
Thread Clustering: Sharing-Aware Scheduling on
SMP-CMP-SMT Multiprocessors

David Tam Reza Azimi Michael Stumm

Department of Electrical and Computer Engineering
University of Toronto

Toronto, Canada M5S 3G4
{tamda, azimi, stumm}@eecg.toronto.edu

ABSTRACT
The major chip manufacturers have all introduced chip mul-
tiprocessing (CMP) and simultaneous multithreading (SMT)
technology into their processing units. As a result, even
low-end computing systems and game consoles have become
shared memory multiprocessors with L1 and L2 cache shar-
ing within a chip. Mid- and large-scale systems will have
multiple processing chips and hence consist of an SMP-
CMP-SMT configuration with non-uniform data sharing over-
heads. Current operating system schedulers are not aware
of these new cache organizations, and as a result, distribute
threads across processors in a way that causes many unnec-
essary, long-latency cross-chip cache accesses.

In this paper we describe the design and implementation
of a scheme to schedule threads based on sharing patterns
detected online using features of standard performance mon-
itoring units (PMUs) available in today’s processing units.
The primary advantage of using the PMU infrastructure is
that it is fine-grained (down to the cache line) and has rel-
atively low overhead. We have implemented our scheme in
Linux running on an 8-way Power5 SMP-CMP-SMT multi-
processor. For commercial multithreaded server workloads
(VolanoMark, SPECjbb, and RUBiS), we are able to demon-
strate reductions in cross-chip cache accesses of up to 70%.
These reductions lead to application-reported performance
improvements of up to 7%.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—con-

currency, scheduling, threads; D.4.8 [Operating Systems]:
Performance—measurements, monitors; B.8.2 [Performan-
ce and Reliability]: Performance Analysis and Design
Aids; I.5.3 [Pattern Recognition]: Clustering—algorithms,

similarity measures; C.1.2 [Processor Architectures]:
Multiple Data Stream Architectures (Multiprocessors)—mul-

EuroSys’07, March 21–23, 2007, Lisboa, Portugal.
c©ACM, (2007). This is the author’s version of the work. It

is posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published inPro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, VOL#, ISS#, (March 21–23, 2007)
http://doi.acm.org/10.1145/1272996.1273004

tiple-instruction-stream, multiple-data-stream processors;
C.5.5 [Computer System Implementation]: Servers;
C.5.1 [Computer System Implementation]: Large and
Medium (“Mainframe”) Computers; B.3.2 [Memory Struc-
tures]: Design Styles—cache memories, shared memory,

virtual memory ; H.2.4 [Database Management]: Sys-
tems—concurrency, parallel databases; D.1.3 [Program-
ming Techniques]: Concurrent Programming—parallel pro-

gramming

General Terms
Algorithms, Management, Measurement, Performance, De-
sign, Experimentation

Keywords
Affinity scheduling, cache behavior, cache locality, CMP,
detecting sharing, hardware performance counters, hard-
ware performance monitors, multithreading, performance
monitoring unit, resource allocation, shared caches, shar-
ing, simultaneous multithreading, single-chip multiproces-
sors, SMP, SMT, thread migration, thread placement, thread
scheduling

1. INTRODUCTION
With diminishing potential improvements in clock speeds,
processor chip manufacturers have turned towards increas-
ing parallelism to obtain further performance gains. The
major chip manufacturers have all introduced chip multi-
processing (CMP) and simultaneous multithreading (SMT)
technology over the last several years for their laptop, desk-
top, and server processing units. As a result, even low cost
computing systems and game consoles have become shared
memory multiprocessors. Small- to medium-sized systems
will contain a small number of processing chips (e.g., 1 to
4), while the number of cores and hardware threads in each
core will likely increase over the next few years. For example,
the Sun Niagara chip currently has 32 hardware contexts.

A key difference between the more traditional small-scale
shared memory multiprocessors (SMPs) and these newer
systems is that the latter have non-uniform data sharing
overheads; i.e., the overhead of data sharing between two
processing components differs depending on their physical
location. For the processing units that reside on the same
CPU core (i.e., hardware virtual contexts), communication

Figure 1: The IBM OpenPower 720 architecture.
The numbers on the arrows indicate the access la-
tency from a thread to different levels of the mem-
ory hierarchy. Any cross-chip sharing takes at least
120 CPU cycles.

typically occurs through a shared L1 cache, with a latency
of 1 to 2 cycles. For processing units that do not reside on
the same CPU core but reside on the same chip, commu-
nication typically occurs through a shared L2 cache, with
a latency of 10 to 20 cycles. Processing units that reside
on separate chips communicate either by sharing memory
or through a cache-coherence protocol both with an average
latency of hundreds of cycles. As an example, consider the
IBM OpenPower 720 latencies depicted in Figure 1.

Although operating systems have become increasingly cache-
aware, their CPU schedulers today do not take the non-
uniform sharing overheads into account. As a result, threads
that heavily share data will not typically be co-located on
the same chip. Figure 2 shows an example of a scenario
where two clusters of threads are distributed across the pro-
cessing units of two chips. The distribution is usually done
as a result of some dynamic load-balancing scheme. If the
volume of intra-cluster sharing is high, a default OS schedul-
ing algorithm (as shown on the left) may result in many
high-latency inter-chip communications (solid lines). If the
OS can detect the thread sharing pattern and schedule the
threads accordingly, then threads that communicate heavily
could be scheduled to run on the same chip and, as a result,
most of the communication (dashed lines) would take place
in the form of on-chip L1 or L2 cache sharing.

A benefit of locating sharing threads onto the same chip is
that they incidentally perform prefetching of shared regions
for each other. That is, they help to obtain and maintain
frequently used shared regions in the local cache.

Finally, non-communicating threads with high memory foot-
prints may be better placed onto different chips, helping to
reduce potential cache capacity problems.

Detecting sharing patterns of threads automatically has been
a challenge. One approach used in the past for implementing
software distributed shared memory (DSM) exploited page
protection mechanisms to identify active sharing among
threads [1]. This approach has two serious drawbacks: (i)
the page-level granularity of detecting sharing is relatively
coarse with a high degree of false sharing, and (ii) the over-

a. default b. clustered

Figure 2: Default versus clustered scheduling. The
solid lines represent high-latency cross-chip commu-
nications, the dashed lines are low-latency intra-
chip communications (when sharing occurs within
the on-chip L1 and L2 caches).

head of protecting pages results in high overhead with an
attendant increase in page-table traversals and translation
look-aside buffer (TLB) flushing operations.

