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Abstract

Near-capacity performance and parallelizable decoding algorithms have made Low-

Density Parity Check (LDPC) codes a powerful competitor to previous generations

of codes, such as Turbo and Reed Solomon codes, for reliable high-speed digital

communications. As a result, they have been adopted in several emerging standards.

This thesis investigates VLSI architectures for multi-Gbps power and area-efficient

LDPC decoders.

To reduce the node-to-node communication complexity, a decoding scheme is pro-

posed in which messages are transferred and computed bit-serially. Also, a broad-

casting scheme is proposed in which the traditional computations required in the

sum-product and min-sum decoding algorithms are repartitioned between the check

and variable node units. To increase decoding throughput, a block interlacing scheme

is investigated which is particularly advantageous in fully-parallel LDPC decoders. To

increase decoder energy efficiency, an efficient early termination scheme is proposed.

In addition, an analysis is given of how increased hardware parallelism coupled with

a reduced supply voltage is a particularly effective approach to reduce the power

consumption of LDPC decoders.

These architectures and circuits are demonstrated in two hardware implementa-

tions. Specifically, a 610-Mbps bit-serial fully-parallel (480, 355) LDPC decoder on

a single Altera Stratix EP1S80 device is presented. To our knowledge, this is the

fastest FPGA-based LDPC decoder reported in the literature. A fabricated 0.13-

µm CMOS bit-serial (660, 484) LDPC decoder is also presented. The decoder has
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a 300 MHz maximum clock frequency and a 3.3 Gbps throughput with a nominal

1.2-V supply and performs within 3 dB of the Shannon limit at a BER of 10−5. With

more than 60% power saving gained by early termination, the decoder consumes

10.4 pJ/bit/iteration at Eb/N0=4dB. Coupling early termination with supply voltage

scaling results in an even lower energy consumption of 2.7 pJ/bit/iteration with 648

Mbps decoding throughput.

The proposed techniques demonstrate that the bit-serial fully-parallel architec-

ture is preferred to memory-based partially-parallel architectures, both in terms of

throughput and energy efficiency, for applications such as 10GBase-T which use

medium-size LDPC code (e.g., 2048 bit) and require multi-Gbps decoding through-

put.
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1 Introduction

1.1 Error Control Codes

The objective in this work is to investigate VLSI architectures for high-throughput

power-efficient low-density parity-check (LDPC) decoders for applications such as

fiber-optic communications and 10 Gbps Ethernet. LDPC codes are a sub-class of

linear error control codes (ECC) [3]. Error control coding—also referred to as channel

coding—is a powerful technique in digital communications for achieving reliable com-

munication over an unreliable channel. ECC has evolved significantly since the advent

of information theory by Shannon in 1948 [4] and has become an essential transceiver

block in a wide range of applications. Error control codes have received a lot of atten-

tion recently due to two main reasons. First, significant progress has been made by

the information theory community in designing capacity-approaching codes. Second,

progress in VLSI technology has enabled the implementation of computationally-

intensive decoding algorithms.

Figure 1.1 shows block diagrams of a generic transmitter and receiver in a commu-

nication system incorporating channel coding. The encoder module in the transmitter

maps the input sequence of information bits into codewords that include some redun-

dancy. The task of the decoder block in the receiver is to use the redundancy added

by the encoder to detect and correct the errors induced in the channel.

Fig. 1.2 illustrates the effect of channel coding on the bit error rate (BER) per-

formance of a communication system. In this figure, the dotted curve corresponds to

an uncoded system whereas the solid curve corresponds to a system with a (256, 215)

Reed Solomon code [5]. Both of the curves assume a BPSK modulated signal and an

Additive White Gaussian Noise (AWGN) channel. The figure shows that for the same

input SNR, the channel coding can significantly reduce the output BER compared

to an uncoded scheme. As an example, for the case in Fig. 1.2, the BER is reduced

from 10−3 in the uncoded BPSK scheme to less than 10−9 with the coded scheme for

1
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Receiver
filterA/DEqualizerChannel

decoder

Transmit
filterD/AMapperChannel

encoder

Source
data channel

channel

(a)

(b)

Figure 1.1: An example communication system with ECC coding: (a) the transmitter,
(b) the receiver.

an input SNR of about 7 dB. Similarly, the ECC code can reduce the required input

SNR to achieve the same output BER. For example, the uncoded coding scheme in

Fig. 1.2 requires an SNR of about 12 dB for BER of 10−8 whereas the RS code can

have the same BER with less than 7 dB of input SNR.

Several families of error control codes have been developed over the past few

decades. Reed-Solomon (RS) codes [6] are now being extensively used in Compact

Disks, DVD players, hard drives and long-haul optical communications to protect the

information bits against the storage and communication errors. Deep space satellite

communications and 3G-wireless are also widely using another powerful family of

codes called Turbo codes [7].

In the past decade, LDPC codes have been found with superior error correction

performance than Turbo codes. Although LDPC codes were originally introduced

by Gallager in 1960’s [3], they were not further explored until 1990’s [8] due to their

complex decoding hardware at the time. In [9] an LDPC code of length one million was

designed which performed within 0.13 dB of the theoretical Shannon limit at a BER of

10−6. In [10] it was shown that a regular LDPC code with a modest length of 2048 bits
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Figure 1.2: The effect of ECC on BER performance.

can also perform within only 1.5 dB of the Shannon limit. In addition to excellent

BER performance, the decoding algorithm used to decode LDPC codes is highly

parallel, providing the potential for very high decoding throughputs. Furthermore,

thanks to Gallager’s early publication of LDPC codes, their use is not restricted by

patents, unlike Turbo codes [11]. Because of the above three reasons, LDPC codes

have recently been adopted for different digital communication standards, including

the European Digital Satellite Broadcast standard [12] in 2004 and 10-Gbit Ethernet

wireline standard (IEEE802.3an) [13] in 2005. The recent Mobile WiMAX standard

(IEEE802.16e) [14] also suggests LDPC codes as an optional error correction scheme.

For LDPC codes, the decoding process is typically more challenging than the en-

coding process. Whereas the encoding can be done in a non-iterative fashion, the

decoding is usually an iterative process comprising computationally-intensive opera-

tions on soft-information. One iterative decoding algorithm commonly used for LDPC

codes is called message-passing decoding. The algorithm operates on a set of “mes-
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sages” each of which represents the decoder’s belief about the value of a received bit.

In each message-passing iteration, the algorithm refines the messages by consider-

ing known constraints imposed by the encoder on the data. For LDPC codes, the

message-passing algorithm is highly parallel as there are typically a large number of

messages which can be updated independently.

Hardware implementations of LDPC decoders may be categorized into two main

groups: partially-parallel and fully-parallel. Although the fully-parallel architecture

potentially provides the highest throughput, most of the decoders reported so far

have focused on partially-parallel architecture where a number of shared processing

units are used for updating the messages in each iteration. This is mainly due to two

reasons. First, a fully-parallel decoder occupies a large area due to the large number

of required processing units [15]. Second, due to the random structure of LDPC

code graphs, the processing nodes in a fully-parallel decoder must communicate over

a large and irregular network. This results in a large number of long and random

wires across the decoder chip required to convey the messages between nodes. The

complex interconnect in turn results in routing congestion and degrades the timing

performance. In partially-parallel decoders, the large and irregular network of node-

to-node communication translates into large and power-hungry memory and address

generation circuitry.

The goal in this work is to develop LDPC decoders with high energy efficiency and

multi-Gbps decoding throughput while occupying practical chip area. As described

above, a major challenge in implementing high-throughput decoders is the complexity

of the node-to-node communications. We will propose a technique that reduces the

decoder’s node-to-node communication complexity by re-formulating the conventional

message passing update rules. We will show that the proposed half-broadcasting

technique results in 26% global wirelength reduction in the presented 2048-bit fully-

parallel decoder.

To increase the decoding throughput, we will discuss a block-interlacing technique

where two independent frames can be decoded simultaneously. We compare the

throughput improvement and the hardware overhead associated with this technique.

For the two decoders reported in Chapter 4, the post-layout simulations show that

the block interlacing improved the throughput 60% and 71% at the cost of only 5.5%

and 9.5% more gates, respectively.

We will present an analysis of the energy efficiency of LDPC decoders as a function
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of the degree of parallelism in the decoder architecture. The analysis shows that for a

fixed throughput, the fully-parallel architecture is more power efficient than partially-

parallel decoders. In addition, we show how an early termination scheme can further

reduce the power consumption by terminating the decoding process as soon as a valid

codeword has converged. To facilitate the early termination, we introduce an efficient

method of detecting the decoder convergence with minimal hardware overhead.

To reduce the interconnect complexity and decoder area, we also propose bit-

serial message passing in which the multi-bit messages are calculated and conveyed

between processing in a bit-serial fashion. We will also propose an approximation to

the min-sum decoding algorithm that reduces the area of the CNUs by more than

40% compared with conventional min-sum decoding with only 0.1dB performance

penalty at BER=10−6.

Finally, we report on two different fully-parallel decoder implementations: one

on an FPGA and one on an ASIC. The fabricated 0.13-µm CMOS bit-serial (660,

484) LDPC decoder has a 300-MHz maximum clock frequency with a nominal 1.2-V

supply corresponding to a 3.3-Gbps total throughput. It performs within 3 dB of

the Shannon limit at a BER of 10−5. With the power saving achievable by early

termination, the decoder consumes 10.4 pJ/bit/iteration at Eb/N0=4 dB at nominal

supply voltage. Coupling early termination with supply voltage scaling results in 648

Mbps total decoding throughput with 2.7 pJ/bit/iteration energy efficiency which

even compares favorably with analog decoders [16] aimed for energy efficiency.

1.2 Outline

The outline of this thesis is as follows. Chapter 2 provides background on the prior

work on LDPC codes, decoding algorithms and decoder implementations. Chapter

3 describes a technique called broadcasting to reduce interconnect complexity. We

will show the benefits of this technique both for partially-parallel and fully-parallel

decoders. Chapter 4 discusses a block-interlacing scheme that further increases the

decoding throughput. The power analysis and power reduction achievable by early

decoding termination is presented in Chapter 5. A bit-serial fully-parallel decoding

architecture is proposed in Chapter 6. Finally, Chapter 7 concludes the thesis and

provides potential venues for future work.



6 1 Introduction



2 Low-Density Parity-Check (LDPC) Codes

2.1 Code Structure

A binary LDPC code, C, can be described as the null space of a sparse M × N

{0, 1}−valued parity-check matrix, H [3]. In other words, C consists of codewords

u = (u1, u2, . . . , uN) such that

uHT = 0, (2.1)

where uHT is computed in the Galois field GF (2). An LDPC code can also be

described by a bipartite graph, or Tanner graph [17], as shown in Fig. 2.1. In this

figure, variable nodes {v1, v2, . . . , vN} represent the columns of H and check nodes

{c1, c2, . . . , cM} represent the rows. An edge connects check node cm to variable node

vn if and only if Hmn, the entry in H at row m and column n, is nonzero. We denote

the set of variables that participate in check cm as N(m) = {n : Hmn = 1} and the

set of checks in which the variable vn participates as M(n) = {m : Hmn = 1}. A

particular variable-node configuration (i.e., an assignment of {0, 1}-values to each of

the variable nodes) is a codeword of C if and only if all the checks are satisfied, i.e.,

if and only if ∑
n∈N(m)

vn = 0 (mod 2),

for all m ∈ {1, 2, . . . ,M}. An LDPC code is called (dv, dc)-regular if the number of

ones in all columns of H is dv and the number of ones in all rows of H is dc. If the

number of ones in all columns or the number of ones in all rows is not equal, the code

is referred to as an irregular code. For a code with a full-rank M × N parity-check

matrix, H, the code rate is R = (N −M)/N = 1−M/N . Fig. 2.1 shows the Tanner

graph for a trivial (3,6)-regular LDPC code with N = 10 and M = 5. It should be

noted that in more realistic LDPC codes the code length N is much longer (typically

7
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greater than 100) and the number of ones in the parity check matrix is much lower

than the number of zeros.

Variable nodes

Check nodes

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c1 c2 c3 c4 c5























=

1010011110
1111000011
0101111001
1010110110
0101101101

H

Figure 2.1: Tanner graph for a (3,6)-regular LDPC code and the corresponding parity
check matrix.

LDPC codes are encoded using a generator matrix, GK×N , where K is the number

of information bits per codeword. For a full-rank M by N parity check matrix we

have K = N −M . The encoder generates the codeword u = (u1, u2, . . . , uN) from

the input information vector v = (v1, v2, . . . , vK) based on

u = vG. (2.2)

Since all the valid codewords should satisfy the equality in (2.1), we have

vGHT = 0, (2.3)

and since (2.3) is true for every valid v, we have
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GHT = 0. (2.4)

It can be shown that any full-rank H matrix can be rearranged by Gaussian elim-

ination and row/column permutations into the form H = [P |IN−K ], where P is an

N −K by K matrix and IN−K is an N −K by N −K identity matrix. From (2.4)

it can be shown that the generator matrix G can be constructed as

G = [IK |P T ]. (2.5)

A generator matrix with the form as in (2.5) is called a systematic generator matrix.

