. To evaluate back-tracking support we study a recent version of
VPR-5.02 [5], as described in Section 5.2. We measure on an Intel Core i7 920
CPU, with 4GB of DDR3 RAM, running Debian6-i386 with g++ version 4.4.5.

6.1 Checkpoint Region Selection

Table 1 summarizes the checkpoint regions for each benchmark application. For
the selected applications from the BugBench suite, we enclose the root cause and
manifestation of each bug in a minimal checkpoint region called the small (S)
region. We then grow the small region by both forward-and-backward extending
the region boundaries, covering increasing granularity and complexity of the

13

100100

10X

100X

1KX

10KX

100KX

(a) our approach relative to coarse-grain
libCKPT

20 X

40 X

60 X

80 X

100 X

120 X

140 X

(b) our approach relative to runtime-
based ICCSTM

Fig. 10. Overhead reduction relative to conventional checkpointing methods for Bug-
Bench applications.

source code. The result is a medium (M) region that contains a significant portion
of the program, and a large (L) region that can potentially cover the entire
application. VPR has only one checkpoint region as appropriate for properly
implementing back-tracking within the try swap function, although we have
two implementations, medium (M) and large (L), depending on whether the
region is marked from the function callee’s perspective or the caller’s perspective,
respectively. Checkpoint regions are vastly different in size: for example, a small
region usually contains around 1000 instructions and spans 2–3 lines of source
code, while a large region can contain up to 195 million instructions (e.g., gzip-
1.24) and covers 1000+ lines of source code (e.g., bc-1.05)4.

6.2 Comparison with Existing Checkpointing Solutions

In this section we compare our compiler-based checkpointing solution with two
alternative software approaches to checkpointing: a checkpointing library, and a
software transactional memory library supported by a commercial compiler.

Library-based schemes back-up all of the memory used by the running process—
thus the checkpointing overhead closely correlates to the size of memory at
checkpointing time. We use libCKPT [26] as the representative of a library-
based software checkpointing solution. Figure 10(a) shows that our fine-grained
checkpointing approach provides over 1000X overhead reduction compared to
coarse-grain checkpointing, for both the time-to-take a checkpoint and the time-
to-restore a checkpoint. The corresponding improvement in terms of the check-
pointing metrics of checkpoint buffer size and the number of instructions needed
to service a checkpoint are within the range of 100X to 1000X.

4 Note that M and L regions always contain user-defined functions, thus the number
of source lines presented in Table 1 marked with * only indicates the lower bound
of possible source-code span.

14

We further compare software overheads for supporting single-threaded spec-
ulative optimization in Intel’s Software Transactional Memory (STM) [1, 28]
(ICCSTM) versus our compiler-based checkpointing solution. (ICCSTM) is a
software solution for supporting optimistic parallelism, based on Intel’s production-
quality C/C++ compiler. Just like other STM systems, ICCSTM supports specu-
lative parallel execution through write-buferring and dependence tracking of the
reads and writes of multiple threads at run-time. The differences in performance
between the two software packages are expected to come from the different focus
and specialization on their respective main use cases.

ICCSTM is mainly optimized to support program parallelization based on
relatively short transactional regions. On the other hand, our checkpointing soft-
ware is optimized to support single-thread speculation, or debugging for larger
program regions. Based on the limited description available [1, 28], ICCSTM
uses only basic compiler optimizations such as inlining and a very simple form
a partial redundancy elimination. Furthermore, to the best of our knowledge,
ICCSTM does not optimize for the single-threaded speculative execution case.
In this special case of speculation support, tracking of the single thread’s read-set
could be safely omitted. In contrast, our checkpointing scheme benefits from be-
ing specialized for the single-thread case. Specifically, we track only the write set
for the speculative thread via an efficient implementation based on undo-logging.
In the common case where speculation is successful, undo-logging avoids expen-
sive lookups on reads for matching prior writes, and also the copies of writes
to shared memory on commit. Overall, it is expected that our fine-grain check-
point support will have lower overheads, and/or better cache behavior than a
write-buffering STM.