In this paper we describe the design and implementation of a
scheme to schedule threads based on detecting sharing pat-
terns online with low overhead by using the data sampling
features of the performance monitoring unit (PMU) avail-
able in today’s processing units. The primary advantage of
using the PMU infrastructure over page-level mechanisms
is that the former is fine-grained (down to individual L2
cache lines) and has far lower overheads since most of the
monitoring is offloaded to the hardware.

We have implemented this scheme in the Linux kernel run-
ning on an 8-way IBM Power5 SMP-CMP-SMT multipro-
cessor. For commercial multithreaded server workloads (Vo-
lanoMark, SPECjbb, and RUBiS), we are able to demon-
strate significant reductions in cross-chip cache accesses of
up to 70%. These reductions lead to performance improve-
ments of up to 7%.

The specific workloads we target in our experiments are mul-
tithreaded commercial server applications, such as databases,
application servers, instant messaging servers, game servers,
and mail servers. The programming model of these work-
loads is that there are multiple threads of execution, each
handling a client request to completion. These threads ex-
hibit some degree of memory sharing, and thus make use
of the shared memory programming paradigm, as opposed
to message passing. The scheme we propose automatically
detects clustered sharing patterns among these threads and
groups these threads accordingly onto the processing chips.

In theory, thread clustering may be done by the applica-
tion programmer. However, it is fairly challenging for a
programmer to determine the number of shared memory re-
gions and intensity of sharing between them statically at
development time. Another problem with manual, applica-
tion programmer-written thread clustering is the extra effort
of re-inventing the wheel for every application. Additional
complexities may arise when application code is composed
from multiple sources, such as shared libraries especially if
the source code is not available. The dynamic nature of
multiprogrammed computing environments is also difficult
to account for during program development. Our scheme
is capable of detecting sharing patterns that the applica-
tion programmer may have been unaware of. In addition,

our scheme can handle phase changes and automatically re-
cluster threads accordingly.

As a motivational example, our scheme can be applied to the
Java platform without requiring modifications to the appli-
cation or virtual machine run-time system. A Java applica-
tion developer may write her multithreaded J2EE servlet as
usual and the underlying OS would detect sharing among
threads and cluster them accordingly.

2. RELATED WORK
The work most closely related to ours was by Bellosa and
Steckermeier [4]. They first suggested using hardware per-
formance counters to detect sharing among threads and to
co-locate them onto the same processor. Due to the high
costs of accessing performance counters at the time, ten
years ago on a Convex SPP 1000, they did not obtain pub-
lishable results for their implementation. The larger scope of
their research focused on performance scalability of NUMA
multiprocessors, stressing the importance of using locality
information in thread scheduling.

Weissman [23] proposed hardware performance counters to
detect cache misses and reduce conflict and capacity misses.
Their system required user-level code annotations to manu-
ally and explicitly identify shared regions among threads in
order to deal with sharing misses. In our work, we demon-
strate a technique that can automatically detect the shared
regions.

Thread clustering algorithms were examined by Thekkath
and Eggers [22]. This research dealt with finding the best
way to group threads that share memory regions together
onto the same processor so as to maximize cache sharing
and reuse. Unfortunately, they were not able to achieve
performance improvements for the scientific workloads they
used in their experiments. The two main factors cited were
(1) the global sharing of many data structures, and (2) the
fact that data sharing in these hand-optimized parallel pro-
grams often occurred in a sequential manner, one thread
after another. In contrast, our chosen workloads (1) exhibit
non-global, clustered sharing patterns and (2) are not hand-
optimized multithreaded programs but are written as client-
server applications that exhibit unstructured, intimate shar-
ing of data regions. Their work focused on the clustering
algorithm, assuming that the shared-region information is
known a priori, and was evaluated in a simulator. In con-
trast, our work focuses on the missing link and demonstrates
a technique to detect these shared regions in an online, low-
overhead manner on real hardware running a real operating
system. Since our focus is not on the clustering algorithm
itself, we used a relatively simple, low-overhead algorithm.

Sridharan et al. examined a technique to detect user-space
lock sharing among multithreaded applications by annotat-
ing user-level synchronization libraries [19]. Using this in-
formation, threads sharing the same highly-contended lock
are migrated onto the same processor. Our work adopts the
same spirit but at a more general level that is applicable to
any kind of memory region sharing. Locks could be con-
sidered a specific form of memory region sharing, where the
region holds the lock mechanism. Consequently, our tech-
nique implicitly accounts for lock sharing among threads.

Bellosa proposed using TLB information to reduce cache
misses across context switches and maximized cache reuse
by identifying threads that share the same data regions [3].
Threads that share regions are scheduled sequentially, one
after each other so as to maximize the chance of cache reuse.
Koka and Lipasti had the same goals and provided further
cache miss details [11]. The work of these two research
groups was in the context of a uniprocessor system, in an at-
tempt to maximize cache reuse of a single L2 cache, whereas
our work targets multiple shared caches in a multiprocessor
system, in an attempt to maximize cache reuse.

Philbin et al. attempted to increase cache sharing reuse
of a single-threaded sequential program by performing au-
tomatic parallelization, creating fine-grained threads that
made maximum cache reuse [16]. Larus and Parkes at-
tempted to reduce cache misses between context switches
by exploring a technique called cohort scheduling [12]. In
the realm of databases, Harizopoulos and Ailamaki explored
a method to transparently, without application source code
modifications, increase instruction cache sharing re-use by
performing more frequent but intelligently chosen thread
context switches [9]. Selecting threads belonging to the same
stage may improve instruction cache reuse. The general
staged-event driven architecture is described and explored
by Welsh et al. [24].

The remaining related work mostly concentrates on deter-
mining the best tasks to co-schedule in order to minimize
capacity and conflict misses. Our work is targeted specif-
ically at exploiting the shared aspect of shared caches in
a multi-chip setting. Our work may be complementary to
these past efforts in minimizing capacity and conflict misses
of shared caches.

