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Abstract—This paper presents an all-digital background cal-
ibration for timing mismatch in time-interleaved analog-to-
digital converters (TI-ADCs). It combines digital adaptive timing
mismatch estimation and digital derivative-based correction,
achieving lower hardware cost and better suppression of timing
mismatch tones than previous work. In addition, for the first
time closed-form exact expressions for the signal-to-noise and
distortion ratio (SNDR) of a four-channel TI-ADC with timing
mismatch after derivative-based digital correction are obtained,
which can be used to guide the design. Simulation results of a
four-channel TI-ADC behavioral model and measurement results
from a commercial 12-bit 3.6-GS/s two-channel TI-ADC show
that the proposed all-digital calibration can accurately estimate
the timing skew and effectively correct the timing mismatch
errors, while also confirming the analytic SNDR expressions.

Index Terms— All-digital calibration, analog-to-digital con-
verter (ADC), derivative, finite-impulse response (FIR) filter, time
interleaving (TI), timing mismatch.

I. INTRODUCTION

ATA communication systems such as full-band capture

cable tuners and baseband backplane/optical receivers
require the use of high-speed analog-to-digital convert-
ers (ADCs) [1]. By exploiting multiple sub-ADCs operating
in parallel, a time-interleaved (TI) ADC can achieve a high
aggregate sampling rate. The input signal is sequentially sam-
pled and digitized by the sub-ADCs in turn in a round-robin
fashion. However, gain, offset, and timing mismatches between
the sub-ADCs can significantly degrade the signal-to-noise
and distortion ratio (SNDR) and spurious-free dynamic range
(SFDR) of the TI-ADC. Although large transistor size and
careful layout can alleviate these mismatches, these solutions
are area-hungry and impractical for high-resolution applica-
tions [2]. Therefore, much work has focused on the calibration
of these mismatch errors in TI-ADCs. Whereas gain and
offset calibration are relatively simple, the calibration of timing
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mismatch error remains a significant challenge [3]-[20], and
is the focus of this paper.

Techniques for timing mismatch calibration can be divided
into two categories: mixed-signal and all-digital. Mixed-signal
correction employs an analog variable delay line (VDL)
in each sub-ADC’s clock path to compensate the timing
skew [4]-[12], whereas a digital approach directly cor-
rects the TI-ADC outputs using digital signal process-
ing (DSP) [13]-[20]. Although an analog correction obviates
the need for complex DSP, it is subject to process, voltage,
and temperature (PVT) variations and the additional jitter
introduced by the VDL. Digital calibration is immune to
PVT variations and well-suited to scaled CMOS technologies,
therefore attracting recent interest.

Conventional all-digital calibration uses a bank of adaptive
finite-impulse response (FIR) filters, but accommodating the
dynamic filter coefficients consumes relatively high power
and area [13]-[15]. A more power/area-efficient approach is
to leverage a first-order Taylor approximation to eliminate
the timing mismatch error, which requires only a derivative
FIR filter with fixed coefficients. This derivative-based method
requires the estimation of timing mismatch in each sub-ADC
after the first-order derivative of the TI-ADC output is obtained
by the filter. In [17], an open-loop method for timing mismatch
estimation is demonstrated; however, the estimation accuracy
is insufficient for large timing mismatches and the hardware
cost is considerable. In [18] and [19], an extra FIR derivative
filter is employed to estimate timing mismatch in closed loop
for better accuracy'Cbut at the expense of significant added
hardware cost. In this paper, we combine the derivative-based
digital correction with our proposed timing mismatch detection
algorithm in [10], achieving more accurate timing mismatch
estimation than [17] and lower hardware cost than [17]-[19].
In addition, the analysis on a four-channel TI-ADC with timing
mismatch before and after the derivative-based digital correc-
tion is presented. For the first time closed-form expressions are
obtained to calculate SNDR and the bound on the maximum
tolerable timing mismatch, providing important guidance for
designers.

The remainder of this paper is organized as follows.
Section II provides an analysis of TI-ADC timing mismatch
errors before and after derivative-based digital correction.
Section III describes the proposed all-digital timing mismatch
calibration technique. Simulation results of the proposed all-
digital calibration for a four-channel TI-ADC and measure-
ment results for a two-channel TI-ADC are given in Section IV.
Finally, Section V describes the conclusions.
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Fig. 1. Sampling diagram of a TI-ADC with timing mismatch. The number

of sub-ADC channels is M and i = 1,2, ... M. The sampling period of the

TI-ADC is Ty, and the timing skew of the ith sub-ADC is AT;. x’[n] and
x® [n] represent the first-order derivative of X[n] and the k-order derivative
of x[n]. (a) M-channel TI-ADC with timing mismatch. (b) Sampling in the
ith sub-ADC. (c¢) Derivative-based correction.