It has the property that the encoded codeword consists of the information bits con-

catenated with N−K parity check bits. A systematic generator matrix simplifies the

encoding process as only the parity bits need to be calculated to generate encoded

words from blocks of information bits.

2.2 LDPC Decoding Algorithms

LDPC codes are decoded with a general family of decoding algorithms called iter-

ative message-passing decoding algorithms. The sum-product algorithm (SPA) and

min-sum (MS) algorithm are the two most commonly-used message-passing decoding

algorithms and can be described using the Tanner graph representing the LDPC code.

In these algorithms the decoding process starts by observing the channel inputs (in-

trinsic messages) corresponding to the variable nodes in the current received frame.

Then each decoding iteration consists of updating and transferring extrinsic messages

between neighboring variable and check nodes in the graph as shown in Fig. 2.2. A

message encodes a belief about the value of a corresponding received bit and is usu-

ally expressed in the form of a log-likelihood ratio (LLR). Through message-passing

these beliefs are refined and, in the case of a successful decoding operation, eventually

converge on the originally transmitted codeword. The details of how messages are

updated in SPA and MS decoding are presented in the next two sub-sections.

2.2.1 Sum-product algorithm

Suppose that a binary codeword W = (w1, w2, . . . , wN) ∈ C is transmitted over

a communication channel and that a vector Y = (y1, y2, . . . , yN) of bit signals is
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Intrinsic messages from channel

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c1 c2 c3 c4 c5
Extrinsic
messages

Figure 2.2: Exchange of information in a message-passing decoding algorithm.

received. Let z
(i)
mn and q

(i)
mn represent the messages sent from vn to cm and from cm to

vn in the ith iteration, respectively. Let N(m) = {n : Hmn = 1} and M(n) = {m :

Hmn = 1}. Let IM denote the maximum number of iterations. SPA decoding [18]

consists of the following steps.

1. Initialize the iteration counter, i, to 1.

2. Initialize z
(0)
mn to the a posteriori log-likelihood ratios (LLR), λn = log

(
P (vn =

0|yn)/P (vn = 1|yn)
)

for 1 ≤ n ≤ N , m ∈M(n).

3. Update the check nodes, i.e., for 1 ≤ m ≤M , n ∈ N(m), compute:

q(i)
mn = 2 tanh−1

 ∏
n′∈N(m)\n

tanh(z
(i−1)
mn′ /2)

 . (2.6)

4. Update the variable nodes, i.e., for 1 ≤ n ≤ N , m ∈M(n), compute:

z(i)
mn = λn +

∑
m′∈M(n)\m

q
(i)
m′n. (2.7)

5. Make a hard decision, i.e., compute Ŵ = (ŵ1, ŵ2, . . . , ŵN), where element ŵn
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is calculated as

ŵn =

{
0 if λn +

∑
m′∈M(n) q

(i)
m′n ≥ 0;

1 otherwise.

for 1 ≤ n ≤ N . If ŴHT = 0 or i ≥ IM output Ŵ as the decoder output and

halt; otherwise, set i = i+ 1 and go to step 3.

The sign (+ or -) of an LLR message indicates the belief about the value (0 or 1,

respectively) of the received bit on the corresponding variable node. The magnitude

of the message indicates the reliability of that belief. The variable update function

in (2.7) combines all the beliefs about the value of the bit by adding the incoming

messages. The check update function in (2.6) calculates the LLR for each outgoing

message based on the fact that the parity check on all the edges connected to each

check node has to be satisfied. This can be noted from the fact that for an LLR

message λ, defined as λ = log
(
P (0)/P (1)

)
, one can show that tanh(λ/2) = P (0) −

P (1).

2.2.2 Min-sum algorithm

MS decoding [19] can be considered an approximation to SPA decoding [18]. The

difference is that in MS, the check node update function of (2.6) is replaced with

ε(i)mn = min
n′∈N(m)\n

|z(i)
mn′|

∏
n′∈N(m)\n

sgn(z
(i)
mn′). (2.8)

Although the performance of MS is generally a few tenths of a dB lower than that of

SPA decoding, it requires much simpler computational resources for the check node

functions. Moreover, it is more robust against quantization errors when implemented

with fixed-point operations [20].

To reduce the performance gap between MS and SPA algorithms, in [21] a modified

check node update is proposed for the case of degree-3 check nodes by applying a

correction factor to the check node update function in (2.8). In [22] a degree-matched

modification is proposed for any check degree by applying a correction factor which is

a function of the check node degree. It is shown that the modified min-sum algorithm

provides almost the same BER performance as the SPA.
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2.3 Capacity-Approaching LDPC Codes

In spite of recent progress in the information theory community, there are still no gen-

eral methods to predict the performance of LDPC codes or to design LDPC codes with

excellent performance that do not require extensive simulations. Some techniques,

such as density evolution [23] and EXIT charts [24], exist to analyze and predict

the convergence behavior of LDPC codes, but they usually are applied to families

(or ensembles) of codes with infinite code length and certain check and variable de-

gree distribution. Density evolution can be used to predict the decoding threshold

value (i.e., the maximum noise level that can be added to the transmit signals while

the decoder BER can be kept arbitrarily small). The density evolution and EXIT

charts have also been used to optimize the degree distribution for constructing high

performance irregular LDPC codes [25],[26].

Although the above techniques have enabled researchers to design long codes

(N > 106) that perform less than a tenth of a dB from the Shannon limit, their

accuracy tends to decrease for more practical codes with much shorter length. This

is because the analysis in density evolution and EXIT chart techniques are only

valid when the incoming messages arriving at each node are independent, which

only happens when the code graph has no cycles. While this might be a reasonable

approximation for long codes, the code graph of short LDPC codes inevitably contain

some short cycles which make the above approximation inaccurate.

The length of the shortest cycle in the code graph is called the girth of the graph.

Among other affecting parameters such as minimum weight and the number of short

cycles in the code graph, it is known that in general LDPC codes with higher girth

have better BER performance. Several algorithms have been proposed to construct

high-girth LDPC codes [27],[28],[29]. As an example, in the progressive edge growth

algorithm in [28] the code graph is constructed by incrementally adding the edges to

the graph such that a high girth is maintained.

Also, families of LDPC codes have been constructed using finite geometries [30]

and algebraic methods [10]. The method proposed in [10] is based on Reed-Solomon

codes with two information bits. It is shown that the generated LDPC codes have no

cycles of length 4 and have high minimum distance. Due to their superior performance

and relatively short code length, the (6, 32)-regular (2048, 1723) RS-based LDPC code

generated in [10] is now adopted as the standard code for the IEEE802.3an 10GBase-T

standard [31].
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2.4 Decoder Implementation

Depending on the particular application, the objective when designing LDPC de-

coders is to meet a set of design specifications such as decoding throughput, power

consumption, silicon area, decoding latency and testability. In the cases where the

throughput and latency are explicitly mentioned in standards, the design goal is to

achieve these specs while optimizing other parameters such as power and area.

As mentioned above, message-passing decoding requires a large number of mes-

sages to be updated and transferred on the code graph in each iteration. Previous

researchers have proposed several approaches for representing and updating these

messages.

Analog
decoderS/HReceive

filter
channel

Digital
decoder

Receive
filter

channel
A/D

analog digital

analog digital

(a)

(b)

Figure 2.3: (a) Conventional receiver with digital ECC decoder, (b) An alternative
receiver with analog decoder.

In [32], [33] and [16], analog signals are used to represent the extrinsic messages.

Fig. 2.3 shows the difference between a conventional receiver architecture with digital

decoder and an alternative architecture with an analog decoder. In analog decoders,

the exponential voltage-current relationship of a bipolar device or a sub-threshold

CMOS device is used to realize the required message-passing update functions. Al-
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though analog decoders have the advantage of relatively low power consumption, they

are faced with the following challenges. First, due to process mis-matches and various

sources of noise, analog decoders do not scale well with code length. This in turn

limits the designer to adopt short LDPC codes (typically less than 500 bits) which

usually have inferior BER performance. The limited scalability in analog decoders

also limits the decoder throughput typically to less than 50 Mbps, which is far below

the throughput requirement for current high-speed applications such as 10GBase-T

or Digital Video Broadcast. Another major challenge in analog LDPC decoding is

the need to store a relatively large number of analog signals at the beginning and also

during the decoding process. Other issues include the need for framing the received

symbols, the need for a customized design flow and finally the lack of testability.

In [34] an LDPC decoder with stochastic computation is proposed in which the

messages are represented using Bernoulli sequences. Although this representation

results in a very simple check and variable node architecture, it needs a significant

amount of hardware overhead in order to interface the stochastic messages at the

decoder inputs and outputs. In addition, since the stochastic computation uses a

redundant number representation, it requires a large number of clock cycles to decode

each frame (the decoder in [34] on average requires several hundred clock cycles at

low SNRs and about 100 cycles at high SNRs) which limits the decoding throughput.

More conventional LDPC decoders often use a synchronous digital circuit with

multi-bit digital signals to represent the messages. In these decoders, the decoding

throughput, η, in bits/s is calculated as

η =
Nf

IL
, (2.9)

where N is the the code block length, I is the number of decoding iterations performed

per block, L is the number of clock cycles required per iteration and f is the operating

clock frequency. Parameters N and I are usually determined in the code design phase,

so to increase the decoder throughput one must increase f/L. The maximum clock

frequency of a synchronous digital circuit is determined by the propagation delay in

the critical path (i.e., the longest path between sequential storage elements , e.g.,

flip-flops or latches). The value L (and also to some extent f) is a direct function of

the decoder architecture.

LDPC decoders can be broadly categorized into partially-parallel (also known

as memory-based) decoders and fully-parallel decoders as described next. A generic
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partially-parallel LDPC decoder architecture is shown in Fig. 2.4. It consists of shared

variable node update units (VNUs), shared check node update units (CNUs), and a

shared memory fabric used to communicate messages between the VNUs and CNUs.

Inputs to each CNU are the outputs of VNUs fetched from memory. After performing

some computation (e.g., MIN operation for the magnitude and parity calculation for

the signs in min-sum decoding), the CNU’s outputs are written back into the extrinsic

memory. Similarly, inputs to each VNU arrive from the channel and several CNUs

via memory. After performing the message update (e.g., SUM operation in min-sum

decoding), the VNU’s outputs are written back into the extrinsic memory for use

by the CNUs in the next decoding iteration. Decoding proceeds with all CNUs and

VNUs alternately performing their computations for a fixed number of iterations,

after which the decoded bits are obtained from one final computation performed by

the VNUs.

A common challenge in partially-parallel architectures is to manage the large

number of memory accesses and prevent memory collisions since multiple messages

must be accessed simultaneously by the check and variable nodes. Examples of

partially-parallel decoders include [35],[36] and [37]. The “hardware-aware code de-

sign” methodology in [35] provides 640 Mbps throughput (with 10 iterations per

frame) for an LDPC code of block length 2048 with a tunable code rate; the design

occupies 14.3 mm2 in a 0.18-µm CMOS technology. The partially-parallel DVB-S2

compliant LDPC decoders reported in [36] are programmable for 16200-bit or 64800-

bit modes and for a wide range of code rates. They achieve a maximum throughput of

90 Mbps and 135 Mbps in 130 nm and 90 nm technologies and occupy 49.6 mm2 and

15.8 mm2, respectively. A 3.33 Gbps hardware-sharing (1200, 720) LDPC decoder is

reported in [37].

In fully-parallel decoders, each node in the code’s Tanner graph is assigned a ded-

icated hardware processing unit, and messages are communicated between nodes by

wires. Fig. 2.5 shows the high-level architecture of a fully-parallel decoder. It can

be seen that the extrinsic memory block of Fig. 2.4 is replaced with the intercon-

nections. This is because in a fully-parallel architecture, each extrinsic message is

only written by one VNU or CNU, so the extrinsic memory can now be distributed

amongst the VNUs and CNUs and no address generation is needed. The drawbacks

of a fully-parallel architecture are the large circuit area required to accommodate all

the processing units, as well as a complex and congested global interconnect net-
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Figure 2.4: A partially-parallel LDPC decoder.

work. Routing congestion leads to longer interconnect delays and can degrade de-

coder timing-performance and dynamic power dissipation. Examples of fully-parallel

decoders include [15] [38] [39].
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Figure 2.5: The fully-parallel iterative LDPC decoder architecture.

Both fully-parallel and partially-parallel decoders need to store the extrinsic mes-

sages so that they can be accessed in the next decoding iteration. The size of memory

should be at least equal to the number of edges in the code Tanner graph. Usually

in pipelined designs the memory size is a constant multiple of the number of edges.
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In partially-parallel decoders the messages are stored in large memory blocks and

are accessed through read/write operations. However, in fully-parallel decoders the

storage is more distributed among processing units typically in the form of flip-flops.

Although in comparison with an SRAM memory cell individual flip flops occupy

larger area and consume more power, they have their advantages: they do not re-

quire address generation and in addition they can be accessed simultaneously by their

corresponding processing units.

2.5 Architecture-Aware LDPC Codes

It is known that although randomly-generated LDPC codes with no regular struc-

ture in the parity check matrix tend to have high performance, they are not usually

suitable for VLSI implementation. The reason is that randomly-structured codes re-

quire complex memory module addressing schemes that tend to decrease the decoding

throughput and increase the area and power consumption.