Many researchers have investigated minimizing cache con-
flict and capacity problems of shared L2 cache processors.
Snavely and Tullsen did seminal work in the area of co-
scheduling, demonstrating the problem of conventional sche-
duling and the potential performance benefits of symbiotic
thread co-scheduling on a simulator platform [18]. With the
arrival of Intel HT multiprocessor systems, Nakajima and
Pallipadi explored the impact of co-scheduling on these real
systems [14]. Parekh et al. made use of hardware perfor-
mance counters that provided cache miss information to per-
form smart co-scheduling [15]. Others, such as McGregor et
al. and El-Moursy et al., have found that on multiprocessors
consisting of multiple SMT chips, cache interference alone
was insufficient in determining the best co-schedules because
SMT processors intimately share many micro-architectural
resources in addition to the L1 and L2 caches [6, 13]. Mc-
Gregor et al. found that per-thread memory bandwidth uti-
lization, bus transaction rate, and processor stall cycle rate
were important factors. El-Moursy et al. found that the
number of ready instructions and the number of in-flight in-
structions were important. Suh et al. described the general
approach of memory-aware scheduling, where jobs were se-
lected to run based on cache space consumption [20, 21]. For
example, a low cache consumption job was run in parallel
with a high cache consumption job. Fedorova et al. exam-
ined the issue of operating system scheduler redesign and
explored co-scheduling to reduce cache conflict and capacity
misses based on a model of cache miss ratios [7, 8]. Bulpin

and Pratt also made use of hardware performance counters
to derive a model for estimating symbiotic co-scheduling on
an SMT processor [5]. Settle et al. proposed adding hard-
ware activity vectors per cache line, creating a framework
for exploring cache optimizations [17]. Their goal, within
a single SMT chip context, was to minimize capacity and
conflict misses.

3. PERFORMANCE MONITORING UNIT
Most modern microprocessors today have performance mon-
itoring units (PMUs) with integrated hardware performance
counters (HPCs) that can be used to monitor and analyze
performance in real time. HPCs allow the counting of de-
tailed micro-architectural events in the processor, such as
branch mispredictions and cache misses. They can be pro-
grammed to interrupt the processor when a certain num-
ber of specified events occur. Moreover, PMUs make vari-
ous registers available for inspection, such as addresses that
cause cache misses or the corresponding offending instruc-
tions.

However, HPCs in practice are difficult to use because of (i)
their limited number, (ii) the various constraints imposed on
them, and (iii) the lack of documentation describing them
in detail. For example, they do not provide enough coun-
ters to simultaneously monitor the many different types of
events needed to form an overall understanding of perfor-
mance. Moreover, HPCs primarily count low-level micro-
architectural events from which it is difficult to extract high-
level insight required for identifying causes of performance
problems.

We use fine-grained HPC multiplexing that is introduced by
previous work [2] to make a larger set of logical HPCs avail-
able. The PMU infrastructure is also able to speculatively
associate CPU stalls to different causes [2]. Figure 3 shows
an example of stall breakdown for the VolanoMark applica-
tion. The average cycles-per-instruction (CPI) of the appli-
cation is divided into completion cycles and stall cycles. A
completion cycle is a cycle in which at least one instruction
is retired. A stall cycle is a cycle in which no instruction is
completed, which can be due to a variety of reasons. Stalls
are broken down based on their causes. By using the hard-
ware features, stalls that are due to data cache misses are
further broken down according to the source from where
the cache miss was satisfied. While it is possible to have
a detailed breakdown of data cache misses according their
sources, for the purpose of this paper, we are only interested
in knowing whether the source was local or remote, where
local means a cache on the same chip as the target thread,
and remote means a cache on any other chip1.

4. DESIGN
4.1 Overview of Thread Clustering Scheme
Our thread clustering approach consists of four phases.

1. Monitoring Stall Breakdown: Using HPCs, CPU
stall cycles are broken down and charged to differ-
ent microprocessor components to determine whether

1Although the L3 cache is often off-chip, we consider the L3
cache that is directly connected to a chip to be a local cache.

Figure 3: The stall breakdown for VolanoMark. The
stalls due to data cache misses are further broken
down according to the source from where the cache
miss is eventually satisfied.

cross-chip communication is performance limiting. If
this is the case, then the second phase is entered.

2. Detecting Sharing Patterns: The sharing pattern
between threads is tracked by using the data sampling
features of the hardware PMU. For each thread, a sum-
mary vector, called shMap, is created that provides a
signature of data regions accessed by the thread that
resulted in cross-chip communication.

3. Thread Clustering: Once sufficient data samples are
collected, the shMaps are analyzed. If threads have a
high degree of data sharing then they will have similar
shMaps and as a result, they will be placed into the
same cluster.

4. Thread Migration: The OS scheduler attempts to
migrate threads so that threads of the same cluster are
as close together as possible.

We apply these phases in an iterative process. That is, after
the thread migration phase, the system returns to the stall
breakdown phase to monitor the effect of remote cache ac-
cesses on system performance and may re-cluster threads if
there is still a substantial number of remote accesses. Ad-
ditionally, application phase changes are automatically ac-
counted for by this iterative process.

In the following subsections, we present the details of each
phase.

4.2 Monitoring Stall Breakdown
Before starting to analyze thread sharing patterns, we de-
termine whether there is a high degree of cross-chip commu-
nication with significant impact on application performance.
Thread clustering will be activated only if the share of re-
mote cache accesses in the stall breakdown is higher than a
certain threshold. Otherwise, the system continues to moni-
tor the stall breakdown. We used an activation threshold of

20% per billion cycles. That is, for every one billion cycles,
if 20% of the cycles are spent accessing remote caches, then
sharing detection phase is entered. Note that the overhead
of monitoring stall breakdown is negligible since it is mostly
done by the hardware PMU. As a result, we can afford to
continuously monitor stall breakdown with no visible effect
on system performance.

4.3 Detecting Sharing Patterns
In this phase, we monitor the addresses of the cache lines
that are invalidated due to remote cache-coherence activities
and construct a summary data structure for each thread,
called shMap. Each shMap shows which data items each
thread is fetching from caches on remote chips. We later
compare the shMaps with each other to identify threads that
are actively sharing data and cluster them accordingly.