II. ANALYSIS OF DERIVATIVE-BASED
DIGITAL CORRECTION

As shown in Fig. 1(a), timing mismatch in a TI-ADC
causes nonuniform sampling of the input due to the clock
skew AT;. In the ith sub-ADC, the error between the obtained
samples x[n] and the ideal samples x[n] without timing
mismatch can be approximated by the Taylor expansion in
terms of x[n] and AT;, as described in Fig. 1(b). Hence, if
the first-order derivative of x[n] and the value of the timing
mismatch AT; are known, the first-order Taylor approximation
can be used to estimate the error and subtract it from x[n],
resulting in the digitally corrected output x[n] in Fig. 1(c).

For a four-channel TI-ADC (M = 4), the samples x[n] are
expressed as

x[n], n=1,59
x[n]+2—.rkx(k) [n], n=2,6, 10 ...
*n] = n]—i—Z—.rkx(k) [n], n=3,7, 11 ... M
n]+zk'k(k) , n=4,8,12 ...

where the sub-ADC1 is taken as the reference channel and the
normalized timing mismatches ro~4 = (ATh~g — ATy)/T;.
Using the terms e/m/2n, ej”/z(”_l), and e/™", the equations
in (1) can be merged into one equation
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Reordering (2) into
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Note that the terms e/, ¢/7/2" and e/37/2" represent fre-
quency shifts, and the frequency response of a derivative filter
is Hy(e!?) = jw, —m < w < r; the discrete-time Fourier
transform (DTFT) of (3) is

X (e/®)

o
= [1 + % kz kl(r2 +rk 4 r4)HZ,‘(efw)j| X (/)
1w 1 , :
+ 7 Z k—(r — X Y HE T @) X (/07
e 1
+7 Zk_( X jrk by HE (T @ D) X (/@)

1 1 . L L
+ZZE(—V§—]V§+r§)H§(61(w 2))X(e](w 2)).

k=1
“)
Using the following equation:
00 1 . )
> () = N )
k=1

(4) can be rewritten as
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For a sinusoidal input x[n] = cos(wiyn) with wi, = 27 fin/ fs
and small r;_4, (7) can be simplified into

1
ICi? % 1, |G & S ofy (ra — 13 +14)?
®)

1
IC3* = |Cal? ~ Ewﬁ,[(rz —ra)? +r3].

According to (6) and (8), for a B-bit four-channel TI-ADC
with normalized timing mismatches rp~4 and a sinusoidal
input at fi,, the output spectrum contains three timing mis-
match distortion tones located at fs/2 — fin, fs/4 — fin, and
fs/4 + fin when fin < fs/4 or f5/2 — fin, fin — fs/4,
and 3f;/4 — fin when fi, > f;/4. The SNDR including
the quantization noise and timing mismatch distortion tones
without calibration is

SNDR
1

2 N2°
3 (2%) + 37 2[(ra—r3+14)2+2(r2—r4)>+2r2] (%)
9
Assuming the bound of the timing skew is AT)_4 €[ATpin,
ATnax], the worst SNDR in (9) arises when ry = rq4 = $rpax
and r3 =0, and rmax = (ATmax — ATmin)/ Ts
1

2 2"
@) e ()

Using the same approach, one can also obtain the SNDR
after the derivative-based digital timing mismatch correction.
In accordance with Fig. 1(c), the digitally corrected output
x[n] can be expressed as

SNDRworst = ( 10)

x[n], n=1,5 9 ...
2] = {[n] —r2x [n], n=2,6, 10 ... an
x[n]l —r3x'In], n=3, 7, 11 ...
i[n] —rax’[n], n=4, 8, 12 ...
The equations in (11) can be merged into
1 jmny(q _ j5n
2t = ) - CHEAZ D,
(1—el™(1—e/50D)
- 7 r3x'[n]
1 jznyq j5n
_(+e Lf e ). (12)

Substituting (2) into (12) and ignoring third-order O(r§~4)
and higher-order terms provides an expression for x[n] in
terms of x[n], x’[n], and x”[n]. Then taking the DTFT of x[n]
and assuming the input is a sinusoid x[n] = cos(wjyn) with
Win = 27 fin/ fs, the SNDR after timing mismatch correction
is shown to be

1
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Fig. 2. Maximum tolerable timing mismatch versus resolution for 3-dB
SNDR penalty in a four-channel TI-ADC before and after derivative-based
digital correction (fi, = f5/2).
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The worst SNDR in (13) arises when rp_4 = rpax or
r2—4 = —I'max
1
SNDRcaI,worst = (16)
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According to (10) and (16), Fig. 2 shows the timing mis-
match which results in 3-dB SNDR penalty versus ADC
resolution for four-channel TI-ADCs. Derivative-based digital
correction can improve the timing mismatch tolerance by
approximately 76x for a 12-bit TI-ADC.