Figure 10(b) compares ICCSTM to our baseline compiler-based checkpoint-
ing solution (with no optimizations). We find that our solution outperforms
ICCSTM in almost all cases. On average, our solution outperforms the time-to-
take a checkpoint for ICCSTM by 5X, and the number of instructions needed
to take a checkpoint by 8X. The largest difference is in terms of the checkpoint
buffer size, which is almost 60X lower for our solution.

6.3 Optimization Effectiveness

To evaluate our checkpointing optimization framework, we run optimizations
over each application’s M and L regions. We gradually increase the number of
optimizations on each test region until all available optimizations are applied.
We focus the evaluation on the effectiveness of checkpointing overhead reduc-
tion as measured by the following metrics: checkpoint buffer size reduction, the
reduction in the number of backup calls, and the impact on the redundancy rate.

Checkpoint Buffer Size Reduction Figure 11 shows the compiler optimiza-
tion impact on checkpoint buffer size when all optimizations are incrementally
applied. The effectiveness of our optimizations depends on the region size, as
well as the frequency of stores within the region. Normally, a larger region has
more opportunities for optimization. We observe that RE1 is the most effective
of all optimizations: as shown in Figures 11(a), and 11(b), respectively, RE1

15

77

0

20

40

60

80

100

120

% of Buffer Size Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti
0

20

40

60

80

100

120

% of Buffer Size Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

(a) large regions

80

0

10

20

30

40

50

60

70

80

90

% of Buffer Size Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

0

10

20

30

40

50

60

70

80

90

% of Buffer Size Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

(b) medium regions

Fig. 11. Incremental/cumulative impact of optimizations on buffer size.

83

0

20

40

60

80

100

120

% of backup() call Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

0

20

40

60

80

100

120

% of backup() call Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

(a) large regions

86

0

10

20

30

40

50

60

% of backup() call Reduction
INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

0

10

20

30

40

50

60

% of backup() call Reduction
INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

(b) medium regions

Fig. 12. Incremental/cumulative impact of optimizations on number of backup calls.

reduces the checkpoint buffer size by 92% in polymorph, and by almost 80% in
man. When optimizations are incrementally applied, we observe a stable trend of
buffer size reduction for both M and L regions. All performance numbers show
that our compiler optimizations either exploit opportunities for optimization and
hence improve checkpoint efficiency, or at least do not introduce negative effects
(regressions). On average, the optimizations reduce checkpoint buffer size by an
average of 52% for the L regions and 22% for the M regions.

Backup Call Reduction in addition to buffer size reduction, our compiler
optimizations also reduce the total number of backup calls—another metric for
estimating the checkpointing overhead. Figure 12 shows that our optimizations
reduce the total number of backup calls by an average of 36% for the L region
and by 15% for the M region.

Redundancy Rate Impact After all optimizations have been applied, it is in-
teresting to understand how much redundancy remains in the checkpoint buffer,
as a measure of what further optimization opportunities remain. We quantify
this by studying the region’s redundancy rate (RR), as defined earlier in Sec-

16

%

%

%

%

%

0

20

40

60

80

100

120

BC

GZIP

MAN

NCOMPRES

S

POLYMORP

H

VPR

(a) large regions

%

%

%

%

%

%

0

5

10

15

20

25

30

BC

GZIP

MAN

NCOMPRESS

POLYMORPH

VPR

(b) medium regions

Fig. 13. Incremental/cumulative impact of optimizations on redundancy rate.