4.3.1 Constructing shMaps
Each shMap is essentially a vector of 8-bit wide saturat-
ing counters. We believe that this size is adequate for our
purposes because we are using sampling and are only look-
ing for a rough approximation of sharing intensity. Each
vector is given only 256 of these counters so as to limit over-
all space overhead. Each counter corresponds to a region in
the virtual address space. Larger region sizes result in larger
application address space coverage by the shMaps, but less
precision and more sharing incidents will be falsely reported
as a result. The largest region size with which no false-
positives can occur is the size of an L2 cache line, which is
the unit of data sharing for most cache-coherence protocols.
Consequently, we used a region size of 128 bytes, which is
the cache line size of our system.

With shMaps, we have effectively partitioned the application
address space into regions of fixed size. Since 256 entries at
128 byte region granularity is inadequate to cover an entire
virtual address space, we made use of hashing. We used a
simple hash function to map these regions to corresponding
entries in the shMap. A shMap entry is incremented only
when the corresponding thread incurs a remote cache access
on the region. Note that threads that share data but happen
to be located on the same chip will not cause their shMaps to
be updated as they do not incur any remote cache accesses.

We rely on hardware support to provide us with the ad-
dresses of remote cache accesses. While this feature is not
directly available in most hardware PMUs, we use an indi-
rect method to capture the address of remote cache accesses
with reasonable accuracy. In Section 5.2.1 we provide de-
tails of how we implemented this method on the Power5
processor.

Constructing shMaps involves two challenges. First, to record
and process every single remote cache access is prohibitively
expensive, and secondly, with a small shMap the potential
rate of hash collisions may become too high. We use sam-
pling to deal with both challenges. To cope with the high
volume of data we use temporal sampling, and to reduce the
collision rate (and eliminate aliasing problems altogether) we
use spatial sampling. Using temporal and spatial sampling
of remote cache accesses instead of capturing them precisely
is sufficient for our purposes because we only need an indi-
cation of the thread sharing pattern. If a data item is highly

Figure 4: Constructing shMaps: each remote cache
access by a thread will be indexed into the shMap
filter. Only those remote cache accesses that pass
the filter are marked in the corresponding entry in
the shMap filter.

shared, i.e., remote cache accesses occur very frequently, it
will likely be captured by the sampling.

Temporal Sampling. We record and process only one in
N occurrences of remote cache access events. In order to
avoid undesired repeated patterns, we constantly readjust
N by a small random value. Moreover, the value of N is
further adjusted by taking two factors into account: (i) the
frequency of remote cache accesses (which is measured by
the PMU), and (ii) the runtime overhead. A high rate of
remote cache accesses allow us to increase N, since we will
obtain a representative sample of addresses even with large
values of N .

Spatial Sampling. Rather than monitor the entire virtual
address space, we select a fairly small set of regions to be
monitored for remote cache accesses. The regions are se-
lected somewhat randomly, but there must be at least one
remote cache access on a region to make it eligible to be
selected. The hypothesis is that once a high level of sharing
is detected on a subset of cache lines, it is a clear indication
that the actual intensity of sharing is high enough to justify
clustering.

We implement spatial sampling by using a filter to select
remote cache access addresses after applying the hashing
function. This shMap filter is essentially a vector of ad-
dresses with the same number of entries as a shMap. All
threads of a process use the same shMap filter. A sampled
remote cache access address is considered further (i.e., is al-
lowed to pass the filter) only if its corresponding entry in
the shMap filter has the same address value. Otherwise, the
remote cache access is discarded and not used in the analy-
sis. Each shMap filter entry is initialized (in an immutable
fashion) by the first remote cache access that is mapped to
the entry. Threads compete for entries in the shMap filter.
This policy eliminates the problem of aliasing due to hash
collisions. Figure 4 shows the function of the shMap filter.

In an unlikely pathological case, it is possible that some
threads starve out others by grabbing the majority of the
shMap filter entries, thus preventing remote cache accesses
of other threads from being recorded. We place a limit on
the number of entries allowed by a thread to partially ad-
dress this problem. Additionally, we envision the thread
clustering process to be iterative, thereby automatically han-
dling insufficient thread clustering in subsequent iterations.
That is, after detecting sharing among some threads and
clustering them, if there is still a high rate of remote cache
accesses, thread clustering is activated again, and the pre-
viously victimized threads will obtain another chance.

4.4 Thread Clustering
4.4.1 Similarity Metric
We define the similarity of two shMap vectors, correspond-
ing to two threads, as their dot products:

similarity(T1, T2) =
N

X

i=0

T1[i] ∗ T2[i]

where i is the ith entry of the vector Tx[]

The rationale behind choosing this metric for similarity is
two fold. First, it automatically takes into account only
those entries where both vectors have non-zero values. Note
that T1 and T2 have non-zero values in the same location
only if they have had remote cache accesses on the same
cache line (i.e., the cache line is being shared actively). We
consider very small values (e.g., less than 3) to be zero as
they may be incidental or due to cold sharing and may not
reflect a real sharing pattern.

Second, it takes into account the intensity of sharing by
multiplying the number of remote cache accesses each of
the participating threads incurred on the target cache line.
That is, if two vectors have a large number of remote cache
accesses on a small number of cache lines, the similarity
value will be large, correctly identifying that the two threads
are actively sharing data. Other similarity metrics could be
used, but we found this metric to work quite well for the
purpose of thread clustering.

In our experiments, we used a similarity threshold value
of approximately 40000. For two candidate vectors, this
similarity threshold could be achieved under various simple
scenarios, such as: (1) a single corresponding entry in each
vector has values greater than 200; or (2) two corresponding
entries in each vector have values greater than 145.

4.4.2 Forming Clusters
One way to cluster threads based on shMap vectors is to
use standard machine learning algorithms, such as hierar-
chical clustering or K-means [10]. Unfortunately, such algo-
rithms are too computationally expensive to be used online
in systems with potentially hundreds or thousands of active
threads, or they require the maximum number of clusters to
be known in advance, which is not realistic in our environ-
ment.

To avoid high overhead, we use a simple heuristic for cluster-
ing threads based on two assumptions that are simplifying
but fairly realistic. First, we assume data is naturally par-
titioned according to the application logic and threads that
work on two separate partitions do not share much except
for data that is globally (i.e., process-wide) shared among
all threads. In order to remove the effects of globally shared
data on clustering, we build a histogram for shMap vectors
in which each entry shows how many shMap vectors have
a non-zero value in that particular entry. We consider a
cache line to be globally shared if more than half of the to-
tal number of threads have incurred a remote cache access
on it. We ignore information on globally shared cache line
when composing clusters.