III. PROPOSED ALL-DIGITAL TIMING CALIBRATION

The proposed timing mismatch calibration for the ith sub-
ADC channel in a TI-ADC is described in Fig. 3(a), which is
comprised of two parts: the derivative-based digital corrector
and the timing mismatch estimator. The first-order derivative
of each sub-ADC’s output is obtained from the derivative
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Fig. 3. (a) Proposed all-digital timing mismatch calibration for
the ith sub-ADC channel in an M-channel TI-ADC. (b) Derivative FIR filter.
(c) Timing mismatch estimator. (d) Sampling waveform.

FIR filter and then multiplied by the estimated timing mis-
match 7; to generate the timing mismatch error which is finally
subtracted from the sub-ADC’s output. The delay unit 7=
is used to match the delay of the derivative FIR filter. The
derivative FIR filter can be designed as a full-rate type-III
linear-phase FIR filter as in Fig. 3(b), and is shared by all
sub-ADC channels.

As depicted in Fig. 3(c), the timing mismatch estimator
for each sub-ADC consists of three adders, three absolute
value operators, a moving average calculator, and a least-
mean-square (LMS) engine, which requires less hardware than
the approaches in [17]-[20]. By collecting and processing
the digitally-corrected outputs, the estimator can converge
to the real timing mismatch in each sub-ADC and also track
the mismatch drift due to PVT variations in background.
Timing mismatch estimation for the ith sub-ADC channel
requires the outputs from two reference sub-ADC channels
(refl and ref2) which are equally-spaced before and after
the ith sub-ADC channel. Initially, sub-ADC1 channel serves
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the reference channel and the other channels become the
reference channels once after being calibrated. The estimation
is iteratively updated to ensure the mean of the difference
between the ith sub-ADC corrected output, and the refl sub-
ADC corrected output is equal to the difference between the
ith sub-ADC corrected output and the ref2 sub-ADC corrected
output. Hence, the error signals ¢; for the LMS block in the
timing mismatch estimator are

N
. 1 . . . .
& = ‘N ; (1Ri[k] = Trert (k1| = [%i[k] = Rre2lKID| (17
where N is the number of the sample points collected in every
LMS iteration. Fig. 3(d) shows a sampling waveform for Xpeff,
Xi, and Xrery. According to a first-order Taylor approximation,
the difference between adjacent samples can be expressed as

)ei [k] - )erefl [k] = )e(trefl + (T + AT:)) - )e(trefl)

= (T + AT}) - x'(tref1) (18)
xArefZ[k] - )’ei[k] = xA(ti + (T - ATl)) - xA(ti)
= (T — AT) - x'(t;). (19)

Then, the expected values of the squares of (18) and (19) are
R . ~2
E[&i[k] — 21 [K])*] = (T + ATi)? - E(/refy)
R . ~2
E[Rilk] — frena[k])*] = (T — AT))* - E(X'}).

(20)
1)

Since the expected value of the derivative of the signal is

) ~D
constant E(x’;) = E(x/.s1) = C, the difference between (20)
and (21) can be written as

El&i — Zret1)?] — E[(Ri — %rer2)? 1 = 4T - C - AT, (22)

which indicates the error signal ¢; is proportional to the timing
mismatch AT;. Therefore, the average value of the difference
between |X; — Xref1| and |X; — Xrer2| can be used to measure
the remaining timing mismatch error after calibration. The
estimated timing mismatch 7; is updated iteratively by the
following sign—sign LMS equation:

sign(é;[n] — &i[n — 11)
sign(7i[n] — Fi[n — 11)
where u is the LMS adaptation step size.

Fig. 4 shows a four-channel example of the proposed all-
digital timing calibration and its estimation sequence. Sub-
ADCI1 channel is taken as the initial reference channel, so
there is no need to calibrate its timing mismatch. First, two
consecutive outputs of sub-ADCI1 are used to estimate the
timing mismatch r3 in sub-ADC3 channel. After convergence
of the sub-ADC3’s estimation, its output is considered to be
free from timing mismatch and it becomes a reference channel
against which the timing mismatches of sub-ADC2 and sub-
ADCH4 are estimated.

