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Abstract—The optimization of a TCSPC system requires
modeling which considers the design specifications and
parameters of the target application under different operating
scenarios. Since single-photon detection is fundamentally a
stochastic process, extensive behavioral Monte Carlo simulations
are normally used. Their accuracy depends upon computation
time. However, the trend towards larger SPAD arrays and
emerging complex TDC sharing architectures requires much
faster simulation methods. In this paper, a simple, fast and
accurate analytical model is presented to address this need. It
accounts for dead time effects which result in missed photon
counts through the analysis of inhomogeneous continuous time
Markov chain. The effective received power and photon detection
rate are determined and the corresponding analytical histogram is
created. This histogram is the basis for calculating time of flight
and can be used to explore architectural alternatives and
accelerate design verification. Outputs of the presented analytical
model match those of Monte Carlo simulations, and are produced
considerably faster. The computation time improvement grows
with array sizes and this enables parametric analysis of TCSPC
system.

Keywords—time of flight (ToF); time correlated single photon
counting (TCSPC); SPAD; dead time; inhomogeneous continuous
time Markov chain (ICTMC); Monte Carlo

I. INTRODUCTION

The interest in high performance three-dimensional (3D)
imaging has grown in recent years due to immense demand in
engineering, science and entertainment [ 1]. Much work has been
carried out in the field of solid-state time-of-flight (ToF) 3D
imagers. Evaluating the performance of state-of-the-art 3D
imagers requires comprehensive simulations for the target
application under various operating scenarios. System level
simulations for single photon avalanche diode (SPAD) based
ToF designs can be carried out by analytical modeling [2] or
numerical Monte Carlo simulations. While Monte Carlo
simulations generate realistic samples of the system output, its
accuracy depends on the computation time which increases with
the sensor array size. On the other hand, even though analytical
physical models provide almost instantaneous results and
parametrization, their accuracy has so far been limited.
Furthermore, analytical modeling helps to develop design
insight and facilitates parametric sweeps of design variables.
Examples of design parameters are illumination power,
illumination pulse duration, and time to digital converter (TDC)
resolution and precision to name a few.

The focus of this work is to develop an analytical model of
the time correlated single photon counting (TCSPC) process
considering the dead time effect and the resulting missed counts.
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Fig. 1. Left: SPAD’s vanable-load quenching circuit (VLQC) [3]. The
quenching element 1is a transistor with variable channel resistance. Right:
TCSPC operation, Top: Single-photon detected pulses of SPAD, Bottom:
Reconstructed signal histogram after the TDC

It facilitates system level simulation of SPAD-based direct ToF
designs. The proposed model takes into account the time
inhomogeneous nature of the received pulse along with the
SPAD quenching and TDC dead time and the resulting
instantaneous output matches that of Monte Carlo simulations.
In this paper, initiallyy, SPAD behavior and the time
inhomogeneous nature of photon detection in TCSPC systems
are briefly reviewed in part II. Later in part III, analytical
modeling including the dead time effect is presented followed
by Monte Carlo verification in part IV.

II. BACKGROUND

A. SPADs in TCSPC and the Dead Time of the System

SPADs are semiconductor devices based on a p-n junction
reverse-biased at a voltage that exceeds the breakdown voltage
of the junction. At this bias point, the electric field is so high that
a single charge carrier injected into the depletion layer can
trigger a self-sustaining avalanche. The current rises swiftly with
a sub-nanosecond rise-time to a macroscopic steady-state level
in the mA range [3]. If the primary carrier is photo-generated,
the leading edge of the avalanche pulse, marks the arrival time
of the detected photon with picosecond time jitter [3]. The
current continues to flow until the avalanche is quenched by
lowering the bias voltage below the breakdown voltage, at
which time the current ceases (see Fig. 1). To detect another
photon, the bias voltage must be raised again above breakdown.
The voltage will then be recharged by the flow of electric current



into the parasitic capacitances, with the diode being ready to
detect another carrier after this SPAD dead time. In TCSPC
measurement, this process is repeated several times and the
resulting time of flights which also include false triggers because
of background illumination or dark counts are recorded by TDCs
and a histogram is created [1] as shown is Fig. 1.