The second assumption is that when a subset of threads
share data, the sharing is reasonably symmetric. That is
it is likely that all of them incur remote cache accesses on
similar cache lines, no matter how they are partitioned.

As a result, the clustering algorithm can be simplified as
follows. Based on the first assumption, if the similarity be-
tween shMap vectors is greater than a certain threshold, we
consider them to belong to the same cluster. Also, according
to the second assumption, any shMap vector can be consid-
ered as a cluster representative since all elements of a cluster
share common data equally strongly.

The clustering algorithm scans through all threads in one
pass and compares the similarity of each thread with the
representatives of known clusters. If a thread is not similar
to any of the known cluster representatives, a new cluster
will be created, and the thread that is currently being ex-
amined will be designated as the representative of the newly
created cluster. The set of known clusters is empty at the
beginning. The computational complexity of this algorithm
is O(T ∗ c) where T is the number of threads that are suf-
fering from remote cache accesses, and c is the total number
of clusters, which is usually much smaller than T .

4.5 Thread Migration
Once thread clusters are formed, each cluster is assigned to a
chip with the global goal of maintaining load-balance. That
is, in the end, there should be an equal number of threads
on each chip. Our cluster-to-chip assignment strategy is as
follows. First, we sort the clusters from the largest size to
the smallest size so that we can easily select the next largest
available cluster to migrate. Second, we assign the current
largest cluster to the chip with the lowest number of threads.
If such an assignment causes an imbalance among chips, then
we instead evenly assign the cluster’s threads to each chip.
This strategy attempts to maintain good load-balancing at
every step, and if the current cluster is problematic, then it
is neutralized by distributing its threads evenly among the
chips. The above steps are repeated for every thread clus-
ter. Finally, the remaining non-clustered threads are placed
onto the chips to balance out any remaining differences. We
recognize that this is a best-effort, practical, online strategy
that provides no guarantee of optimality.

Load balance within each chip is addressed by uniformly
and randomly assigning threads to the cores and the dif-
ferent hardware contexts on the core. To minimize cache

Table 1: IBM OpenPower 720 specification.
Item Specification
of Chips 2
of Cores 2 per chip
CPU Cores IBM Power5, 1.5GHz, 2-way SMT
L1 DCache 64KB, 4-way associative, per core
L1 ICache 64KB, 4-way associative, per core
L2 Cache 2MB, 10-way associative, per chip
L3 Cache 36MB,12-way associative, per chip, off-chip
RAM 8GB (2 banks x 4GB)

capacity and conflict problems within a single chip, a vari-
ety of intra-chip scheduling techniques described in Section 2
could be applied, such as the CMT-aware scheduler (Chip
MultiThreading) of Fedorova et al. [7] and the SMT-aware
scheduler of Bulpin and Pratt [5].

In balancing threads among chips, cores, and hardware con-
texts, we make the simplifying assumption that threads are
fairly homogeneous in their usage of assigned scheduling
quantum. Although we have not done so in this paper,
we plan to enable default Linux load-balancing within each
chip, as opposed to loading-balancing across chips, so that
balancing can take place among the cores and hardware con-
texts within a chip. This feature would help in reducing the
severity of any subsequent load imbalance.

5. EXPERIMENTAL SETUP
5.1 Platform
The multiprocessor used in our experiments is an IBM Open-
Power 720 computer. It is an 8-way Power5 machine con-
sisting of a 2x2x2 SMPxCMPxSMT configuration, as shown
in Figure 1. Table 1 describes the hardware specifications.

While our evaluation platform is fairly modest, we believe
it is suitable to explore much of the sharing behavior we
discussed in this paper. However, for fully realizing the po-
tential of our approach, we plan to evaluate it on machines
with a larger number of processors.

We used Linux 2.6.15 as the operating system. Linux was
modified in order to add the features needed for hardware
performance monitoring, including the stall breakdown and
remote cache access address sampling. We also changed the
CPU scheduling code to migrate threads according to the
thread clustering scheme proposed in this paper.

5.2 Platform Specific Implementation Issues
5.2.1 Capturing Remote Cache Accesses on Power5
The Power5 PMU provides a mechanism called continuous

sampling that captures the address of the last L1 data cache
miss or TLB miss (or both) in a continuous fashion regard-
less of the instruction that caused the data cache miss or
TLB miss. The sampled address is recorded in a register
which is updated on the next data cache miss or TLB miss.
It is not possible to directly determine whether the sampled
local L1 data cache miss was satisfied by a remote or local
cache access. As a result, by just taking data cache misses
regardless of their source, an unacceptable level of noise is
added to the monitoring scheme. Fortunately, we have been

able to develop a technique to remove much of this noise
from our samples as follows.

In the Power5 processor, it is possible to count the occur-
rences of local L1 data cache misses that are satisfied by a
remote L2 or remote L3 cache access. As a result, it is pos-
sible to set the PMU overflow exception to be raised when a
certain number of remote cache accesses has been reached.
Once an overflow exception is raised, the “last” local data
cache miss is very likely to have required a remote cache
access that caused one of the HPCs to overflow. Therefore,
by reading the sample data register only when the remote
cache access counter overflows, we ensure that most of the
samples read are actually remote cache accesses. Our experi-
ments with various microbenchmarks verify the effectiveness
of this method as almost all of the local L1 data cache misses
recorded in our trace are indeed satisfied by remote cache
accesses.

5.3 Workloads
For our experiments, we used a synthetic microbenchmark
and three commercial server workloads, VolanoMark which
is an Internet chat server, SPECjbb2000, which is a Java-
based application server workload, and RUBiS, which is
an online transaction processing (OLTP) database work-
load. For VolanoMark and SPECjbb, we used the IBM
J2SE 5.0 Java virtual machine (JVM). For RUBiS, we used
MySQL 5.0.22 as our database server. These server applica-
tions are written in a multithreaded, client-server program-
ming style, where there is a thread to handle each client
connection for the life time of the connection. We present
details of each benchmark below.

5.3.1 Synthetic Microbenchmark
The synthetic microbenchmark is a simple multithreaded
program in which each worker thread reads and modifies a
scoreboard. Each scoreboard is shared by several threads,
and there are several scoreboards. Each thread has a pri-
vate chunk of data to work on which is fairly large so that
accessing it often causes data cache misses. This is to verify
that our technique is able to distinguish remote cache ac-
cesses that are caused by accessing the shared scoreboards
from local cache accesses that are caused by accessing the
private data. All scoreboards are accessed by a fixed num-
ber of threads. A clustering algorithm is supposed to cluster
threads that share a scoreboard and consider them as the
unit of thread migration.