IV. VERIFICATION
A. Simulation Result
The proposed all-digital timing mismatch calibration and
the derived formulas are verified with a 12-bit 2 GS/s four-
channel TI-ADC behavioral model in MATLAB. The deriva-
tive FIR filter is designed using the MATLAB function firpm
to have 33 taps and a cutoff frequency of 0.42 f;.

Filn + 1) =7i(n) — p - éi[n] -

(23)
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Fig. 4. (a) Four-channel example of the proposed all-digital calibration.
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Fig. 5. Convergence of the estimated timing mismatch for a single-tone input
at 0.41f; when AT)_4 are set at [1, 4, 3, and 2 ps]. SNDR after calibration
versus different N for 12-bit resolution.

For a single-tone input at 0.41 f;(3358/2'3. £;), Fig. 5 shows
the simulated convergence of the estimated timing mis-
matches when the real timing mismatches ATj_4 are set at
1, 4, 3, and 2 ps. The estimator can accurately converge to
AT,_4 — ATy with <0.1% error. Fig. 6 shows the output
spectra before and after the all-digital timing calibration. All
timing mismatch distortion tones are well suppressed and the
SNDR increases from 44.78 to 73.81 dB.

Fig. 7 shows the SNDR versus different input sinusoidal
frequencies for two different sets of ATj_4. The proposed all-
digital timing calibration can effectively improve the SNDR
within the bandwidth of the derivative FIR filter, and the
simulated SNDR matches with the theoretical results obtained
from (9) and (13). Often, the input signal is bandlimited
somewhat below 0.5 f§, so the drop of SNDR at fi, > 0.42f;
is tolerable. If not, more FIR taps can increase the filter
bandwidth.
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Fig. 6. Spectra of TI-ADC output for a single-tone input at 0.41 f.
(a) Without and (b) with the proposed all-digital timing mismatch calibration.
Theoretical results are computed from (9) and (13).
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Fig. 7. SNDR versus different input sinusoidal frequencies. (a) AT|_4 =
[1,4,3, and 2 ps]. (b) ATy_4 =[1,—7,7, and 5 ps].

Fig. 8 shows the SNDR results of 1000 Monte-Carlo
simulations, wherein the timing mismatches ATj_4 are inde-
pendent Gaussian-distributed random variables with zero mean
and standard deviation ¢ = 1 ps. The simulated worst SNDR
increases from 40.28 to 71.36 dB after the all-digital timing
calibration, which is consistent with the theoretical results
obtained from (10) and (16) (36.29 and 70.57 dB) taking
ATnax and ATyip to be 430 and —30 (rmax = 60/T5).
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The performance of the proposed all-digital timing calibra-
tion is also verified for a quadrature phase-shift keying (QPSK)
modulated input signal at a carrier frequency of 0.29f;
(2375/213. £;) and a symbol rate of 10 MHz, and a multitone
input signal. Figs. 9 and 10 show the output spectra of the
TI-ADC for the QPSK and multitone input signal, respectively,
and all timing mismatch distortion tones are suppressed after
the all-digital timing calibration. As expected, the calibration
and correction perform well as long as the input signal is
restricted within the bandwidth of the FIR filter, in this case
up to approximately 0.41 f;.

B. Measurement Result

A commercial 12-bit 3.6-GS/s two-channel TI-ADC [21] is
also used to verify the proposed all-digital timing mismatch
calibration. The test setup is shown in Fig. 11. Two 1.8 GS/s
sub-ADCs on the chip operate as a TI-ADC. Manual analog
timing skew adjustment can be performed on chip via a
7-bit control register. After on-chip gain and offset mismatch
calibration are completed, the TI-ADC output data with timing
mismatch error are sent to a computer via a USB port and
processed with the proposed all-digital calibration off-chip.

For a single-tone input at 1065 MHz, Fig. 12 shows the con-
vergence of the estimated timing mismatches with the on-chip
manual timing skew adjustment code set (arbitrarily) at 7b’ 0.
Fig. 13 shows the output spectra before and after the proposed
all-digital timing calibration. After calibration, the SFDR is no
longer limited by the timing mismatch distortion tone and the
SNDR increases from 36.53 to 46.12 dB. Fig. 14 shows the
SNDR at different input sinusoidal frequencies. The effective
number of bits after the proposed calibration is about 7.3 bit,
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Fig. 9. Spectra of four-channel TI-ADC output for QPSK signal with a
carrier frequency of 0.29fs and a symbol rate of 10 MHz. (a) Without and
(b) with the proposed all-digital timing mismatch calibration.