To overcome these issues, researchers have proposed a decoder-first code design

[40] methodology in which the LDPC code is designed to fit a pre-determined decoding

architecture. The goal has been to minimize the degradation due to the structure in

the code graph. In [41] a joint code-decoder design methodology is proposed. Using

this methodology, Zhang and Parhi designed a (3, k)-regular LDPC code with L · k2

variable nodes and 3L ·k check nodes. It is suitable for its proposed partially-parallel

decoder architecture with k2 variable processing units and k check processing units.

In [42] a Turbo-Decoding Message-passing (TDMP) decoding architecture is pro-

posed along with an architecture-aware code construction that is shown to improve

the convergence speed of the decoding process and reduces memory requirements.

Quasi-cyclic (QC) LDPC codes have the advantage of efficient encoding architec-

ture using feedback shift registers. In [43] two classes of QC-LDPC codes are gener-

ated that perform close to computer-generated random codes. In [44] two methods are

proposed to construct a systematic cyclic generator matrix from a QC parity-check

matrix.

A convolutional version of LDPC codes has been proposed in [45]. At any given

time, each code bit in an LDPC convolutional code (LDPC-CC) is generated using

only previous information bits and previously generated code bits. It is shown that

for certain applications, such as streaming video and variable length packet switch-
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ing networks, LDPC-CCs are preferred over the conventional block LDPC codes [46].

LDPC-CCs also have the advantage of simple encoder structure. An ASIC implemen-

tation of a 175-Mbps, rate-1/2 (128, 3, 6) LDPC-CC encoder and decoder is reported

in [47].

2.6 Overview

The motivation for this work is to design LDPC decoders with high throughput for

applications such as fiber-optic communication systems and 10-Gbit Ethernet. This

leads naturally to the investigation of fully-parallel architectures as these exploit all

of the available parallelism in the message-passing decoding algorithm. Our power

consumption analysis shows that fully-parallel architectures may also have advantages

in energy efficiency.

A common challenge for fully-parallel LDPC decoders is the routing congestion

between variable and check nodes which is the result of the randomness in the code

parity check matrix. In this work, we present a technique called broadcasting and

illustrate how it can reduce the routing congestion.

An overlapped message-passing architecture is then presented to increase the de-

coding throughput with a relatively small hardware overhead. We show that for the

two presented fully-parallel decoders, the throughputs are improved by more than

60% at the cost of less than 10% logic overhead.

The power consumption is always a very important criteria in LDPC decoders.

We will present an analysis of how the increased parallelism in the LDPC decoder

architecture results in reduced total power consumption for a given target throughput.

In addition we will illustrate an efficient early termination technique to further reduce

the decoder dynamic power consumption.

We demonstrate implementations of a bit-serial message-passing decoder that re-

duce the routing congestion and also result in lower decoder core area. We also

propose an approximation to the min-sum decoding algorithm which simplifies the

check node logic with minimal BER penalty.

Although most of the proposed techniques in this work are mainly developed for

fully-parallel decoders, we will explain how some of them can also be applied to

partially-parallel decoders.
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As mentioned in Chapter 2, a common challenge when implementing LDPC decoders

is communicating the extrinsic messages through the complex interconnections be-

tween the variable and check nodes. In partially-parallel decoders, the interconnec-

tion network results in a complicated memory access scheme where multiple process-

ing units need to access a large number of shared memory blocks in parallel. In

fully-parallel decoders, the complex interconnection results in a complicated routing

network all across the chip in order to transfer the messages between the parallel

check and variable processing units.

In this chapter we describe a technique called broadcasting that reduces the node-

to-node communication complexity in LDPC decoding. We will show how this tech-

nique can be applied to both fully-parallel and partially-parallel decoder architectures.

We will also discuss the trade-offs that two variants of broadcasting (half-broadcasting

and full-broadcasting) provide in terms of logic overhead and reduced interconnect

complexity.

3.1 Half-broadcasting

We start by re-writing (2.6) and (2.7) of the sum-product algorithm as follows. Let

q(i)
mn = 2 tanh−1

(
P (i)
m / tanh(z(i−1)

mn /2)
)
, (3.1)

where

P (i)
m =

∏
n′∈N(m)

tanh(z
(i−1)
mn′ /2) (3.2)

and let

z(i)
mn = S(i)

n − q(i)
mn, (3.3)

19
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where

S(i)
n = λn +

∑
m′∈M(n)

q
(i)
m′n. (3.4)
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Figure 3.1: A conventional fully-parallel message-passing LDPC decoder with generic
functions for check and variable nodes.
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Fig. 3.1 shows the block diagram of a check and variable processing unit using

(3.1)-(3.4). Symbols � and � denote the operations that are performed in (3.1) and

(3.2), respectively. Similarly, symbols � and � denote operations performed in (3.3)

and (3.4), respectively.

Half-broadcasting is a repartitioning of the computations in Fig. 3.1. In this new

partitioning, shown in Fig. 3.2, the � functions are moved to the variable nodes

without affecting the message-passing algorithm. This is because extrinsic messages,

q
(i)
mn, are reconstructed in the variable nodes from the received P

(i)
m and the z

(i−1)
mn′ ’s

from iteration i−1. So, unlike the schemes in [48, 15, 2] in which each degree-dc check

node generates dc separate messages, one for each neighboring variable node, in this

scheme each check node broadcasts a single message (i.e., P
(i)
m ) to all of its neighbors.

This approach reduces the amount of information that needs to be conveyed from

check nodes to variable nodes. In a fully-parallel decoder, this translates into a

reduction in global interconnect. In a partially-parallel decoder, it translates into

fewer memory accesses.

Although the broadcasting technique above was described using the sum-product

algorithm, the same technique can be applied to other variations of message-passing

decoding such as min-sum decoding and bit-flipping [3]. For example, in the case of

min-sum decoding, the variable nodes would be designed to broadcast the total value,

Sn, to their neighbors.

3.1.1 Half-broadcasting for fully-parallel decoders

Fig. 3.3 shows conceptually how the broadcasting technique can mitigate the inter-

connection problem in fully-parallel decoders. In this figure, a floorplan similar to

[15] is used, where the check nodes are placed in the center of the chip layout and

variable nodes are placed on the sides. In Fig. 3.3(a), a node architecture with no

broadcasting is assumed, where one sample check node in the center of the chip sends

different messages to its neighboring variable nodes. This is done by dedicating sep-

arate wires (or buses) for each destination. However, using broadcasting, we share a

significant amount of interconnect wiring when conveying messages from each source

check node to the destination variable nodes, as in Fig. 3.3(b).

Fig. 3.4 shows a zoomed-in portion of the check-to-variable interconnects for a

2048-bit LDPC code before and after applying a half-broadcast scheme. This figure

is generated by Matlab simulation and assumes that wires can be in any arbitrary
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Figure 3.2: A half-broadcast architecture. The check node cm broadcasts a single
message, Pm, to all neighboring variable nodes.

direction. However, we can observe similar congestion effect in the layouts where only

vertical and horizontal wiring is used.

Fig. 3.5 shows the effect of the broadcasting technique on a fully-parallel decoder

layout. These are real layouts obtained by automated place-and-route tools from

Cadence using a floorplan similar to [15] where the check nodes are instantiated in the

center and the variable nodes are instantiated on the sides of the decoder layout. One

check node and its neighboring 11 variable nodes and the nets for conveying check-

to-variable intrinsic messages between them are highlighted in the figure for clarity.

Fig. 3.5(a) shows the case where no broadcasting is applied. Fig. 3.5(b) shows that

by using the broadcasting scheme of Fig. 3.2, a significant amount of interconnect

wiring can be shared, hence mitigating the complexity of interconnections.

To compare the effects of half-broadcasting on reducing the global wirelength, we

implemented a fully-parallel 1-bit quantized LDPC decoder for the (6, 32)-regular

(2048, 1723) code adopted for the 10GBase-T Standard twice: first without half-
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Figure 3.3: Broadcasting reduces the total top-level wirelength by sharing the wires.
(a) Output messages of a check node without broadcasting (b) Sharing
interconnect wires of a check node with broadcasting

(a) (b) 

Figure 3.4: A small section of interconnects for a length-2048 LDPC code (a) before
broadcast (b) after broadcast. There is 40% reduction in total wirelength.

broadcasting and once with broadcasting. In both cases the decoding algorithm was

based on the Gallager’s Algorithm A as described in [23].

Fig. 3.6 shows the check and variable node architecture for the non-broadcasting

decoder. In Algorithm A, all the check-to-variable and variable-to-check messages are

1-bit values, or votes, regarding the value of the corresponding received bit. In the
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(a) (b)

Figure 3.5: The routed nets for one check node output highlighted in a fully-parallel
LDPC decoder layout: (a) without broadcasting and (b) with broadcast-
ing.

check nodes, each output message is the exclusive-OR of all the other 31 check node

inputs. In the variable nodes, the adders and subtracters first calculate the sum of

the votes on each message. Then the unanimous voting (UV) blocks calculate the

variable node outputs from the channel input, c, and the number of votes for one, s.

The UV block output, u is calculated as:

u =


1 if s = 5

c if 5 >s> 0

0 if s = 0

.

In other words, the variable node output on each edge is always the same as the

channel input except when all the other incoming messages vote against it. The

majority logic block (ML) calculates the hard decision decoder output w from the

channel input, c, and the total votes, t, based on:

w =


1 if t > 3

c if t = 3

0 if t < 3

.

The new-frame signal specifies the end of one set of iterations and start of loading a

new frame.
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Table 3.1: The average wirelength reduction for global nets in fully-parallel LDPC
decoders.

Code P&R tool Predicted

(992,829) RS-LDPC - 27%

(2048,1723) RS-LDPC 26% 26%

(4096,3403) RS-LDPC - 27%

Fig. 3.7 shows the variable node and check node for the decoder with half-broadcast

scheme. In this decoder the result of the 32-bit exclusive-OR is broadcast from each

check node to all of its neighboring variable nodes. The correct message is then re-

constructed in the variable nodes using the variable-to-check messages from previous

iteration without affecting the functionality of the decoder.

As explained in this section, half broadcasting results in reduced global wirelength

in fully-parallel decoders. For the two 2048-bit decoder designs presented in this

chapter, the broadcasting scheme reduced the average node-to-node wirelength by

26% from 1.88 mm to 1.40 mm. The timing and BER performance of the implemented

decoder will be presented in more detail in Chapter 4.

Table 3.1 lists the percentage wirelength reduction obtained from half-broadcasting

compared with the conventional case where no broadcasting is applied. The technique

is applied to LDPC codes with various lengths. The values in the first column are

obtained from automated P&R tools. The values in the second column are obtained

from a prediction algorithm which approximates a Steiner tree [49] solution to predict

the wirelength savings by using the actual floorplan of the fully-parallel decoder and

the silicon area dedicated to each variable and check-update unit in the floorplan. Ta-

ble 3.1 shows that for code lengths of a few thousand bits assuming half-broadcasting

yields similar savings in global wirelength.
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Figure 3.6: (a) The CNU and (b) the VNU architectures for a conventional hard
decision message-passing decoder with no broadcasting.
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Figure 3.7: (a) The CNU and (b) the VNU architectures for a hard decision message-
passing decoder with half broadcasting.
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3.1.2 Half-broadcasting for partially-parallel decoders

For partially-parallel LDPC decoders, broadcasting reduces the number of shared

memory write accesses. This is because in a conventional partially-parallel decoder,

each check-processing unit (CPU) reads the extrinsic messages, zij, generated in the

previous iteration from the memory and writes the resulting qij messages to another

shared memory to be read by variable-processing units (VPU’s), and so on. Thus the

CPU for a check node with degree dc, needs to perform dc reads and dc writes. By

using a broadcast scheme for the check nodes, the CPU still needs to read dc input

values, but since the CPU generates only one output value, just one write operation is

required. In total, the number of read/write memory accesses per CPU per iteration

is reduced from 2dc to dc + 1. Unlike fully-parallel decoders, there is some hardware

overhead for half-broadcasting in partially-parallel decoders since the zmn’s also need

to be stored locally in the VPU for use in the next iteration. This additional local

storage, however, does not add to the global node-to-node communication complexity.

3.2 Full-broadcasting

We called the architecture of Fig. 3.2 half-broadcasting because we applied the broad-

casting technique only to the check-to-variable messages while the variable-to-check

messages were kept unchanged. The same idea can be extended to a full-broadcasting

scheme in which both check-to-variable and variable-to-check messages are broadcast.

Fig. 3.8 shows the variable and check node architecture capable of full-broadcasting.

In this figure, the inverse-check and inverse-variable operations, � and �, are du-

plicated in order to be able to reconstruct the individual messages from the interim

variable and check totals. A memory-based version of full-broadcasting is proposed

in [50]. As one can expect, full-broadcasting results in further simplification in inter-

connect complexity; however this comes with a relatively large logic overhead. The

exact amount of this overhead depends on the exact type of variable and check update

functions, but since most of the calculations are duplicated, the overhead can be as

much as 2x [50]. In addition, it should be noted that the full-broadcasting technique

is not applicable for decoding algorithms, such as min-sum decoding, where either

the inverse-check function, �, or inverse variable function, �, is not available.
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Figure 3.8: A full-broadcast architecture. The check node cm broadcasts Pm to the
neighboring variable nodes. The variable node vn broadcasts Sn.