5.3.2 VolanoMark
VolanoMark is an instant messaging chat server workload.
It consists of a Java-based chat server and a Java-based
client driver. The number of rooms, number connections per
room, and client think times are configurable parameters.
This server is written using the traditional, multithreaded,
client-server programming model, where each connection is
handled completely by a designated thread for the life-time
of the connection. In actuality, VolanoMark uses two des-
ignated threads per connection. Given the nature of the
computational task, threads belonging to the same room
should experience more intense data sharing that threads
belonging to different rooms.

In our experiments, we used 2 rooms with 8 clients per room
and 0 think time as our test case. In this setting, the hand-
optimized placement of threads would be for the threads
of each room to be located on separate chips. In the worst
case scenario, the threads are placed randomly or in a round-
robin fashion.

5.3.3 SPECjbb2000
SPECjbb2000 is a self-contained Java-based benchmark that
consists of multiple threads accessing designated warehouses.
Each warehouse is approximately 25 MB in size and stored
internally as a B-tree variant. Each thread accesses a fixed
warehouse for the life-time of the experiment. Given the
nature of the computational task, threads belonging to the
same warehouse should experience more intense data shar-
ing than threads belonging to different warehouses.

In our experiments, we modified the default configuration of
SPECjbb so that multiple threads can access a warehouse.
Thus, in our configuration, we ran the experiments using
2 warehouses and 8 threads per warehouse.

5.3.4 RUBiS
RUBiS is an OLTP server workload that represents an online
auction site workload in a multi-tiered environment. The
client driver is a Java-based web client that accesses an on-
line auction web server. The front-end web server uses PHP
to connect to a back-end database. In our experiments, we
ran MySQL 5.0.22 as our back-end database. We focus on
the performance of the database server. We made a mi-
nor modification to the PHP client module so that it uses
persistent connections to the database, allowing for multiple
MySQL requests to be made within a connection. While this
modification improves performance by reducing the rate of
TCP/IP connection creation and corresponding thread cre-
ation on the database server, it also enables our algorithm
to monitor the sharing pattern of individual threads over
the long term.

In our workload configuration, we used two separate database

instances within a single MySQL process. We used 16 clients
per database instance with no client think time. This con-
figuration may represent, for instance, two separate auction
sites run by a single large media company. We expect that
threads belonging to the same database instance will expe-
rience more intense sharing with each other than with other
threads in the MySQL process.

5.4 Thread Placement
We evaluated four thread placement strategies: default Linux,
round-robin, hand-optimized, and automatic thread clus-
tering. The default Linux thread placement strategy at-
tempts to find the least loaded processor in which to place
the thread. In addition, Linux performs two types of dy-
namic load-balancing: reactive and pro-active. In reactive
load-balancing, once a processor becomes idle, a thread from
a remote processor is found and migrated to the idle pro-
cessor. Pro-active load-balancing attempts to balance the
CPU time each threads gets by automatically balancing the
length of the processor run queues. The default Linux sched-
uler does not take data sharing into account when migrating
and scheduling the threads.

For round-robin scheduling, we modified Linux to disable
dynamic load balancing. Threads of our targeted workload
are placed in a round-robin fashion among processors. This
thread placement strategy is unaware of data sharing pat-
terns among threads. The round-robin scheduling is imple-
mented in order to be able to exhibit worst case scenarios
where sharing threads are scattered onto different chips.

With hand-optimized scheduling, threads are placed by con-
sidering natural data partitioning according to the appli-
cation logic2. For VolanoMark, threads belonging to one
room are placed on one chip while threads belonging to
the other room are placed on the other chip. Within each
chip, threads of the room are placed in a round-robin fash-
ion to achieve load-balance within the chip. Similarly for
SPECjbb, threads of one warehouse are placed onto the
same chip. The same pattern applies for RUBiS: the threads
of one database instance are placed onto one chip while
threads of the second database instance are placed onto
the other chip. For hand-optimized scheduling, the Linux
scheduler is modified to disable both reactive and pro-active
load-balancing.

6. RESULTS
6.1 Thread Clustering
Figure 5 shows a visual representation of shMap vectors and
the way they are clustered for the four applications. Each
application is represented by a gray scale picture in which
each row represents a shMap vector of a thread. The darker
a point is, the more often remote cache accesses are sampled
for the corresponding shMap entry. Therefore, a continu-
ous vertical dark line represents thread sharing among cor-
rectly clustered threads. To simplify the picture, the glob-
ally (process-wide) shared data have been removed3. From
Figure 5 it is clear that the shMaps are effective in detecting
sharing and clustering threads for three applications out of
four (microbenchmark, SPECjbb, and RUBiS). In all three
cases the automatically detected clusters conforming to a
manual clustering that can be done with specific knowledge
about the application logic (i.e., a cluster for each scoreboard
for the microbenchmark, for each warehouse in SPECjbb,
and for each database instance in MySQL). JVM garbage
collector threads in SPECjbb and VolanoMark did not af-
fect cluster formation since they are run infrequently and do
not have the opportunity to exhibit much sharing.

For VolanoMark however, the detected clusters do not con-
form with the logical data partitioning of the application
logic (i.e., one partition per chat room). However, as we
will show later, the automatic clustering approach still im-
proves performance by co-locating threads that share data.

6.2 Performance Results
Figure 6 shows the impact of the different thread scheduling
schemes on processor stalls caused by accessing high-latency
remote caches. In general, it is clear that it is possible to

2We do not claim that the hand-optimized thread place-
ments are the optimal placements, but are merely signif-
icantly improved placements based on application domain
knowledge.
3For illustration purposes, SPECjbb was run with 4 ware-
houses. In subsequent experiments, 2 warehouses are used.

Cluster1

Cluster2

Cluster4

Cluster3

shMap
Vectors

shMapVector Entries

shMap
Vectors

shMap Vector Entries

cluster1

cluster2

cluster3

cluster4

a. Microbenchmark b. SPECjbb2000

shMap
Vectors

shMap Vector Entries

Cluster1

Cluster2

shMap Vector Entries

shMap
Vectors

Cluster1

Cluster2

Cluster3
Cluster4
Cluster5

c. RUBiS d. VolanoMark

Figure 5: Visual representation of shMap vectors. Each labeled cluster consists of several rows of shMap
vectors. Each row represents a thread’s shMap vector. Each shMap entry is represented with a gray scale
point. More frequently accessed entries appear darker.