Mag (dBFS)

(a)

n
('8
m
2
o
(T
= -
0 0.1 0.2 0.3 0.4 0.5
Frequency (f/fs)
(b)
Fig. 10. Spectra of TI-ADC output for a multitone input. (a) Without and

(b) with the proposed all-digital timing mismatch calibration.

slightly lower than 8 bit from the data sheet [21] due to
the performance limitations of the signal generator and the
bandpass filters in Fig. 11.

Fig. 15(a) shows the timing skew estimated by the proposed
all-digital timing calibration versus different on-chip manual
analog timing skew adjustment codes. The curve is monotonic
and approximately linear as expected. When the code is around
76’ 1000001, timing skew is completely compensated by the
delay line, so the dynamic performance (SNDR and SFDR)
can reach the optimum. Fig. 15(b) shows the SNDR and SFDR
versus with different on-chip timing skew adjustment codes.
For all timing skews, the proposed all-digital timing calibration
can improve the SNDR and SFDR to the best that can be
achieved with the analog timing skew adjustment.
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SNDR: 36.53dB
SFDR: 37.02dB

0 © Timing Mismatch Spurs

@
o Signal
)
o> 50
L)
=

-100

0.2 04 0.6 0.8 1 1.2 14 16 18
Frequency (GHz)
(a)
0 ©O Timing Mismatch Spurs g:‘g: gggg:

g
i Signal
o -50
)
=

-100

0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8
Frequency (GHz)
(b)
Fig. 13. Measured spectra of two-channel TI-ADC output for a single-tone

input at 1065 MHz. On-chip manual timing skew adjustment code is 7b’ 0.
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Fig. 16 compares the output spectra after the proposed
calibration and the calibration technique in [17] for a single-
tone input at 1065 MHz when the timing skew is set at the
maximum value. (Code is 7b’ 0.) The suppression of the timing
mismatch distortion tone with the calibration in [17] is about
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Fig. 14. Measured SNDR versus different input sinusoidal frequencies
without and with the proposed all-digital timing calibration. On-chip analog
timing skew adjustment code is 7b" 0.
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Fig. 15. (a) Estimated timing mismatch using the proposed all-digital timing
calibration for a single-tone input at 1400 and 780 MHz. (b) SNDR and SFDR
without and with the proposed all-digital timing calibration for a single-tone
input at 1400 MHz.

9 dB worse than the proposed method, because its estimated
timing mismatch is not as accurate.

Table I gives a summary of this work and comparison with
other related works. The proposed all-digital timing mismatch
calibration has lower hardware cost than [17]-[19] and better
mismatch tone suppression than [17]. The hardware cost
in [18] and [19] is high due to the use of two derivative
FIR filters, and additional analog auxiliary ADC channels are
required in [20].
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Fig. 16. Measured spectra of two-channel TI-ADC output for a single-

tone input at 1065 MHz with the all-digital timing mismatch calibration
in [17] and the proposed calibration. On-chip analog timing skew adjustment
code is 7b’ 0.

TABLE 1
COMPARISON WITH OTHER ALL-DIGITAL TIMING CALIBRATION

[17] (18] [19] [20]
This Work  ys5CC 2014 TCAS-12013 TCAS-TI 2016 ISSCC 2016
Derivative Polyphase  Polyphase Auxiliary
Generator FIR filter  FIR filter FIR filter FIR filter ADCs
Timing Mismatch| subtraction open-loop FIR filter FIR filter auto-correlation
Estimati d i lculation  + correlator + correlator  detection
# of FIR filter 1 1 2 2 0
# of Multiplier'” 2 6 3 3 4
# of Adder? 7 3 2 2 9
Timing Mismatch|  _62dB -53dB -62dB -62dB -
Convergence
Time (Samples) 80K ™M 60K 10K 32K

'for per sub-ADC channel
*for the correction and estimation of timing mismatch
? for the 12bit 3.6GS/s two-channel TI-ADC with a single-tone input at 1065MHz

V. CONCLUSION

This paper presents an all-digital background timing mis-
match correction technique for TI-ADCs with lower hardware
cost than previous work. Derivative-based digital correction
and digital adaptive timing mismatch estimation are com-
bined to achieve accurate closed-loop timing mismatch esti-
mation and effective distortion tone suppression. Explicit
formulas (9), (10), (13), and (16) are also obtained accu-
rately predicting SNDR and providing the bounds on the
tolerable timing mismatch for four-channel TI-ADCs both
before and after derivative-based digital correction, serving as
useful guidelines for designers. The proposed timing mismatch
calibration can also be applied in the interleaved ADC with
other 2V channels (e.g., 2 and 8 channels)
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