3.3 Comparison and Discussion

Depending on the type of update functions, the designer may need to assign a larger

word length for the broadcast values (e.g., P
(i)
m in (3.2) and S

(i)
n in (3.4) in the case of

Sum-Product message-passing) compared with the word length needed for the actual

extrinsic values (e.g., q
(i)
mn’s and z

(i)
mn’s in (3.1) and (3.3)). In these cases, the effect

of increased word length for broadcast messages must be taken into account. As an

example, if λn and qm′n’s in (3.4) are quantized with q bits, then q + dlog (dv + 1)e
bits would be required to represent Sn. However, since the word length of the zmn’s in

(3.3) is generally limited to only q bits by clipping, as in [20], Sn can be represented

with only q + 1 bits without loss of accuracy. So, the variable-to-check messages will

have 0.5(1/q)× 100% additional wiring 1 due to the increased word length in Sn. For

q=6, the overhead becomes 8%. A similar analysis can also be made for the check-

to-variable broadcasting of Fig. 3.2 since the multiplications and divisions in (3.1)

and (3.2) are usually transformed into summations and subtractions in the logarithm

1The 0.5 coefficient arises because in this case half-broadcasting only affects the variable-to-check
messages and keeps the check-to-variable messages unchanged.
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domain. One particular case is the hard-decision message passing decoding [23] in

which the zmn’s and qmn’s in Fig. 3.1 are 1-bit messages, and � and � symbols both

indicate exclusive-OR operations. As a result, the broadcast message, Pm, in Fig. 3.2

is also a 1-bit value, hence no word length increase is required.

To compare the effectiveness of different broadcasting schemes in a partially-

parallel LDPC decoder, we define the node-to-node communication complexity as

the number of unique LLR messages being read/written from/to the shared mem-

ory per iteration. 2 For an LDPC code with E edges in the graph, 2E global read

operations are involved in each iteration: E reads in the check-update phase and E

reads in the variable-update phase, independent of the type of broadcasting. The

number of write operations, however, varies with the choice of broadcasting. In a

conventional decoder, each variable node generates dv unique messages, so Ndv = E

write operations are needed in variable-update phase. Similarly, E write operations

are needed for the check-update phase. In a half-broadcasting scheme in which the

check nodes each broadcast a single LLR message, the number of variable-update

phase memory writes continues to be E; however, the number of check-update phase

write operations is reduced to M . Finally, in a full-broadcast scheme the number of

required write operations for variable and check-update phase is reduced to N and

M , respectively.

To summarize, one decoding iteration in a no-broadcast scheme requires 2E +

2E = 4E read/write operations. With half-broadcasting this is reduced to 2E +

E + M = (3 + 1/dc)E. With full-broadcasting this is further reduced to 2E +

N + M = (2 + 1/dv + 1/dc)E. For moderately large values of dv and dc, half-

broadcasting and full-broadcasting result in close to 25% and 50% memory access

reductions, respectively, compared to a no broadcasting scheme. As an example, for

a (6-32)-regular (2048,1723) LDPC code in the 10GBase-T standard (E = 12288),

the number of global memory accesses per iteration is reduced by 24% and 45% using

half-broadcasting and full-broadcasting, respectively.

The above comparisons suggest that in fully-parallel decoders, half-broadcasting

provides a better trade-off between relaxing node-to-node communication complexity

and logic overhead. Meanwhile, the full-broadcasting architecture can be the preferred

choice in low-parallelism LDPC decoders where logic area constitutes a small portion

2In addition to communication complexity, one can also investigate the effectiveness of broadcasting
schemes from energy consumption point of view and possibly assigning different energy costs for
the read and write operations.



3.3 Comparison and Discussion 31

of the total decoder area and hence the logic overhead due to full-broadcasting can

be tolerated.
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4 Block-Interlaced Decoding

4.1 Background

Each iteration of LDPC message-passing decoding consists of updating check and

variable node outputs based on functions similar to (3.1) and (3.3). Due to the

data dependency, the computation of z
(i)
mn in (3.3) cannot be started until all the q

(i)
m′n,

m′ ∈M(n) have been calculated from (3.1). Similarly, the check-update phase cannot

be started before completion of the variable update phase of the previous iteration.

In [1], an overlapped message-passing scheduling is proposed for quasi-cyclic LDPC

codes decoded in a memory-based architecture. The idea is to perform the check (vari-

able) node update phase in an order such that the variable (check) node update phase

can be started for some variable (check) nodes before all the check (variable) node

updates are complete. A modified scheduling algorithm for overlapped message pass-

ing is proposed in [50] which can be applied to any LDPC code. The algorithm in

[50] is based on permuting rows and columns of H so that the sub-matrices in the

lower-left and upper-right corners of the permuted H are all zeros. Fig. 4.1 shows an

example of a 6×12 parity check matrix before and after the row and column permu-

tations as proposed in [50]. In Fig. 4.2 the corresponding timing diagrams are shown.

The timing diagrams are based on a partially-parallel decoder architecture with two

shared CPUs and three shared VPUs. In contrast to the diagram in Fig. 4.2a, the

diagram in Fig. 4.2(b) shows that using the permuted H matrix of Fig. 4.1(b), some

variable nodes (i.e., columns 2, 6 and 9) can be updated even before the check node

update phase is complete. Similarly, some check nodes (i.e., rows 1 and 3) can be

updated before the variable node update phase from previous iteration is complete.

This overlapped scheme reduces the amount of time required to perform one decod-

ing iteration, hence it results in higher decoding throughput. The maximum possible

amount of overlapping in a partially-parallel message-passing LDPC decoder is di-

rectly related to the number of all-zero sub-matrices (i.e., the m × n sub-matrices,

33
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where m and n are the number of shared CPUs and VPUs, respectively) in the lower

left and upper right corners of the permuted H matrix.
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Figure 4.1: An example of row/column permutation of H matrix in overlapped
message-passing [1]: (a) the original H matrix, (b) the permuted H ma-
trix.
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Figure 4.2: Message-passing timing diagram for (a) the original matrix of Fig. 4.1.a
(b) for the permuted matrix of Fig. 4.1.b.

One drawback of the overlapped message-passing is that as the number of parallel

variable and check processing units increases, the potential increase in throughput is

decreased. This can be seen from Fig. 4.1. As the parallelism increases the relative size

of the sub-matrices inH is also increased and as a result it becomes increasingly harder

to find a permuted H matrix with all-zero sub-matrices in the lower-left and upper-

right corners. (In the case of a fully-parallel architecture, the sub-matrix becomes the

same size as the parity check matrix and as a result no overlapping is possible). In

addition, the potential throughput gain is reduced for smaller H matrices with high

variable and check node degrees.

4.2 Interlacing

The following paragraphs describe an alternative approach to increase the decoding

throughput. We will show that unlike the overlapped message-passing technique, the

proposed scheme is most applicable for the fully-parallel decoder architecture. We

will also evaluate the throughput improvement and associated costs of this approach

for two fully-parallel LDPC decoders.
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Figure 4.3: A timing diagram for the message-passing algorithm: (a) conventional (b)
overlapped message passing [1] (c) block interlacing.

In this new approach, instead of overlapping the variable-update phase and check-

update phases of the same frame, we interlace the decoding of two consecutive frames

such that when variable (check) node update phase is being applied to one frame,

another frame is in the check (variable) node update phase and vice versa. Fig. 4.3

compares the conventional and overlapped message-passing timing diagram with that

of the block interlaced timing diagram. It can be seen that from t0 to t1 the con-

ventional scheme in Fig. 4.3(a) has finished 3 iterations and the overlapped message

passing has completed 4 iterations (or it is ready to start 5th iteration) whereas in the

same time period the block interlaced scheme in Fig. 4.3(c) has finished 3 iterations

for frame 1 and 3 iterations for frame 2, i.e., 6 iterations in total. This improvement

in decoder throughput results from eliminating the idle times in the timing diagram,

or equivalently, increasing the hardware utilization of the decoder.
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The block-interlacing is similar to the fully-pipelined architecture in [48] where

logic utilization is increased by having one set of VPUs and CPUs for each iteration.

Here, a single set of VPUs and CPUs exchange information back and forth while

performing the iterations. As a result the memory and the logic size does not increase

with number of iterations. The block interlacing technique can be used both in fully-

parallel and partially-parallel LDPC decoders and, unlike the overlapped message-

passing technique of [50], the throughput improvement is independent of the parity-

check matrix.
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Figure 4.4: (a) conventional, and (b) block-interlaced architecture for fully-parallel
LDPC decoders.

For fully-parallel decoders, the only additional requirement for block interlacing

are the pipeline registers at the node outputs (Fig.4.4). In these decoders, the gate-

count overhead due to the pipeline registers is relatively small compared with the large

logic gate count. As an example, for the two decoders presented below, the hardware

overhead is less than 10%. This overhead is easily justified by the improvement in

decoder throughput. The exact amount of throughput improvement depends on the

reduction of the critical path as the result of adding pipeline registers. Typically, the

critical path in the non-interlaced scheme of Fig.4.4.a starts from the registers at the

output of the VNUs and goes through the combinational logic in CNUs and VNUs
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before arriving at the VNU output registers. In the ideal case where the critical path

in Fig. 4.4.b is broken to two paths with half length, the throughput is doubled.

However, the critical path is not always exactly reduced to half. As an example, for

the two decoders that will be presented in this chapter, the improvement is about

1.6X and 1.7X.
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Figure 4.5: (a) conventional, and (b) block-interlaced architecture for partially-
parallel LDPC decoders.

For partially-parallel decoders, block interlacing keeps the CPU and VPU logic

unchanged but requires doubling the size of the LLR memories so that the CPUs

and VPUs can switch between two memory banks as they switch between the two

different frames (Fig. 4.5). In decoders with a small number of CPUs and VPUs (i.e.,

low parallelism) memory is the dominant portion of the decoder, so block interlacing

will nearly double the power and area but, in high-parallelism decoders, the logic size

becomes dominant and overhead is reduced.

4.3 Implementations

To demonstrate the block interlacing, we compare the characteristics of two imple-

mented fully-parallel LDPC decoders. Each of these decoders was implemented twice:

once without block interlacing and once with interlacing.
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4.3.1 Design 1: (2048, 1723) RS-based LDPC decoders

The first two decoders are rate-0.84 (2048, 1723) RS-based (6,32)-regular fully-parallel

LDPC decoders in a 0.18-µm CMOS-6M technology. This particular code is now

adopted for the IEEE 802.3an 10GBase-T (10 Gigabit Ethernet on twisted pair)

standard [51]. Both decoders performs 32 iterations of hard-decision message-passing

decoding [23]. Their top-level block diagram is similar to the fully-parallel architecture

in Fig. 2.5 with 2048 VNUs and 1723 CNUs.

For the first design (Design 1A), the variable and check nodes are the same as the

half-broadcast hard-decision message passing architecture that was shown in Fig. 3.7.

The second design (design 1B) is also based on the half-broadcast hard-decision ar-

chitecture of Fig. 3.7, but it also includes the additional flip flops to permit block

interlacing. Fig. 4.6 shows the variable and check nodes for design 1B.

The comparison between the timing diagrams of conventional decoder in Designs

1A and the block interlaced decoder in Design 1B is shown in Fig. 4.7. Although each

decoding iteration in Design 1B requires double the number of clock cycles compared

to Design 1A, the overlapped decoding schedule and also the higher clock frequency in

1B results in about 1.6X throughput increase, as will be shown in the results section.
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4.3.2 Design 2: (660, 484) PEG LDPC decoders

The next two decoders also use a similar top-level diagram as in Fig. 2.5 but are

based on a (660,484) (4,15)-regular LDPC code generated using the progressive edge

growth (PEG) algorithm [28]. They perform 16 iterations of min-sum decoding (as

described in Chapter 2) with 4-bit quantized LLR values.
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Figure 4.8: VNU for the fully-parallel LDPC decoders in Designs 2A and 2B.

The first design (Design 2A) performs conventional 4-bit min-sum decoding with

no block-interlacing included. Fig. 4.8 shows the VNU architecture. The 4-bit input

LLRs are first converted from sign-magnitude format to 2’s complement format which

is more efficient for performing the additions and subtractions. The 7-bit outputs of

the subtracters are saturated to generate 4-bit results and are then converted to the

sign-magnitude format to be processed by the CNUs. The hard decision block in the

VNU generates the 1 bit output of the decoder corresponding to that variable node

in the final iteration based on the sign of the sum of all messages. If the sum is zero,

the output is determined based on the majority of the input signs.
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Figure 4.9: CNU for the fully-parallel LDPC decoder in Designs 2A.

Fig. 4.9 shows the internal architectures of the CNUs for Design 2A. According

to the min-sum update rule, the magnitude of each CNU output is the minimum of

the magnitudes from all other inputs. These output magnitudes can be efficiently

calculated by finding the first and second minimums among all input magnitudes.

These minimums are calculated in the FindMins block as shown in Fig. 4.10.
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The second design (Design 2B) has the same VNUs as Design 2A. The CNUs

are also similar to the CNUs in Design 2A with the exception that the inputs at the

CNUs are registered.