The dead time of the total system is calculated by adding up
the dead time of TDCs. There have been some efforts in
modeling of the SPAD based ToF systems including the dead
time effects [2]. As they are investigating indirect time of flight
measurement, they don’t address TCSPC system behavior, they
lack considering time inhomogeneity of detection, and they are
limited to the special case of one TDC per pixel architecture. In
this paper, we are interested in investigating the dead time
effects of TDCs which are dominant in systems where TDCs are
shared per sub-arrays especially in complex TDC sharing
methods. Dead time is itself likely a random wvariable.
Fortunately, the blocking probability resulting from the dead
time effects depends only upon the mean dead time, # and
therefore does not require detailed treatment of the statistics of
the dead time [4]. So, during periods when the system is busy,
pulses leave the system according to a Poisson process of rate .

B. Time-Inhomogeneous Photon Detection

In ToF distance measurements, the received pulse incident
on the SPAD is a time dependent reflected pulse (generally
Gaussian) superimposed on background illumination resulting
in a time varying signal. This inhomogeneous Poisson process
does not have the stationary increment property, which
complicates the analysis. However, since it is a shrinking
Bernoulli process, it can be viewed as a homogeneous Poisson
process over a non-linear time scale [4].

ITI. ANALYTICAL MODELING AND HISTOGRAM

A. Inhomogeneous Continuous Time Markov Chain (ICTMC)
and Blocking Probability

To consider the dead time in TCSPC systems, we are
interested in finding the probability with which an arriving pulse
is missed. This is important as missed counts degrade the
effective signal counts and hence increase the variance of the
measurement, reducing accuracy. We consider the general case
where an array of SPADs are connected to in-column TDCs so
that the arrival time of a pulse generated by any SPAD is
measured by any available TDC in that column. Once
measuring a pulse, the TDC is unavailable for a mean dead time.
When all in-column TDCs are unavailable, the system is said to
be in a blocking state. Time blocking refers to the proportion of
time the system spends in the blocking state where all N TDCs
are busy processing the photon detection times; and arrival
blocking is the proportion of the arriving pulses which are
missed. These two quantities are equal if the arrival process is
Poisson and the dead times of the arrivals are independent and
identically distributed [4].

The Poisson process that we have seen earlier is a continuous
time Markov chain. However, equipped with the small-slot
discrete-time approximation technique, we may analyze the
Poisson process as a discrete-time Markov chain as well. The
TCSPC system with dead time can be considered a loss system
with no waiting time and can be modeled by an immigration-
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Fig. 2. The Markov chain transition diagram of a TCSPC system with
dead time can be considered as a time inhomogeneous immigration-death
process (R{(f) = R(¢) and y; = iu).

death process [4] which means that the new arrivals enter the
system at random at a rate R{(f) which is independent of i,
meaning that it is not dependent on the state of the system at time
t, and the dead time is g; = ii which means the busy TDCs in the
system become available again at random, at a simple linear rate
u per individual. These assumptions are valid when there is no
appreciable crowding [4] as in the case of TCSPC systems [1].
The transition diagram for such a process is shown in Fig. 2. The
labels on the arrows indicate transition probabilities which are
conditional probabilities of going from some value of X to
another value. Consider a random variable N(7) which represents
the number of occupied TDCs at time 7. The Markov process
with discrete states in continuous time is in principle defined
when we have a set of functions [4],

pij(t,w) prob{N(u) j|N(t) i}

The infinitesimal generator matrix Q is an array of numbers
describing the rate a continuous time Markov chain moves
between states. The rows of Q form a basis for a linear code

ith gy limiLE g lim 2 wher :
with g;; Ll_t}g 0 4ij }ll_r’lgJ n where % denotes the time
increment [4].