%

%

%

%

%

%

%

%

(a) entire program

%

%

%

%

%

%

%

%

%

(b) within try swap only

Fig. 14. Performance overhead of automated back-tracking support via our compiler-
based checkpointing, relative to manually-implemented back-tracking support.

tion 4. Figure 13 illustrates the impact of our compiler optimizations on RR
for both M and L regions when incrementally applying available optimizations.
Figure 13(b) indicates that our optimizations are more effective in eliminating re-
dundancy in M regions, since the highest RR is around 18% after optimizations.
This is because the opportunities in M regions are more likely to be captured by
our optimizations. Although optimizations do reduce redundancy for L regions
as well, in most cases the impact is small. Three applications (gzip, ncompress,
and man) still have very high RR even after applying all available optimizations.
After manually examining the source code for each case we conclude that the
high RR is due to extensive use of pointers, the presence of which hinders our
optimization framework.

17

6.4 Overhead of Back-Tracking Support

In this section we evaluate the use of our checkpointing framework for imple-
menting automatic back-tracking support in the VPR application, as introduced
earlier in Section 5.2. Automatic back-tracking support frees the developer from
having to manually implement support for checkpoint and restore, and also al-
lows for source code that is easier to read and maintain.

We focus our evaluation on the try swap function that implements the back-
tracking portion of VPR. This routine spans almost 300 lines of source code
including function calls and data access through link-list structures. Figure 13
shows that the final RR for VPR is 18%, and that RE1 exploits most of the opti-
mization opportunities. In addition to the 1D array buffer scheme, alternatively
we can try a hash table solution to achieve a perfect redundancy behavior.5 Sec-
tion 4 introduces the details of our hash table designs, and their performance
impact on checkpoint-enabled VPR is given in Figure 14.

Figure 14(a) presents the overall performance impact on VPR when our
compiler-based automatic back-tracking is enabled. We observe that the 1D-
array scheme achieves the best run-time performance after optimization. The
entire VPR program has a mild 15% slowdown with 18% of buffer redundancy
after applying all optimizations. When switching to buffers utilizing hash table
schemes, we measure increased performance penalty to 62%, 95% and 140%
when utilizing union, PTD, and fixed hash-table buffer schemes respectively.

We further zoom-in to the function level and measure the checkpointing
performance impact on the try swap routine alone (in Figure 14(b)) by com-
paring its execution time with and without our compiler-based checkpointing.
Figure 14(b) is very similar to Figure 14(a). They can be treated as scaling on
different levels of granularity. When measuring against try swap function only,
enabling automatic checkpointing will have performance penalties of 90%, 600%,
950% and 1500% for 1D array, union, PTD, and fixed respectively.

7 Related Work

Our techniques leverage prior work in related areas, including support for soft-
ware checkpointing, thread-level speculation (TLS), transactional memory (TM)
and program back-tracking.

Checkpointing Checkpointing is a process of taking program snapshots to
facilitate later recovery. Feldman et al. [8] present the IGOR system capable
of conducting full-process checkpointing, optimized for checkpointing only dirty
pages. King’s time-traveling VM [15] discusses an OS-level debugging facility
by checkpointing entire OS states into disk files. Fine-grain refinement includes
both undo-log and redo-log, to reach any specific program location between two
consecutive full checkpoints. Xu et al. [32] demonstrate a re-tracing tool that
uses VMWare’s deterministic replay technique to collect only non-deterministic

5 Note that a hashtable always performs a search before any insert, thus the redun-
dancy rate for all hashtable-based checkpoint buffer implementations is always 0.

18

events during program execution and later expanding the collection into full
program traces using replay. In contrast to existing approaches that checkpoint
entire VM or application, we checkpoint on a per-store granularity to mem-
ory within a single application – a fine-grain checkpointing scheme that hasn’t
received much attention.

Speculation Thread-level speculation [10, 29] (TLS) and Transactional Mem-
ory [11, 12, 28] (TM) are optimistic program execution whose result might not be
needed. TLS and TM approaches provide for each optimistic thread the ability to
checkpoint and rollback, although this support is also intertwined with support
for tracking and detecting inter-thread conflicts. Hardware buffering support for
hardware TLS and TM implementations has the challenge that it can overflow.
Software implementations can be less limited in buffer capacity, but suffer from
high instrumentation overheads. In contrast to most TM or TLS solutions that
using hardware buffering for multi-threaded workload, we instead focus on using
software buffering for single-thread application. We further leverage compiler
optimizations to aggressively reduce checkpointing overhead.