4.3.3 Results

Table 4.1 summarizes post-layout simulation results (after timing-driven place and

route) for all the decoders. The results show that for the Designs 1A and 1B, the

block interlacing increases the total throughput by 62% at the cost of just 5.5% more

core area. For the Designs 2A and 2B throughput is increased by 71%, with a 9.5%

area overhead. Notice that block interlacing has not exactly doubled the throughput

as one would ideally expect from Fig. 4.3. The reason is that the pipeline registers do

not exactly break the critical path into two identical length paths. So, the maximum

clock frequency is limited by the delay in the longer path.

Table 4.1: Summary of LDPC decoder characteristics.

Design 1A Design 1B Design 2A Design 2B

CMOS process 0.18 µm 0.18 µm 90 nm 90 nm
Architecture parallel parallel parallel parallel
Block interlacing no yes no yes
Code length (bits) 2,048 2,048 660 660
Code rate 0.84 0.84 0.73 0.73
No. of Edges 12288 12288 2640 2640
Iter. per frame 32 32 16 16
Clock cycles per iteration 1 2 1 2
quantization (bits) 1 1 4 4
Max freq. (MHz) 60 96 83 142
Core area (mm2) 9.8 11.4 2.72 3.06
Min. size NAND gate count (k) 522 551 685 750
Total throughput (Gbps) 3.84 6.14 3.42 5.86
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5 Power-Saving Techniques for LDPC

Decoders

This chapter investigates power saving techniques for decoding LDPC codes. First,

we analyze the advantage of the fully-parallel decoding architecture from an energy

efficiency point of view. Then, we will discuss the achievable power savings by ap-

plying an early termination architecture without degrading the coding performance.

Finally, we will explore the power vs. BER vs. throughput design space.

5.1 Parallelism and Supply-Voltage Scaling

5.1.1 Background

A generic LDPC decoder architecture is shown in Fig. 5.1. It comprises Kv shared

variable node update units (VNUs), Kc shared check node update units (CNUs), and

a shared memory fabric used to communicate messages between the VNUs and CNUs.

Inputs to each CNU are the outputs of VNUs fetched from memory. After performing

some computation (e.g., the MIN operation for the magnitude and parity calculation

for the signs in min-sum decoding), the CNU’s outputs are written back into the

extrinsic memory. Similarly, inputs to each VNU arrive from the channel and several

CNUs via memory. After performing the message update (e.g., the SUM operation in

min-sum decoding), the VNU’s outputs are written back into the extrinsic memory

for use by the CNUs in the next decoding iteration. Decoding proceeds with all CNUs

and VNUs alternately performing their computations for a fixed number of iterations,

after which the decoded bits are obtained from one final computation performed by

the VNUs.

By increasing the number of VNUs and CNUs, Kv and Kc, the decoder performs

more computations in parallel. When the decoder is operated from a fixed supply

voltage, such increased parallelism may be used to achieve higher throughput, with

47
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Figure 5.1: A partially-parallel LDPC decoder.

attendant increases in power and area. However, it is well known that increased

parallelism can also permit a digital system to operate from a lower supply voltage

with constant throughput, resulting in greatly decreased power consumption [52]. In

general, the power advantages offered by parallelism are mitigated by the overhead

associated with multiplexing and demultiplexing the system’s inputs and outputs

amongst several parallel computing units. However, in the case of an LDPC decoder,

all of the signals required for each iteration are already available in parallel in the

extrinsic memory (Fig. 5.1). The inherent parallelism of LDPC iterative decoding

with long block lengths is, therefore, well suited to implementation with a low supply

voltage. Until now, this property has not been fully exploited to design a low-voltage,

low-power LDPC decoder.

5.1.2 Analysis

The reduced supply voltage obtainable using increased parallelism is described qual-

itatively in Fig. 5.2. There is a practical limit to the decoder’s parallelism power

savings when the numbers of VNUs and CNUs equal the total number of variable

and check node computations required in each iteration. Further increases in Kv

or Kc are not straightforwardly possible since the required input messages are not

available in memory. As shown in Fig. 5.2, unless the targeted throughput is low, the

supply voltage will remain significantly higher than the MOS threshold voltage. Al-
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though sub-threshold circuits have been shown to be energy-efficient, they are mostly

suitable for low-to-mid performance systems [53] with relaxed constraints on through-

put. Since many present and future applications of LDPC codes target a multi-Gbps

throughput, our analysis will proceed assuming a square-law MOS model.

Supply Voltage
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ut

VT

Target 
throughput

Max
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Increasing
parallelism 

Figure 5.2: Increased parallelism allows reduced supply voltage.

To quantify the power reduction that can be offered by highly-parallel LDPC

decoding architectures, let us compare two decoders: a reference design with Kv

VNUs and Kc CNUs; and a design with increased parallelism having (k ·Kv) VNUs

and (k · Kc) CNUs, k > 1. The dynamic power consumption of these decoders,

operated at a clock frequency f from a supply voltage Vdd is fCeffV
2
dd, where Ceff is

the effective capacitance of each decoder including an activity factor. The effective

capacitance in a decoder is the sum of the capacitance due to the logic gates in

the VNUs and CNUs and the capacitance due to the memory cells. Note that the

memory size is the same for both decoders since the total number of messages stored

in each iteration is constant. Therefore, only the effective capacitances of the VNUs

and CNUs are scaled by increasing parallelism. Let β be the fraction of the reference

decoder’s total effective capacitance that scales with k. Hence, if Cm is the effective

capacitance associated with the memory and C1 is the total effective capacitance of
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the reference design, then β = (C1 − Cm)/C1. Since Cm does not scale with k, the

effective capacitance of the parallel design is

C2 = (1 + β(k − 1))C1.

The parallel decoder can operate at a clock frequency f2 that is k times lower

than the reference design clock frequency, f1, while maintaining the same throughput:

f2 = f1/k. Since we are striving for low-power operation, each decoder operates from

the lowest supply voltage that will support its targeted clock frequency. Hence, the

parallel design can be operated from a lower supply voltage (Vdd2) than the reference

design (Vdd1).

Using the first-order derivation for the propagation delay, Td, of a gate with a load

capacitance, CL, we obtain

Td =
CLVdd
I

=
CLVdd

µCox(W/L)(Vdd − Vt)2
. (5.1)

Following an analysis similar to [54], we find that

Vdd2 =
Vdd1

2

2m+
1

k
(1−m)2 +

√(
2m+

1

k
(1−m)2

)2

− 4m2

 ≡ vscVdd1, (5.2)

where m = Vt
Vdd1

. Therefore, the dynamic power dissipation for the parallel design is

P2 =
v2
sc

k
(1 + β(k − 1))P1 ≡ ηP1, (5.3)

Fig. 5.3(a) shows the normalized supply voltage, vsc, required for different values

of k to maintain a constant throughput based on (5.2) for a typical 0.13-µm CMOS

process where Vt = 300mV and Vdd1 = 1.2V . Fig. 5.3(b) shows the normalized power,

η, versus the parallelism factor, k, for different values of β based on (5.3). It can be

seen that the power reduction is greatest for small values of β since in those cases Cm

is the dominant portion of C1, so the added parallelism implies a negligible increase in

the system’s effective capacitance. However, significant power savings can be achieved

even with high values of β. For example, with β = 0.95 and k = 4 the supply voltage

can be reduced by about 50%, resulting in a 74% power saving compared with the

reference design.
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Figure 5.3: Power reduction as a result of a parallel architecture: a) Reduction in
supply voltage. b) Reduction in dynamic power dissipation.

The preceding analysis makes two assumptions that have not yet been discussed:

a) Power consumption is dominated by dynamic power dissipation. Our mea-

surements for the 0.13-µm CMOS decoder presented in Chapter 6 suggest

that leakage power constitutes less than 1% of the total power dissipation

when operating at the maximum clock frequency and with typical sup-

ply voltage values. This is also consistent with the power measurements

reported in [15].

b) The overhead associated with the increased parallelism is negligible. This

is the focus of Chapter 6.

Following the power efficiency discussion above, we have adopted a fully-parallel
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architecture where a separate VNU or CNU is designated for each variable node

or check node in the code Tanner graph. Another advantage of fully-parallel de-

coder architecture is that unlike most partially-parallel decoders that are based on a

particular code construction (such as the (3, k)-regular construction in [41], or the

Architecture-Aware code construction in [42]), the fully-parallel architecture can be

applied to irregular codes with no constraints on the code structure. This is done

simply by instantiating VNUs and CNUs of the desired degree and connecting them

based on the code graph. The only consideration is that the timing performance of

the decoder for irregular codes will be typically limited by a critical path through the

nodes with highest degree.

The major challenge in implementing highly-parallel decoders [15] is the large area

and the overhead effects such as the routing complexity that are not modeled in the

discussion in this section. To reduce the effect of routing complexity, we have used

a bit-serial message-passing scheme in this work where multi-bit messages are com-

municated between the nodes over multiple clock cycles [55]. In addition to reducing

the routing complexity, the bit-serial message-passing requires less logic to perform

min-sum LDPC decoding because both the MIN and SUM operations are inherently

bit-serial. As a result bit-serial VNUs and CNUs can be efficiently implemented

to generate only partial 1-bit extrinsic messages every clock cycle. Although bit-

serial message-passing reduces the amount of global wiring, the routing complexity

will eventually limit the maximum length of the LDPC codes that can be imple-

mented in a bit-serial fully-parallel decoder. However, the important point is that

the bit-serial scheme pushes the practical code length limit to higher values, mak-

ing it feasible to implement fully-parallel decoders for emerging high-speed standards

such as 10GBase-T or Mobile WiMAX, which specify maximum code lengths of 2048

and 2304, respectively. The bit-serial decoder developed in this work is presented in

Chapter 6.

5.2 LDPC Decoding With Early Termination

5.2.1 Background

LDPC decoders generally correct most bit errors within the first few decoding it-

erations. Subsequent iterations provide diminishing incremental improvements in

decoder performance. The number of iterations performed by the decoder, IM , is
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usually determined a priori and hard-coded based on worst-case simulations. There-

fore, the decoder performs IM iterations even though it will usually converge to its

final output much sooner. We propose an energy-efficient decoder architecture that

efficiently detects when it has converged to its final output and shuts off all VNUs

and CNUs for the remaining iterations to save power.

Earlier work in this area has focused on identifying particular bits within each

frame that appear likely to have converged [56, 57]. They have suggested that one

can stop updating extrinsic messages for those reliable bits while other unreliable bits

are still being decoded. The resulting power savings depends on the specific criteria

used to identify the reliable bits. Unfortunately, these bits are sometimes incorrectly

identified, so the decoder’s performance suffers. In [58], an additional post-processing

decoder is introduced to mitigate this performance degradation. Naturally, there is

overhead associated with identifying the reliable bits and with the post-processing

decoder. The overhead reduces the potential power savings of this approach.

In this work, instead of trying to identify individual bits that appear to have

converged early, we monitor the entire frame to determine when the decoder has con-

verged to a valid codeword. We then deactivate the entire decoder for the remaining

iterations to save power. The remainder of this section describes a hardware-efficient

implementation of this technique with significant power savings and no performance

degradation.

5.2.2 Early termination

Although EXIT charts can be used to determine the average number of iterations

required for the convergence of an LDPC decoder operating on very long block lengths

[24], for practical block lengths of 1000 to 10,000 bits the estimates so obtained are

inaccurate. Instead, we have used extensive simulations to investigate the convergence

behavior of two practical LDPC codes.

Fig. 5.4 shows the BER versus input SNR for two different LDPC codes under 4-

bit-quantized min-sum decoding. The code in Fig. 5.4(a) is the Reed-Solomon based

(6,32)-regular 2048-bit LDPC code as specified for the 10Gbase-T Ethernet standard

[51]. The code in Fig. 5.4(b) is the one employed in the hardware prototype that will

be described in Chapter 6. Each code is simulated under a range of different IM ’s.

These simulations indicate that little performance improvement is observed for either

code as the number of iterations is increased from IM = 12 to IM = 16. Therefore,
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Figure 5.4: BER vs. maximum number of iterations under 4-bit quantized min-sum
decoding: (a) Reed-Solomon based (6,32)-regular 2048-bit code and (b)
PEG (4,15)-regular 660-bit code.

no more than IM = 16 iterations are required for either code.

The convergence behavior of the same two codes is shown in Fig. 5.5, which plots

the average fraction of uncorrected frames versus the iteration number. These two

figures show that the vast majority of frames are correctly decoded in the first few

iterations. For example, for the code in Fig. 5.5(a), at an Eb/N0 of 5.1 dB, more than

99.99% of all frames have been successfully decoded during the first five iterations.
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Figure 5.6: Fraction of active iterations (a) Reed-Solomon based (6,32)-regular 2048-
bit code and (b) PEG (4,15)-regular 660-bit code.