The Markov Chain in Fig. 2 can be described with
Kolmogorov forward differential equations. The matrix form of
the Kolmogorov forward differential equations for the time-
inhomogeneous Markov jump process is [4]

aP(t,u)
— - Phwew
where for the case of Fig. 2 we have
R(u) R(u) 0 0
QW) u R(u) u Rwm) O
0 2u . :
0 H H
Thus, the probability of each state is
ap;;(t,w) .
5 R -py (6w (RW+ju) - piyt,u)

+0 + 1) pupijea(tw)

The row vector / denotes the probabilities at time
corresponding to the initial state 7 and the initial condition is
P(0,0) = I. Taking the nonzero terms, alternatively, we could
think about of this equation as follows:

e Take the probability that the process goes from state 7 at
time £ to state j-1 at time », and multiply this by the force
of transition from state j-1 to statej at time #,

e Then add the probability that the process goes from state
i at time 7 to state j at time », multiplied by the force of
transition that keeps the process in state j at time u,



e  Then add the probability that the process goes from state
i at time f to state j+1 at time #, and multiply this by the
force of transition from state j+1 to state j at time u.

Practically, for TCSPC processes, there is far less than one
detection per pulse on average. We therefore assume there is no
appreciable crowding and that the histogram resolution (TDC
LSB width) is much smaller than o of the reflected pulse where

7 7 7
0 \Olaser + Odpap + Ofpc.

This results in the first photon detection rate which is a
weakly time varying process in time slots whose width is the
TDC resolution. Let N(f) denote the number of TDCs in service
and p;(t) prob{N(t) j} the probability of being in state j
at time 7. Then the state variable N(t) constitutes a Markov
process and we have

R(t) 7 J
Po(t) ( ( ) j'dead)
where R(t) denotes the average arrival rate in [t t + A]. Given
that po + p; + -+ p, 1, the probability p, that a new
arrival is rejected because all TDCs are busy can be calculated
as

R(®) pj 1()  ju-p;j(®) = pi(®)
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This can be considered as a generalization of Erlang’s
formula [4] to a time inhomogeneous scenario. This equation
shows a non-linear behavior with respect to the incoming arrival
rate so superposition is not valid and R(t) should include both
background illumination and the reflected light pulse. The
blocking probability as a function of arrival rate R(t) and dead
time Typqq 1S shown in Fig. 3 for different TDC counts in the
system.

B. The First Detection and Inter-Arrival-Time (IAT) for Time
Inhomogeneous case
In TCSPC systems only the first photon that triggers the
SPAD is detected [1]. In this section, the probability distribution
function of the first arrival is determined. Let the last arrival
occurred at time 0. The probability of an arrival occurrence in [t,
t+A) is then given as

N 1
P(t <X <t +At) 1—[[1 A(k2)A] - [A(NA)A] + 0(2)
1

Using the following approximations, [[Y[1  A(kA)A]
A(NA)A
exp[EN{ A(kA)A + 0(4)}] and 12:—~1m ANA)A + o(4),
the Z4T density is given as
P(t <X <t+At)

t
f®) k_r:r(l) 7 A(t)exp [ j; A(u)du]

The I47I density f(t) represents the probability distribution
function of the first arrival and it can be used to model R(t) to
create the detected arrival pulse sequence.
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Fig. 3. The blocking probability versus photon detection rate for different
TDC counts assigned to process the incoming traffic

C. Effective Received Pulse and Analytical Histogram
The power distribution of the reflected pulse at the detector
can be described in time as
P Psig(t) + Ppg

Then the effective incoming photon arrival rate as a
consequence of reflected pulse and background illumination is
as follows

R() (Age + Asig ) exp{ j(; (Age + Asig (u))du}

Ppg Psig(t)
. Acs (t)
Ephoton "IPDE > “sig Ephoton

Nppe denotes the photon detection efficiency.

where }'BG *NpDE and

The effective rate after considering the dead time effect is

Regsr(®) RO -[1 pa(®)]

Now the system can be treated as a normal light detector with
zero dead time and sensitive to all incoming photons not just the
first arrival. The reconstructed histogram after the TDC, can be
calculated as follows

NS

h.(T) f At REff(t)dt
Tz

where 7 € [0, At, 24t, ..., (% 1)At], Tpuise is the

pulse repetition period, and At is equal to TDC’s LSB width.