Program Back-tracking Debugging often requires revisiting passed program
state while trying to locate the root cause of a bug. A checkpoint-enabled de-
bugger can greatly simplify the debugging process by eliminating the need for
program restart to look backwards. Agrawal et. al. [2, 3] presented a prototype
debugging tool that is based on dynamic program slicing and execution back-
tracking—it provides a structured view of dynamic events through run-time
traces, but is constrained by storage limitations. Recent versions of gdb [9] allow
inverse execution by conducting program replay, but are limited to one million
instructions. In contrast, our checkpointing scheme allocates its buffer in main
memory so that it can grow dynamically. This allows a checkpoint region of
relatively unbounded size and complexity. We expose the checkpointing func-
tionality to the user, so that programmers can have explicit control of rewind by
issuing debugger commands, to help reduce develop-run-debug cycle time and
improve productivity.

8 Conclusion

We have designed, implemented and evaluated a comprehensive checkpointing
framework that automatically enables software-only checkpointing over any user-
specified source program region. In this paper, we presented compiler analyses
and transformations that enable and optimize user-level checkpointing over pro-
grams of arbitrary size and complexity, and demonstrated that compiler opti-
mizations are effective at eliminating checkpointing overhead. In particular, they
reduce checkpoint buffer size by up to 98% and remove up to 95% of redundant
backup calls. We showed that by leveraging our checkpointing framework, a de-
bugger can conduct unlimited retries of execution rewind over arbitrarily large
regions. We also showed that we can enable automatic back-tracking, with a
moderate performance overhead of only 15% for VPR’s place-and-route algo-
rithm.

19

Future Work We plan to enhance our checkpointing API by allowing users
to specify non-checkpointable code within a checkpoint region; this will have an
immediate use for VPR because users will gain manual control within an other-
wise automatically-checkpointed region. Redundancy rates remain high for a few
applications after all optimizations due to extensive use of pointers, hence we
plan to develop deep pointer analyses to better understand such pointer behav-
iors and help to further reduce checkpointing overhead. We also plan to extend
our framework with multi-threading support, including evaluating a write-buffer
approach.

References

1. A. Adl-Tabatabai, B. T. Lewis, V. S. Menon, B. R. Murphy, B. Saha, and T. Sh-
peisman. Compiler and runtime optimizations for efficient software transactional
memory. In ACM SIGPLAN conference on Programming language design and
implementation (PLDI), 2006.

2. H. Agrawal, R. Demillo, and E. Spafford E. An execution-backtracking approach
to debugging. In IEEE Transactions on Software, May-June 1991.

3. H. Agrawal, R. Demillo, and E. Spafford E. Debugging with dynamic slicing and
backtracking. In Software: Practice and Experience, October 2006.

4. H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint processing and recovery: An
efficient, scalable alternative to reorder buffers. In IEEE Computer Society, 2003.

5. V. Betz and J. Rose. Vpr: A new packing, placement and routing tool for fpga re-
search. In VPR: A New Packing, Placement and Routing Tool for FPGA Research,,
1997.

6. V. Betz, J. Rose, and A. Marquardt. Architecture and cad for deep-submicron
fpgas. In Kluwer Academic Publishers, February 1999.

7. W. Elnozahy, D. Johnson, and W. Zwaenepoel. The performance of consistent
checkpointing. In 11th Symposium on Reliable Distributed Systems, pp. 39-47,
October 1992.

8. Stuart I. Feldman and Channing I. Brown. Igor: A system for program debugging
via reversible execution. In ACM SIGPLAN Notices, Workshop on Parallel and
Distributed Debugging, 1989.

9. Free Softwar Foundation. Gdb: the gnu debugger manual 7.0,. September 2009.

10. Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support
for a chip multiprocessor. In ACM SIGOPS Operating Systems, December 1998.