Fig. 5.6 plots the ratio of the average number of required iterations to IM , α,

versus input SNR for the same two codes as in Fig. 5.5. The figure shows the graphs

for IM =4, 8, 12 and 16. For example, based on Fig. 5.6(b), for the code implemented

in this work with IM = 15, on average less than 3 iterations are needed per frame at

SNR=4.3dB (corresponding to BER=10−5). As will be shown in the results section,

by exploiting this behavior and turning off the decoder in the remaining un-needed

iterations, the total dynamic power is reduced by 65%.
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5.2.3 Hardware implementation

The remaining task is to efficiently implement early termination in hardware, i.e., to

detect that the decoder has converged to a correct codeword. A standard approach is

to make final decisions in each VNU at the end of each iteration and then check if all

parity constraints are satisfied. This is referred to as syndrome checking. Although

straightforward, this approach has a considerable hardware cost. First, it requires

additional hardware in the VNUs to make the hard decisions at the end of each

iteration. Second, the hard decisions must be distributed to the destination check

nodes in every iteration where syndrome checking can be performed. This distribution

can be done either by dedicating extra hard wires from VNUs to the neighboring

CNUs, or by sharing the same wires used for transferring extrinsic messages in a

bit-serial time multiplexed fashion. Neither of these approaches is efficient because

they either increase the routing complexity by adding global wires or they decrease

the decoding throughput by increasing the number of clock cycles per iteration.

Alternatively, in this work we check the parity of the sign of the normal variable-

to-check messages that are already required by the decoding iterations. If the parities

of all these signs are satisfied, we stop decoding for that frame and compute the

final hard decision at the beginning of next iteration. Although not mathematically

equivalent to the standard syndrome checking, we have simulated the two LDPC codes

of Fig. 5.4 with the same set of 106 frames both without and with early termination

at Eb/N0 ranging from 4 dB to 5.1 dB. The simulations show identical performance

between the two approaches for these codes.

For the two codes discussed in this chapter, our method on average needs one extra

iteration to terminate compared with the conventional syndrome checking method.

This difference reduces the amount of power savings achieved compared to the conven-

tional syndrome checking. For example, in the 660-bit decoder that will be presented

in Chapter 6, conventional syndrome checking could have improved the percentage

of power savings from 49% to 51% for low-SNR inputs (Eb/N0 ≈ 3 dB) and from

66% to 72% for high-SNR inputs (Eb/N0 ≈ 6 dB). In spite of the reduced power

savings, we have adopted this new termination method for two reasons. First, in

contrast to conventional early termination, our termination method does not increase

the number of VNU-to-CNU wires, nor does it require extra clock cycles per iteration

to distribute the hard decision results to the CNUs. Second, this approach requires

minimal hardware overhead since most of the calculations are already part of the
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Figure 5.7: The fully-parallel iterative LDPC decoder with early termination func-
tionality.

normal VNU and CNU operations.

Fig. 5.7 shows the block diagram of a decoder with early termination logic. It is

similar to the one in Fig. 2.5 with a few added blocks: First, all the parity results

are ORed. The output of the OR tree is zero only when all the parities are satisfied.

Second, a termination logic block generates the proper disable/enable signals for the

VNUs and CNUs depending on the value of the OR tree output. If the output

of the OR tree is zero, it keeps the VNUs and CNUs disabled for the remaining

iterations. Fig. 5.8 shows the timing diagrams of the decoder, with and without early

termination. It shows that the decoding throughput is the same in both cases since

the start time for decoding the frames is identical. However the power consumption

is reduced in Fig. 5.8 because the decoder is turned off as soon as a correct codeword

is detected.

The synthesis results show that the added OR tree and the enable/disable func-

tionality required in CNUs and VNUs adds only less than 0.1% and 0.5% to the total

decoder gate count, respectively. It should also be noted that no additional logic is

required inside the CNUs to generate the XOR-out signals as this value is already

available from the sign-calculation block inside the CNUs (Fig. 4.9).
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Figure 5.8: Block-interlaced decoding timing diagram (a) without early termination,
(b) with early termination.

5.3 Power vs. BER Performance

When designing an LDPC decoder, the value of IM (i.e., the total number of de-

coding iterations per frame) should be determined such that for a given decoding

throughput the target BER performance is maintained and at the same time the

power consumption is kept low.

Although higher values of IM are desirable for good BER performance, unneces-

sarily large values of IM result in insignificant BER improvement. At the same time,

for a given decoding throughput, a higher value of IM directly translates to higher

required clock frequency and as a result a higher power consumption. In this section,

we show the effect of IM on BER and power performance. We also show the effect of

early termination in reducing power consumption under different values of IM .

Fig. 5.9 summarizes the effect of IM on BER performance and normalized power

consumption for the (660, 484) PEG LDPC code. Fig. 5.10 shows similar results for

the RS-based (2048, 1723) LDPC code. As expected, in both cases increasing IM
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Figure 5.9: The effect of IM on BER and power performance under a fixed decoding
throughput for the (660, 484) PEG LDPC code.

from 4 to 16 improves the BER performance and the distance from the Shannon limit

is reduced. It can be seen that for the code in Fig. 5.9, the BER improvement is more

than for the code in Fig. 5.10. Although not illustrated here, it is also known that

irregular codes typically require on average a larger number of decoding iterations

before converging to a valid codeword.

The power consumption curves in Fig. 5.9 and Fig. 5.10 are shown for two cases:

once without and once with early termination. The power values in these curves are

normalized with respect to the highest power consumption, which is when IM=16

and also no early termination is applied.

For the curves with no early termination, the power values are obtained from the

P = fCV 2
dd formula and based on the following facts:

a) Since the same parallelism level is maintained, the value of C stays un-

changed.

b) For constant decoding throughput and constant parallelism level, the re-

quired operating clock frequency, f , is proportional to IM .
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Figure 5.10: The effect of IM on BER and power performance under a fixed decoding
throughput for the RS-based (2048, 1723) LDPC code.

c) For the new f , the value of the Vdd can be scaled using (5.2). (For the

curves in Fig. 5.9 and Fig. 5.10 we have used m = Vt/Vdd1 = 0.3/1.2.)

For the curves with early termination, the power values P ′D are calculated from

the corresponding PD values from no-termination curves and using

P ′D = (1 + γ)(pc + α(1− pc))PD, (5.4)

where γ accounts for the overhead of the early termination logic, pc is the fraction of

dynamic power attributable to the clock tree, and α is the ratio of active iterations

similar to the values plotted in Fig. 5.6(b). This expression accounts for the fact

that early termination does not decrease the dynamic power in the clock tree. From

the power measurements for the decoder reported in Chapter 6, the value of pc is

approximately 0.2. Also, from the synthesis results the value of γ is estimated to be

less than 0.006.

Both figures show that in comparison to no early termination, the early termina-
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tion reduces the power consumption by about 69% at Im = 16 and by about 50% at

IM = 4. The figures also show that in both cases the value of IM=8 seems to provide

a good trade off between power consumption and coding performance.



6 Bit-Serial Message-Passing

6.1 Motivation

Following the discussions in the previous chapters, we have concluded that the fully-

parallel LDPC decoder architecture is preferable both in terms of decoding through-

put and energy efficiency. The main challenge in implementing a fully-parallel decoder

is the congestion that arises when routing the interconnections between the processing

nodes [15]. This routing congestion results in a large decoder with low area utiliza-

tion, and degrades the timing performance due to the presence of long interconnects

across the chip. These problems are exacerbated because word lengths of 4 to 8

bits are generally required to represent each extrinsic message. In addition, in most

fully-parallel decoders, separate sets of wires are used for each direction of messages

on each edge. As an example, a conventional fully-parallel LDPC decoder for the

2048-bit LDPC code from the 10GBase-T standard with variable node degree of 6

and 6-bit quantized LLR messages will require 147,456 global wires to connect the

variable and check nodes.

To alleviate the routing problem caused by the large number of global wires in a

fully-parallel LDPC decoder, in this section we describe a bit-serial message-passing

scheme. Fig. 6.1(a) shows a conventional decoder where q-bit messages are calculated

and communicated between VNUs and CNUs in parallel. Alternatively, Fig. 6.1(b)

shows the proposed decoder in which messages are generated and transferred between

nodes bit-serially over one wire in q clock cycles.
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Figure 6.1: Bit-serial vs. bit-parallel message passing.
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The bit-serial computation is of particular interest in min-sum decoding because

both the Min and Sum operations inside the CNUs and VNUs can be naturally per-

formed bit-serially. In addition to simplifying the node-to-node interconnections, the

bit-serial approach has several other advantages for fully-parallel LDPC decoders.

In a bit serial scheme, the word length of computations can be increased simply by

increasing the number of clock cycles allocated for transmitting the messages. Us-

ing this property, the precision of the decoder can be made programmable just by

re-timing the node-to-node message transfers without the need for extra routing chan-

nels. Programmability of the decoder word length allows one to efficiently trade-off

complexity for error correction performance. This in turn allows efficient implementa-

tion of gear-shift decoding [59]. Gear-shift decoding is based on the idea of changing

the decoding update rule used in different iterations to simultaneously optimize hard-

ware complexity and error correction performance. For instance, gear shift decoding

often suggests applying a complex powerful update rule in the first few iterations fol-

lowed by simpler update functions in later iterations. Bit-serial computation allows

efficient shifting between update rules by changing the computations word length.

Bit-serial decoding, however, imposes some challenges. The immediate effect is

that it reduces the decoder throughput compared with fully-parallel implementations,

as multiple clock cycles are required for transmitting a single message. Also some

common check and variable update functions cannot be efficiently implemented bit-

serially. Although bit-serial fully-parallel LDPC decoders have a lower throughput

compared with bit-parallel fully-parallel LDPC decoders, we will show in this work

that their throughput can still be higher than hardware-sharing decoder schemes.

Stochastic computation [34] is similar to bit-serial computation in that it commu-

nicates extrinsic messages over single wires. It has a very simple check and variable

node architecture but needs a significant amount of hardware overhead in order to

translate the stochastic messages at the decoder inputs and outputs. In addition,

the stochastic computation uses a redundant number representation which limits the

decoder throughput.
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6.2 Bit-serial Blocks for Conventional Min-Sum

Decoding

This section illustrates how bit-serial VNUs and CNUs can be implemented for a

fully-parallel min-sum LDPC decoder with update rules as specified by (2.8) and

(2.7).

6.2.1 CNU architecture

Fig. 6.2 shows the top level architecture of a bit-serial CNU for min-sum decoding.

Each input is an n-bit sign-magnitude binary number which is received bit-serially.

Each output is a bit-serial n-bit number calculated based on (2.8). Similar to the

architecture in Fig. 4.9, each output sign is calculated by XORing all the other input

signs. In contrast to Fig. 4.9, here the output magnitudes are calculated from the

Check-in-1 magnitude

sign

Sign/Mag

Check-in-2

Check-in-15

Calculate
the output

magnitudes

Check-out-1

Bit serial
inputs

Bit
serial

outputs

Check-out-2

Check-out-15

Calculate the output signs

Figure 6.2: Top-level diagram for a bit-serial CNU.

bit-serial input magnitudes arriving MSB first. To perform the calculations in (2.8)

efficiently, this module finds the first and second distinct minimums at each cycle and

also keeps track of the number of inputs that share the same magnitude as the first

distinct minimum. Each output is then decided based on these values.
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Since input magnitudes arrive one bit per cycle, there needs to be a finite state

machine associated with each input/output, as shown in Fig 6.3, to keep track of the

history of each input in comparison with other inputs. In the process for finding the

first and second minimums, each input can be in one of the following three states.

• Alive: The input is a potential candidate for being the first distinct minimum.

• Half-alive: The input cannot be the first minimum anymore but is a potential

candidate for being the second minimum.

• Dead: The input can be neither the first nor the second minimum.

Alive Half
alive

Dead

If there is no
other input less
than this input If there is only

one input less
than this input

If there is any
other half-alive input less

than this input

If there is more than
one alive input less

than this input

If there is no other
half-alive input
less than this

input

Remain here until
next start

Start

State flag1-i-d flag2-i-d

Alive
Half
Alive

Dead

0 0

01

11

Figure 6.3: The finite-state machine for bit-serial calculation of CNU output magni-
tudes in a conventional min-sum decoder.

At the beginning of the Min calculation, all of the FSMs are set to be in the Alive

state since all inputs can potentially be a first minimum. As the new bits arrive, the

input states change depending on their current state and the number of other inputs

with smaller magnitude.



68 6 Bit-Serial Message-Passing

Fig. 6.4 shows the bit-serial implementation of the magnitude calculation module

for a degree-15 CNU (dc=15). The state of the i-th input (1 ≤ i ≤ 15) is stored in

two flip flops (i.e., flag1 i d and flag2 i d flip flops) based on the state assignment

values as shown in Fig. 6.3. The logic before the flag1 i d flip flops determines

which edges are still in the Alive state and passes the Alive inputs to a 15-input

AND gate in order to find the value of the 1st min signal. Similarly, the logic before

the flag2 i d flip flops determines which inputs are Half-alive and passes them to

a 15-input AND gate to generate the 2nd min signal. The output value for the i-th

edge, mag out i, is selected either from 1st min or 2nd min signals. By default, the

mag out i is 1st min unless the i-th edge is the only one edge that is still Alive, in

which case the value of 2nd min signal is passed as the mag out i.
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Figure 6.4: The magnitude calculation module for the CNU in Fig. 6.2.
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6.2.2 VNU architecture

To find an efficient bit-serial variable node architecture, we investigated two alter-

natives. The first architecture, shown in Fig. 6.5, is based on a forward-backward

computation [2]. The main difference between our approach and [2] is that here all

the inputs and outputs are bit-serial. The main problem with the forward-backward

architecture of Fig. 6.5 is that for a variable node of degree dv the critical path con-

sists of a chain of (dv− 2) two-input adders. For LDPC codes with relatively high dv,

this can limit the timing performance of the decoder.
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var-out-6

Full
Adder

a
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s

b

s
c_outc_in

Figure 6.5: A degree-6 VNU for computing (2.7) with a forward-backward architec-
ture [2]. Each adder box consists of a full-adder and a flip-flop to store
the carry from the previous cycle.