D. Position of the Peak; A Shift Towards Lower Values

Assume, for simplicity, the case in which Ag; and 74,44 are
zero. The typical diffusion tail present in SPAD timing
responses which represents the after-pulsing is very often
submerged under the background level of the TCSPC histogram
[5], so for Gaussian illumination, the power distribution of the
reflected pulse at the detector can be described in time as

p Erx exp ( (t tToF)z)
V2no 202
where Ep, is the total energy of one pulse. Also assume that
At < ¢, then we have weakly time varying case and the




corresponding analytical histogram can be calculated as
h(t) = Rgsp(r) - At-N

where N denotes the number of repetition which is equal to
the number of Monte Carlo simulations. The position of the
histogram peak, t,,04, 1s an estimation of ¢y, and it may be
determined by setting dh(7)/dt 0 as

t t Epy " t tror\?
peak . ToF | Erx pDE exp[ (peak . ToF) ] 0
o Epp V210 20

Then t,eqr  jAt < tror and equity holds for the case of
Epx *Mppe = 0. As nonzero Ag; means higher detection rate
R(t) at lower values of time, it shifts tpq) further towards lower
values so the statement holds true for real life scenarios as well.

IV. VERIFICATION WITH MONTE CARLO SIMULATION

To validate the model, a series of the SPAD’s first arrival
detected pulses with rate R(t) are statistically generated for an
array of 3 by 4 through Monte Carlo simulation. These pulses
are then processed for the most common TDC sharing
architecture in 3D image sensors with SPADs wherein one TDC
is shared within each column of the SPAD sensors. The pulse
modulation frequency is set to f,,,s = 100MHz, G4 = 150ps,
Ospap = 30ps, and orpc = 10ps. Under normal indoor operation
conditions, Ag;  33.4MPhoton/sec and an average transmitted
pulse power of 10mW results in a received power level of
approximately 1pW at a target distance of 30cm [6]. The
histogram resolution is set to TDC LSB width of 50psec and
simulations are run 500000 times for one measurement at 200
frames per second.

Eventually, the Monte Carlo simulation is run and dead time
processing is performed on each pixel in the array. The pixel
with maximum missed counts is selected to create the histogram.
Fig. 4 shows a good match between the analytical histogram and
the Monte Carlo result for two cases with different dead times
of 5nsec and 10nsec. It’s worth noting that the simulation time
of Monte Carlo analysis strongly depends on the system
simulation parameters such as incoming photon rate and dead
time. Simulations are run with MacBook Pro with 2.7 GHz Intel
Core i5 and 8GB of memory. For this case, the calculation time
is approximately 5000 times faster for the analytical simulation
and this improvement grows with the increase in SPAD array
size.

CONCLUSIONS

In this paper, the need for faster simulation method for
TCSPC systems is highlighted to support the emergent trend
towards SPAD arrays with more elements and more complex
detection architectures. An analytical model has been presented
for the most common architecture in 3D image sensors with
SPADs in which TDCs are shared per columns of SPAD
sensors. The validity of this model has been verified through
comparison with Monte Carlo simulations. It is therefore
possible to use this model to accurately and quickly relate the
detected ToF histogram for TCSPC 3D imagers to design
parameters. The presented analytical model facilitates system
level simulation of TCSPC systems, TDC architectural and
design parameters sweep such as the number of TDCs, their
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Fig. 4. Histogram of the 1% arrival with histogram resolution of 50psec
resulting from Monte Carlo simulation along with the presented analytical
modeling (solid line). The frame rate is 200 and repetition frequency is fiod
= 100MHz. Top: Tgea = Snsec, Bottom: Tzeas = 10nsec

resolution, dead time and precision, and it allows investigating
more complex TDC sharing architectures.
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