11. Lance Hammond, Vicky Wong, Mike Chen, B.D. Carlstrom, J.D. Davis,
B. Hertzberg, M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Trans-
actional memory coherence and consistency. In CM SIGARCH Computer Archi-
tecture News, March 2004.

12. Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer. Software
transactional memory for dynamic-sized data structures. In The Twenty-Second
Annual Symposium On Principles Of Distributed Computing, 2003.

13. W. Hwu and Y. Patt. Checkpoint repair for out-of-order execution machines. In
Computer Science Division, University of California at Berkley, ACM, 1987, 1987.

14. H. V. Jagadish, Avi Silberschatz, and S. Sudarshan. Recovering from main-memory
lapses. In Procs. of the International Conf. on Very Large Databases (VLDB), 1993.

20

15. Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating
systems with time-traveling virtual machines. In Annual USENIX Technical Con-
ference, 2005.

16. G. Kingsley, M. Beck, and J. Plank. Compiler-assisted checkpoint optimization
using suif. In First SUIF Compiler Workshop, 1995.

17. C. Lattner and V. Adve. Llvm a compilation framework for lifelong program
analysis and transformation. In Proc. of the 2004 International Symposium on
Code Generation and Optimization (CGO), March 2004.

18. C. Lattner and V. Adve. The llvm compiler framework and infrastructure tuto-
rial. In LCPC’04 Mini Workshop on Compiler Research Infrastructures, September
2004.

19. C. Li, E. Stewart, and W. Fuchs. Compiler-assisted full checkpointing. In Software-
practice and Experience, Vol 24(10), 871-886, October 1994.

20. S. Lu, Z. Li, F. Q, L. Tan, P. Zhou, and Y. Zhou Y. Bugbench: Benchmarks for
evaluating bug detection tools. In Workshop on the Evaluation of Software Defect
Detection Tools, 2005.

21. Austen Mcdonald, Jaewoong Chung, Brian D. Carlstrom, Chi Cao Minh, Has-
san Chafi, Christos Kozyrakis, and Kunle Olukotun. Architectural semantics for
practical transactional memory. In Computer Architecture News, 2006.

22. K.E. Moore, J. Bobba, M.J. Moravan, M.D. Hill, and D.A. Wood. Logtm: Log-
based transactional memory. In High-Performance Computer Architecture, 2006.

23. J. Eliot B. Moss. Log-based recovery for nested transactions. In Proceedings of the
13th International Conference on Very Large Data Bases, 1987.

24. W. Ng and P. Chen. The symmetric improvement of fault tolerance in the rio file
cache. In Proceedings of 1999 Fault Tolerance Computing (FTC), 1999.

25. J. Plank, M. Beck, and G. Kingsley. Compiler-assisted memory exclusion for fast
checkpointing. In IEEE Technical Committee on Operating System and Application
Environments, Special Issue on Fault-Tolerance, 1995.

26. J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing
under unix. In Usenix Winter Technical Conference, 1995.

27. Chandra S. An evaluation of recovery related properties of software faults. In
Ph.D. thesis, 2004.

28. Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, and Chi Cao Minh and.
Mcrt-stm: A high performance software transactional memory system for a multi-
core runtime. In Principles and Practice of Parallel Programming(PPOPP), 2006.

29. J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry.
A scalable approach to thread-level speculation. In International Symposium on
Computer Architecture (ISCA), June 2000.

30. Y. Wang, Y. Huang, K. Vo, P. Chung, and C. Kintala. Checkpointing and its
applications. In 25th Int. Symp. On Fault-Tol. Comp., pp. 22-31, June 1995.

31. J. Whaley. System checkpointing using reflection and program analysis.
32. Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon, Ganesh Venkitachalam, and Boris

Weissman. Retrace: Collecting execution trace with virtual machine deterministic
replay. In 3rd Workshop on Modeling, Benchmarking and Simulation, 2007.