The second variable node architecture investigated in this work is shown in Fig.

6.6. In this architecture, the bit-serial inputs are first converted to parallel inputs

and then the additions are performed in one cycle using parallel adders/subtracters.
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The parallel outputs are finally converted back to bit-serial format before being sent

to check nodes.
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n

n

n

n

n

Bit
serial
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Parallel
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Figure 6.6: A VNU architecture for computing (2.7) with parallel adders and parallel-
serial converters at the inputs and outputs.

Table 6.1 summarizes the VLSI hardware cost and timing performance of two

degree-6 variable nodes corresponding to the two above alternatives. The parameters

in this table are based on the synthesis results using a 90-nm CMOS standard cell

library and with 3-bit quantization. Based on Table 6.1, we have used the variable

node architecture of Fig. 6.6 in the design presented in this work since it is superior

both in terms of timing and area.
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Table 6.1: Comparison between the variable node architectures of Fig. 6.5 (forward-
backward) and Fig. 6.6 (parallel adder/subtracters) with dv = 6 and 3-bit
quantization synthesized with CMOS 90-nm library cells.

Architecture Forward-backward Parallel adder

Combinational area (µm2) 2484 2099
Flip flops area (µm2) 623 405
Total area (µm2) 3107 2504

Minimum clock period (nsec) 3 2.20
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6.3 Bit-Serial Blocks for Approximate Min-Sum

Decoding

Although the conventional MS decoding algorithm can be implemented in a bit-serial

fashion as described in Section 6.2, in this section we introduce an approximation

to the MS algorithm that reduces the hardware complexity of CNUs while causing

minimal degradation in code performance. We then show the corresponding bit-

serial CNU architecture for the simplified algorithm. It should also be noted that this

approximation is also applicable to conventional bit-parallel hardware decoders.

6.3.1 Approximate Min-Sum decoding

The first step is to replace the min-sum check update rule,

ε(i)mn = min
n′∈N(m)\n

|z(i)
mn′|

∏
n′∈N(m)\n

sgn(z
(i)
mn′), (6.1)

with

ε(i)mn = min
n′∈N(m)

|z(i)
mn′|

∏
n′∈N(m)

sgn(z
(i)
mn′). (6.2)

In other words, the sign of the check node outputs are calculated exactly the same

way as before but now the output magnitude is the minimum of magnitudes of all

input messages.

Fig. 6.7 compares the BER performance of original MS decoding algorithm with

that of the modified MS based on (6.2) for two RS-based LDPC codes [10] using

full-precision computations. This graph shows that with full-precision computations,

the two algorithms perform almost identically. It is clear that a check update rule as

in (6.2) significantly reduces the hardware complexity. The reason is that once the

minimum among all input magnitudes is found it can be sent out as the magnitude

of all the outgoing messages, ε
(i)
mn, for all n ∈ N(m).

It is observed that although the above modification to MS results in almost no

performance loss under full-precision operations, it introduces a considerable loss

when performed in finite-precision. Fig. 6.8 shows the effect of the MS approximation

when applied to quantized messages. In the following paragraphs we introduce a

further change to the modified MS decoding algorithm that reduces the performance

gap shown above.
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Figure 6.7: Comparison between original min-sum and modified min-sum under full-
precision operations for (2048, 1723) and (992, 833) LDPC codes.

The sign of the output messages in the new check update rule is the same as in

(6.2). The magnitude of the output message is calculated as follows. First, for check

node cm, in the i-th iteration, we define M
(i)
m = minn′∈N(m) |z(i)

mn′|. We also define

1 ≤ T
(i)
m ≤ dc as the number of inputs z

(i)
mj to check node cm that satisfy |z(i)

mj| = M
(i)
m .

The magnitudes of the check node outputs are then calculated as

|ε(i)mn| =

{
M

(i)
m + 1 if T

(i)
m = 1 and |z(i)

mn| = M
(i)
m

M
(i)
m otherwise.

(6.3)

In other words, the output magnitudes in (6.3) are calculated in the same way as

in (6.2) with only one exception: if there is one unique input to the check node m

with a magnitude equal to M
(i)
m , the outgoing message on that edge is set to M

(i)
m + 1

instead of M
(i)
m . We add this one LSB correction factor to reflect the fact that based

on the original update rule in (6.1), the magnitude on this edge should be larger than

M
(i)
m .

Simulation results plotted in Fig. 6.8 show that with the new check update rule
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using 4-bit quantization the BER performance gap with respect to the original 4-bit

MS algorithm is reduced from 0.7 dB to less that 0.1 dB at BER of 10−6. More

importantly, the error floor effect is also avoided.

The simulation results in Fig. 6.8 are for the same (2048, 1723) LDPC code as in

Fig. 6.7. We expect that the approximate min-sum, as explained above, would have a

similar effect on BER performance for other LDPC codes with relatively large check

node degree. This is because in large-degree check nodes there is a high probability

that the first and second minimums differ by a small amount, and, as a result, the

performance gap between approximate min-sum and the original min-sum be reduced.

A detailed and more vigorous analysis of approximate min-sum decoding performance

on general families of LDPC codes is however subject to further research.
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Figure 6.8: Comparison between the original min-sum and modified min-sum as in
(6.2) and (6.3) under fixed-point operations for (2048, 1723) LDPC code.

6.3.2 CNU architecture for approximate Min-Sum decoding

This section describes an internal architecture for the bit-serial CNU based on (6.3).

As discussed in Section 6.3.1, in the modified MS algorithm only the smallest magni-
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tude among all check inputs needs to be found. Fig. 6.9 shows the pipelined bit-serial

module that finds the minimum of the check inputs. This module receives dc inputs.

Associated with each input there is a flip flop acting as status flag which indicates

whether that input is still a candidate for being the minimum. At the beginning, the

status flags are all reset to zero. As the MSB bits are received some flags become ’1’

indicating that the corresponding input is out of competition.
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Figure 6.9: A bit-serial module for detecting the minimum magnitude of the check
node inputs.

In spite of the extra hardware needed for the correction term, the VLSI implemen-

tation of a degree-15 check node using a 90-nm CMOS cell library shows that a check

node based on (6.3) is 40% smaller than a check node based on (2.8). This is because

there is no need to calculate the second minimum which is needed in conventional

min-sum algorithm.
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6.4 Implementations

We illustrate two implemented decoders in this section to demonstrate the timing

performance and power efficiency of bit-serial fully-parallel LDPC decoding. The

first decoder is developed on an Altera Stratix EP1S80 FPGA device. The second

decoders is fabricated in a 0.13-µm CMOS process using standard cell libraries.

6.4.1 An FPGA 480-bit LDPC decoder

This decoder is based on a (480, 355) (4, 15)-regular RS-based LDPC decoder and

is implemented on a single Altera Stratix EP1S80 FPGA device using a configurable

prototyping board called the Transmogrifier-4 (TM-4)[60].
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Figure 6.10: A fully-parallel LDPC decoder.

The high-level architecture of the decoder is shown in Fig. 6.10. All message

updates and message transfers are performed bit-serially. The decoder updates the

extrinsic messages using the node architectures of Fig. 6.9 and Fig. 6.6. Since the

updated messages are carried bit-serially over single wires, the complexity of node-

to-node interconnections is less than that of conventional bit-parallel fully-parallel

decoders [15].

Both the check and variable nodes in this design are pipelined. For n-bit quan-

tized input messages they generate n-bit output messages in n clock cycles. Each
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iteration of LDPC message-passing decoding consists of one check and one variable

node update. As a result, using a conventional scheme, 2n clock cycles are needed to

complete one iteration. However, in this design we adopt a block-interlaced scheme

[55] as described in Chapter 4 where two frames are processed in the decoder simulta-

neously in an interlaced fashion; while the check nodes process one frame, the variable

nodes are processing the neighboring frame. So, in effect it takes only n cycles to

complete one iteration, hence doubling the throughput.
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Figure 6.11: FPGA hardware BER results and bit-true software simulation.

The functionality of this decoder was verified by passing input vectors with very

low SNR and then comparing the decoder outputs with the expected values from

bit-true simulations.

The BER performance of the decoder was measured as follows.

1. For a given SNR additive white Gaussian noise with the desired variance was

generated in software and added to all-zero codewords.

2. The LLR value for each noisy bit in the frame was calculated and quantized

into q = 4 bits.
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Table 6.2: (480, 355) RS-based LDPC decoder implementation results.

This work L. Yang et al. [61]

FPGA device Stratix EP1S80 Xilinx XC2V8000

Architecture Fully-parallel Partially-parallel

Decoding Algorithm Approx. min-sum Min-sum

Logic elements (LUTs) 66,588 (84%) 53,000 (57%)

Shared memory 0 102 × 18kb

Max clock frequency (MHz) 65 100

Decoder throughput (Mbps) 610 up to 40

Code length 480 9000

Code type (4,15)-regular RS-based multi-rate

Iterations per frame 17 24

Wordlength (bits) 3 -

3. The quantized LLRs were passed into the hardware decoder through the internal

memory modules available on the FPGA device.

4. The decoder outputs were compared against the desired all-zero codewords to

produce an error count.

Fig. 6.11 shows the measured BER performance from decoder hardware as well

as the bit-true simulation. The decoder operates at a clock frequency of 65 MHz and

performs 17 iterations per frame. Using the block-interlacing technique and a word

length of 3 bits, each iteration effectively takes 3 clock cycles to complete which results

in 610 Mbps total throughput. Table 6.2 summarizes the FPGA implementation

results and compares them with the recently-published FPGA decoder in [61].

6.4.2 A 0.13-µm CMOS 660-bit bit-serial decoder

The second decoder is based on a 660-bit (4,15)-regular LDPC code which was con-

structed using a progressive edge-growth (PEG) algorithm [62] to minimize the num-

ber of short cycles in the code’s Tanner graph. The block length was limited to 660

by the silicon area available for prototyping. The decoder employs the approximate
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min-sum algorithm as described in Section 6.3.1 with 4-bit quantized LLR messages.

It also employs the block-interlacing scheme of Chapter 4.

The decoder was fabricated in a 0.13-µm CMOS8M process and was tested using

an Agilent 93000 high-speed digital tester. The decoder block diagram is shown

in Fig. 6.12. The die photo is also shown in Fig. 6.13. The 4-bit channel LLR

values are received via 44 input pins and the decoded outputs are read out via 44

output pins. With a 1.2-V supply, the measured maximum clock frequency is 300

MHz. The decoder performs 15 decoding iterations per frame (beyond which decoding

performance increases negligibly) resulting in a total encoded data throughput of

3.3 Gbps. This throughput could be further increased by reducing the number of

iterations, at the cost of slightly reduced decoding performance.
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Figure 6.12: The top-level block diagram for the (660, 484) LDPC decoder.
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Figure 6.13: Die photo of the (660, 484) LDPC decoder.

The functionality and BER tests for this decoder were performed using a procedure

similar to Section 6.4.1 with the exception that the decoder was interfaced through

the Agilent 93000 high-speed tester. Fig. 6.15 shows the measured BER performance

obtained from decoding 107 frames.

Fig. 6.15 also shows the decoder’s power consumption with a 1.2-V supply and

300-MHz clock frequency as a function of input SNR. Unlike the BER test in which

all-zero codewords were used, for the power measurements the decoder was run with

randomly-generated codewords. This ensures that the toggling rates in the internal

signals are realistic. During the decoder measurements it was observed that the

measured power was about 2X higher than the power consumption estimated by the

CAD tools. We believe this is mainly because of the inaccurate RC extraction and

to a second degree the inaccurate estimation of activity factors in the internal nodes.

The plot in Fig. 6.15 show that the power consumption peaks at SNRs where

the iterative decoder struggles to converge, thus resulting in a slightly higher activity

factor. However, the correlation between power consumption and input SNR is lower

than in conventional fully-parallel decoders because block-interlacing and bit-serial

message-passing techniques tend to maintain high switching activity on all nodes,

even at high SNRs.

Measurements show that approximately 20% of the total power dissipation is due

to the clock tree. The static power consumption due to leakage current accounts for
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less than 1% of the total decoder power. The rest of the power is due to the logic in

the CNUs, VUNs and input/output buffers. Since the same supply was used for all

the core logic, further breakdown on measured power was not feasible. Fig. 6.14(a)

and 6.14(b) show the area breakdown of the decoder core logic for different cell types

and different module types, respectively, from the post-synthesis area reports.

Variable 
nodes
74%

Check 
nodes
23%

Input 
buffers

2%

Output 
buffers

1%

Comb.  logic
72%

Inverters and 
buffers

3%

Flip Flops
25%

(a) (b)

Figure 6.14: Gate area breakdown for (a) cell types, (b) module types.