Figure 6: The impact of the scheduling schemes
on reducing stalls caused by remote cache accesses.
The baseline is Linux default scheduling.

remove a significant portion of remote access stalls either
by hand-optimizing the thread placement, or through au-
tomatic clustering. For SPECjbb, the automatic clustering
approach performs nearly as good as the hand-optimized
method. For the other two applications there is still further
room for improvement.

Figure 7 shows the impact of the different thread schedul-
ing schemes on application performance. Again, both the
hand-optimized and the automatic clustering schemes man-
age to improve performance by a reasonable amount, but
there is still room for improving the automatic clustering
scheme. The magnitudes of performance gain appear rea-

Figure 7: The performance impact of scheduling
schemes on application performance. The baseline
is Linux default scheduling.

sonable because they approximately match the reduction in
processor stalls due to remote cache accesses. For example,
in Figure 3, 6% of stalls in VolanoMark were due to remote
cache accesses and thread clustering was able to improve
performance by 5% by removing some of these stalls.

6.3 Runtime Overhead & Temporal Sampling
Sensitivity

The average runtime overhead for identifying stall break-
down is negligible. Therefore, the main runtime overhead
of the system is due to detecting the sharing patterns. Fig-
ure 8 shows the runtime overhead of this phase as a func-

 0

 2

 4

 6

 8

 10

50201052
 0

 10

 20

 30

 40

 50
R

u
n

ti
m

e
 O

v
e
rh

e
a
d

 (
%

)

T
ra

c
k
in

g
 T

im
e
 (

B
il
li
o

n
 C

P
U

 C
y
c
le

s
)

Remote Misses Captured (%)

Overhead
Tracking Time

Figure 8: Runtime overhead of the sharing detec-
tion phase and the time (in billion CPU cycles) that
is required to collect a million remote cache access
samples. The x-axis is the temporal sampling rate,
i.e., the percentage of the remote cache accesses that
are sampled.

tion of temporal sampling rate in terms of the percentage
of the remote cache accesses that are actually examined for
SPECjbb. As a higher percentage of the remote cache ac-
cesses are captured, the overhead increases. However, the
length of this phase is fairly limited and only goes until we
collect a sufficient number of samples to be able to cluster
the threads. In our experiments, we have found we need
roughly a million samples to accurately cluster the threads.
Therefore, on the right y-axis of Figure 8 we show how long
(in billion CPU cycles) we need to stay in the detection
phase to collect a million samples. Hence, the higher the
sampling rate, the higher the run-time overhead will be, but
the shorter the detection phase will last. According to Fig-
ure 8 it seems a sampling rate of 10 (capturing one in every
10 remote cache accesses) is a good balance point in this
trade-off.

6.4 Spatial Sampling Sensitivity
Although not shown, we have tried varying the number of
entries in the shMap vectors for our workloads and found the
cluster identification to be largely invariant. For example,
we ran experiments using shMap sizes of 128 entries and
512 entries. The impact of using 128 entries as opposed
to 256 entries on SPECjbb can be roughly visualized by
covering the left half of the Figure 5b. Clustering would
still identify the same groups of threads as sharing.

7. DISCUSSION
7.1 Local Cache Contention
Clustering too many threads onto the same chip could create
local cache contention problems. The local caches may not
have sufficient capacity to contain the aggregate working set
of the threads. In addition, because these local caches are
not fully associative but are set-associative, cache conflict
problems may be magnified. Fortunately in our system, lo-
cal L2 cache contention is mitigated by a large local L3 cache
(36 MB). However, local cache contention was not significant
in our workloads.

7.2 Migration Costs
Thread migration incurs the costs of cache context reload-
ing into the local caches and TLB reloading. Compared
to typical process migration that is performed by operating
systems, such as default Linux, thread migration has lower
costs since threads in a single application address space typ-
ically exhibit more cache context and TLB sharing. Any
reloading costs are expected to be amortized over the long
thread execution time at the new location, where threads
enjoy the benefits of reduced remote caches accesses. Our
results have shown that these benefits outweigh the costs.

7.3 PMU Requirements
Ideally, we would like the ability to specifically configure
the PMU to continuously record the data address of remote
cache accesses. Unfortunately, this direct capability is not
available on the Power5 processor and so it was composed
using basic PMU capabilities as described in Section 5.2.1.
Currently, as far as we are aware, no other commercially
available processors provide the direct capability or suitably
composable basic capabilities.

It is interesting to note that although hardware designers
initially added PMU functionality primarily to collect in-
formation for their own purposes, namely for designing the
next generation of processor architectures, PMUs have be-
come surprisingly useful for purposes other than for which
they were envisioned. Consequently, they are now adding
more and more capabilities requested by software design-
ers. We hope that this paper provides compelling evidence
of the usefulness of PMU sharing detection capabilities so
that more processor manufacturers would seriously consider
adding them to future processors.

7.4 Important Hardware Properties
Our thread clustering approach is viable because there exists
a large disparity between local and remote cache latencies.
On larger multiprocessor systems, where this disparity is
even greater, we expect higher performance gains. In actu-
ality, running on a 32-way Power5 multiprocessor consisting
of 8 chips, we saw a greater performance impact from thread
clustering. Our preliminary results indicate a 14% through-
put improvement in SPECjbb when comparing handcrafted
placement to the default Linux configuration. We are cur-
rently working on obtaining the throughput results of auto-
matic thread clustering.

8. CONCLUDING REMARKS
We have described the design and implementation of a scheme
to schedule threads based on sharing patterns detected on-
line using features of standard performance monitoring units
(PMUs) available in modern processing units. Experimen-
tal results indicate that our scheme is reasonably effective:
running commercial multithreaded server Linux workloads
on an 8-way Power5 SMP-CMP-SMT multiprocessor, our
scheme was able to reduce remote cache access stalls by
up to 70% and improve application performance by up to
7%. Our work in this area is admittedly still at a rela-
tively early stage. Although we have briefly examined the
impact of temporal and spatial sampling, we have not yet
examined the sensitivity of other parameters, such as the
similarity metric and the clustering algorithm. Comparing

the detection accuracy of our light-weight clustering algo-
rithm against full-blown clustering algorithms is a subject
of future work. Moreover, the platform used for experimen-
tation is modest; we plan to run experiments on larger-scale
systems. Nevertheless, we find the results obtained so far
to be promising and we are currently considering additional
workloads.

This work, we believe, represents the first time hardware
PMUs have been used to detect sharing patterns in a fairly
successful fashion. More specifically, we have found our
method of identifying sharing patterns using shMap signa-
tures to be surprisingly effective considering (i) their rel-
atively small size of only 256 entries, and (ii) the liberal
application of sampling along several dimensions (temporal
and spatial).

Finally, we believe that it would be straight-forward to ex-
tend our scheme to provide scheduling support for tradi-
tional NUMA multiprocessors. For this work, we filtered
out all PMU cache miss events except for misses that are
satisfied by remote L2 and remote L3 cache accesses. This
could easily be changed to filter out all cache misses that
are satisfied from remote L3 caches and remote memory.

9. ACKNOWLEDGEMENTS
We would like to thank a number of individuals and or-
ganizations for their support. Cristiana Amza and Gokul
Soundararajan provided the RUBiS database workload. Al-
lan Kielstra, the IBM JIT Compiler Group, and the IBM
Center for Advanced Studies provided computer equipment.
Funding for this work has been provided by the University
of Toronto Department of Electrical and Computer Engi-
neering, IBM K42 OS Research Group, and United States
Department of Energy. The authors gratefully acknowledge
support by the Director, Office of Science, of the U.S. De-
partment of Energy under Contract No. DE-AC02-05CH11231.

10. REFERENCES
[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu,

R. Rajamony, W. Yu, and W. Zwaenepoel.
Treadmarks: Shared memory computing on networks
of workstations. IEEE Computer, 29(2):18–28, Feb
1996.

[2] R. Azimi, M. Stumm, and R. Wisniewski. Online
performance analysis by statistical sampling of
microprocessor performance counters. In Intl. Conf.

on Supercomputing, 2005.

[3] F. Bellosa. Follow-on scheduling: Using TLB
information to reduce cache misses. In Symp. on

Operating Systems Principles - Work in Progress

Session, 1997.

[4] F. Bellosa and M. Steckermeier. The performance
implications of locality information usage in
shared-memory multiprocessors. J. of Parallel and

Distributed Computing, 37(1):113–121, Aug 1996.

[5] J. R. Bulpin and I. A. Pratt. Hyper-threading aware
process scheduling heuristics. In Usenix Annual

Technical Conf., 2005.

[6] A. El-Moursy, R. Garg, D. H. Albonesi, and
S. Dwarkadas. Compatible phase co-scheduling on a
CMP of multi-threaded processors. In Intl. Parallel

and Distributed Processing Symp., 2006.

[7] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.
Performance of multithreaded chip multiprocessors
and implications for operating system design. In
Usenix Annual Technical Conf., 2005.

[8] A. Fedorova, C. Small, D. Nussbaum, and M. Seltzer.
Chip multithreading systems need a new operating
system scheduler. In SIGOPS European Workshop,
2004.

[9] S. Harizopoulos and A. Ailamaki. STEPS towards
cache-resident transaction processing. In Conf. on

Very Large Data Bases, 2004.

[10] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: a review. ACM Computing Surveys,
31(3):264–323, 1999.

[11] P. Koka and M. H. Lipasti. Opportunities for cache
friendly process scheduling. In Workshop on

Interaction Between Operating Systems and Computer

Architecture, 2005.

[12] J. Larus and M. Parkes. Using cohort scheduling to
enhance server performance. In Usenix Annual

Technical Conf., 2002.

[13] R. L. McGregor, C. D. Antonopoulos, and D. S.
Nikolopoulos. Scheduling algorithms for effective
thread pairing on hybrid multiprocessors. In Intl.

Parallel and Distributed Processing Symp., 2005.

[14] J. Nakajima and V. Pallipadi. Enhancements for
Hyper-Threading technology in the operating system
– seeking the optimal micro-architectural scheduling.
In Workshop on Industrial Experiences with Systems

Software, 2002.

[15] S. Parekh, S. Eggers, H. Levy, and J. Lo.
Thread-sensitive scheduling for SMT processors.
Technical report, Dept. of Computer Science &
Engineering, Univ. of Washington, 2000.

[16] J. Philbin, J. Edler, O. J. Anshus, C. C. Douglas, and
K. Li. Thread scheduling for cache locality. In Conf.

on Architectural Support for Programming Languages

and Operating Systems, 1996.

[17] A. Settle, J. Kihm, A. Janiszewski, and D. A.
Connors. Architectural support for enhanced SMT job
scheduling. In Symp. on Parallel Architectures and

Compilation Techniques, 2004.

[18] A. Snavely and D. M. Tullsen. Symbiotic
jobscheduling for a simultaneous multithreading
processor. In Conf. on Architectural Support for

Programming Languages and Operating Systems, 2000.

[19] S. Sridharan, B. Keck, R. Murphy, S. Chandra, and
P. Kogge. Thread migration to improve
synchronization performance. In Workshop on

Operating System Interference in High Performance

Applications, 2006.

[20] E. G. Suh, L. Rudolph, and S. Devadas. Effects of
memory performance on parallel job scheduling. In
D. G. Feitelson and L. Rudolph, editors, Workshop on

Job Scheduling Strategies for Parallel Processing,
volume 2221 of Lecture Notes in Computer Science,
pages 116–132, Cambridge, MA, Jun 16 2001.
Springer-Verlag.

[21] E. G. Suh, L. Rudolph, and S. Devadas. A new
memory monitoring scheme for memory-aware
scheduling and partitioning. In Symp. on

High-Performance Computer Architecture, 2002.

[22] R. Thekkath and S. J. Eggers. Impact of sharing-based
thread placement on multithreaded architectures. In
Intl. Symp. on Computer Architecture, 1994.

[23] B. Weissman. Performance counters and state sharing
annotations: a unified approach to thread locality. In
Conf. on Architectural Support for Programming

Languages and Operating Systems, 1998.

[24] M. Welsh, D. Culler, and E. Brewer. SEDA: An
architecture for well-conditioned, scalable internet
services. In Symp. on Operating Systems Principles,
2001.