Fig. 6.16 shows the effect of scaling the decoder’s supply voltage on its maximum

clock frequency and the corresponding power consumption. The dotted lines are the

predicted values based on the MOS square-law equation with Vt = 300mV . It can

be seen that the measured results closely follow the extrapolated results both for

maximum operating frequency and for the power consumption. The plot suggests

that for lower-throughput applications, energy efficiency can be improved using the

same bit-serial decoder by operating at a lower supply voltage [52]. For example,

with a 0.6-V supply, the design has a measured energy consumption of 0.148 nJ/bit

– better than previously reported designs specifically targeting low power [16].
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Figure 6.15: Measured power and BER for the fabricated 660-bit decoder.
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Table 6.3: Characteristics summary and measured results.

Process 0.13-µm CMOS
Architecture Fully parallel
LDPC Code (4, 15)-regular 660-bit
Code rate 0.74

Decoding algorithm Modified min-sum
Core area (mm2) 7.3
Total area (mm2) 9

Gate count 690 k
Core area utilization 72%
Iterations per frame 15
Message word length 4 bits

Package QFP160
Supply 1.2 V 0.6 V

Maximum frequency (MHz) 300 59
Total throughput (Mbps) 3300 648

Information throughput (Mbps) 2440 480
Early termination No Yes No Yes

Power @ (Eb/N0=4dB) (mW) 1408 518 72 26.5
Power @ (Eb/N0=5.5dB) (mW) 1383 398 71 20.5

Energy consumption @ (Eb/N0=4dB) (pJ/bit/iter) 28.5 10.4 7.4 2.7
Energy consumption @ (Eb/N0=5.5dB) (pJ/bit/iter) 27.9 8.0 7.3 2.1

Although a maximum of 15 iterations per frame is required for excellent low

BER performance, the vast majority of frames need only few decoding iterations

to be correctly decoded. As a result, a significant power saving can be achieved

by detecting early convergence in the decoder and turning it off for the remaining

iterations as described in Chapter 5. The early termination feature is not included

in the currently fabricated decoder but, synthesis results show that it would add less

than 1% overhead in logic area while providing a large power saving as shown in Fig.

6.15. The values in this graph are obtained from laboratory power measurements of

the prototype decoder (without early termination) combined with simulation results

of the average required number of iterations per frame at different input SNRs. The

plot shows that for the 660-bit LDPC decoder, early termination results in more than

60% power savings at low input SNRs and more than 70% savings at high input

SNRs. There is no change in the decoder’s BER performance. Table 6.3 summarizes

the characteristics of the fabricated decoder.
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Table 6.4: Comparison with other works.

[15] [63] [35] [38]

CMOS Process 0.16-µm 0.18-µm 0.18-µm 0.18-µm
Fully parallel yes no no yes

Bit serial no no no yes
Code type irregular irregular regular regular

Code length 1024 600 2048 256
Code rate 0.5 0.75 programmable 0.5

Total area (mm2) 52.5 (18.1)a 21.9 (12.6)a 14.3 (2.4)a 10.8 (14.5)a

Iter. per frame 64 8 10 32
Supply voltage (V) 1.5 1.8 1.8 1.8

Max. frequency (MHz) 64 80 125 250
Total throughput (Mbps) 1000 640 640 500
Info. throughput (Mbps) 500 480 320 250

Power (mW) 690 192b 787 1260 c

Energy (pJ/bit/iter) 10.9 (5.8)d 37.5 (14.1)d 123 (46.3)d 118 (44.5)d

a Scaled linearly to 660-bit code length and quadratically to 0.13-µm process
b The power consumption due to clock tree is not included
c At 166.7 MHz clock frequency
d Scaled cubically to the 0.13-µm process

Another bit-serial LDPC decoder has been independently developed and reported

in [38]. It has a pipelined and block-interlaced architecture similar to the bit-serial

architecture presented in this thesis. This decoder performs 32 iterations of min-sum

decoding on a (256, 128) regular-(3, 6) LDPC code. It is fabricated in a 0.18-µm

CMOS process and has a maximum clock frequency of 250 MHz, corresponding to

a total throughput of 500 Mbps, or a decoded information throughput of 250 Mbps.

When operating at 166.7 MHz, the decoder core is reported to consume 1260 mW

from a 1.8-V supply.

Table 6.4 lists the measurement results from LDPC decoders reported in [63, 35,

15, ]. The power and throughput performance comparison between these works is

shown in Fig. 6.17. To take into account the varying number of iterations per frame

and the different code rates in the different decoders, the throughput on the vertical

axis is the information throughput normalized to a maximum of 15 iterations per

frame, which is used in our decoder. The horizontal axis is the energy consumption

of the decoder in pJ per bit per iteration. This value is obtained by dividing the
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Figure 6.17: Comparison with other works. The effect of early shut-down and supply
voltage scaling on power consumption is illustrated.

decoder power consumption by the total decoder throughput and the number of

iterations per frame. For comparison purposes, we have also included scaled values

for area, throughput and energy consumption in Table 6.4.2 and Fig. 6.17. The

area entries in the brackets in Table 6.4 are scaled down quadratically to a 0.13-µm

CMOS process and also scaled linearly to a block length of 660 bits. The throughputs

and energy efficiencies are scaled linearly and cubically to 0.13-µm CMOS process,

respectively ([64], Chapter 16). The comparison graph confirms that fully-parallel

decoders provide better energy efficiency and decoding throughput.

The high energy efficiency in [15] can be attributed to its high level of parallelism

as predicted in our analysis in Section 5.1.2. It can also be explained by the fact

that even though the decoder performs 64 iterations on each block, the vast majority
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of blocks converge in the first few iterations, resulting in minimal switching activity

for the remaining iterations. This is in contrast with the bit-serial block-interlaced

decoder presented in our work where the switching activity does not scale down with

decoder convergence unless an early termination method is applied. Finally, the

average variable node degree in [15] is 3.25 compared to an average degree of 4 in our

decoder. For two decoders with the same code length and the same code rate, the

decoder with lower average node degree computes fewer messages in each iteration,

and hence, consumes less power.

One important dimension which is missing from Fig. 6.17 is the decoder total

silicon area and its routing complexity. For example, although the fully-parallel de-

coder in [15] has good power and throughput performance, its large area makes it



6.4 Implementations 89

very costly in practice. The bit-serial fully-parallel scheme demonstrated in this work

combined with the early termination scheme reduces routing complexity and area

while maintaining the throughput and energy efficiency advantages of fully-parallel

decoders. Compared to conventional fully-parallel decoders, the logic area is reduced

in bit-serial fully-parallel decoders because only 1-bit partial results are generated in

each clock cycle. In addition, the reduced routing congestion allows for higher area

utilization. This can be observed from the 52.5 mm2 total area (18.1 mm2, if scaled

for process and code length) with about 50% area utilization in [15] compared to the

9mm2 total area with 72% area utilization in our design. This comparison is also

demonstrated in Fig. 6.18 which is similar to Fig. 6.18 except the throughput on

vertical axis is now normalized with respect to the core area.

With the power reduction achievable by early termination, the decoder consumes

only 10.4 pJ/bit/iteration from a 1.2V supply voltage and has an encoded throughput

of 3.3 Gbps. The projected lines in the graph show that even further power reduc-

tions are achievable if supply voltage scaling is combined with early termination. A

minimum of 2.7 pJ/bit/iteration is predicted with a 0.6-V supply voltage operating at

59 MHz clock frequency and providing 648 Mbps encoded throughput. These energy

efficiency results even compare favorably with analog decoders which are aimed for

energy efficiency. For example, the analog LDPC decoder reported in [16] consumes

0.83 nJ/bit and has a throughput of only 6 Mbps. With 15 iterations per frame the

digital decoder presented here consume 45% less energy per bit with 500x greater

throughput, even without early termination.

Using the same bit-serial architecture, a decoder was synthesized for the (6, 32)-

regular (2048, 1723) LDPC code in the 10GBase-T 10-Gbps Ethernet standard.

Again, q=4 bit quantization was used for the LLR messages. In this decoder, the

maximum number of iterations per frame is eight since our simulations indicate that

additional iterations provide less than 0.1-dB performance improvement.

Synthesis in a 90-nm CMOS library using Synopsys Design Compiler results in

9.8-mm2 logic area (2.23M equivalent minimum size NAND gates) and 250 MHz maxi-

mum clock frequency corresponding to 16-Gbps maximum decoding throughput. This

throughput is significantly higher than that required by the 10GBase-T standard.
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7 Conclusions and Future Work

7.1 Summary

This work investigated VLSI architectures for LDPC decoders with multi-Gbps through-

put and high energy efficiency.

To reduce the node-to-node communication complexity, which is a major chal-

lenge in most LDPC decoders, half- and full-broadcasting techniques were proposed.

It was shown that half-broadcasting provides a better trade-off between node-to-

node communication complexity and logic overhead in fully-parallel decoders. Half-

broadcasting resulted in 26% global wirelength reduction in fully-parallel decoders

and 24% memory access reduction in partially-parallel decoders [39].

A block interlacing scheme was described that maximizes logic utilization and

increases the decoder throughput compared with conventional schemes. This method

requires no change in the structure of the code or the decoding algorithm. This

technique was demonstrated in two fully-parallel LDPC decoder designs. Post-layout

simulations show that the throughput was improved by 60% and 71% at the cost of

only 5.5% and 9.5% more gates, respectively [65].

Two techniques were discussed to improve the energy efficiency of LDPC decoders.

First, an analysis was given on how increased hardware parallelism coupled with a

reduced supply voltage is a particularly effective technique to reduce the power con-

sumption of LDPC decoders due to the algorithm’s inherent parallelism. Second,

an efficient early termination scheme was proposed to further reduce the power con-

sumption [66].

A bit-serial architecture was presented to reduce the routing complexity in fully-

parallel LDPC decoders. A new approximation to the check node update function in

min-sum decoding algorithm was also proposed that reduces the area of the CNUs

by more than 40% compared with conventional min-sum decoding with only a 0.1 dB

performance penalty at BER=10−6 [55].

91
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The proposed techniques were demonstrated in two bit-serial LDPC decoder im-

plementations. First, a 610-Mbps bit-serial fully-parallel (480, 355) LDPC decoder

on a single Altera Stratix EP1S80 device was presented. To our knowledge, this is the

fastest FPGA-based LDPC decoder reported in the literature [55]. Second, a fabri-

cated 0.13-µm CMOS bit-serial (660, 484) LDPC decoder was reported. The decoder

has a 300 MHz maximum clock frequency and a 3.3 Gbps throughput with a nominal

1.2-V supply and performs within 3 dB of the Shannon limit at a BER of 10−5. With

more than 60% power saving achievable by early termination, the decoder consumes

10.4 pJ/bit/iteration at Eb/N0=4 dB. Coupling early termination with supply voltage

scaling results in an even lower energy consumption of 2.7 pJ/bit/iteration with 648

Mbps decoding throughput. These energy efficiency results even compare favorably

with analog decoders which are aimed for energy efficiency [67].

7.2 Conclusions

The experience obtained through this research suggests that different layers of the

design space need to be investigated in order to achieve a high-throughput and energy

efficient LDPC decoder.

First, for a given LDPC code, a decoding algorithm has to be selected that pro-

vides the target BER with minimal hardware and time complexity. For hardware

complexity, the most important aspects are the computational complexity of the up-

date functions in the variable and check nodes and also the robustness of the algorithm

against quantization effects. With regards to the time complexity, the main issue is

the algorithm’s convergence speed in terms of the average and maximum number of

required decoding iterations per frame. As shown in this work, the choice of the max-

imum number of iterations per frame and the choice of message word length directly

affect the decoding throughput and the decoder’s energy efficiency. In particular, it

was shown that the approximate min-sum decoding as described in Chapter 6 provides

a good trade-off between the BER performance and hardware complexity.

Second, depending on the code length, the required decoding throughput and the

available silicon area, the designer needs to select an appropriate decoder architec-

ture. The decoders presented in this work suggest that for the 2048-bit code specified

in 10GBase-T standard, a fully-parallel decoder in a 90-nm CMOS process has a core

area of less than 10 mm2 core area and provides the required decoding throughput.
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The routing complexity of the fully-parallel architecture can be reduced with the

bit-serial scheme described in this work. Block interlacing will be also an effective

technique to increase decoding throughput with minimal hardware overhead. In ad-

dition, such a decoder would also benefit from the power efficiency advantages of the

fully-parallel decoders as described in Chapter 5.

Meanwhile, for codes of a considerably longer length, such as the 16k and 64k-bit

codes specified in Digital Video Broadcasting standard, a partially-parallel decoder

architecture is preferred. This is because a fully-parallel implementation would require

an impractical amount of logic and also because the target throughput is achievable

with a much lower level of parallelism (e.g., 135 Mbps throughput with 360 parallel

processors in [36]). The early termination scheme should be applied both in partially

parallel and fully-parallel decoders since it improves the energy efficiency of either

architectures with minimal overhead and no effect on BER performance.

7.3 Future Work

7.3.1 Technology scaling

In the 0.13-µm CMOS decoder presented in this work it was observed that the static

power due to the leakage current constitutes only less than 1% of the total power.

As a result, in the power analysis performed in Chapter 5, the main focus was on the

dynamic power consumption. However, it is well know that as the CMOS process

technology scales to smaller geometries, the leakage power becomes a more dominant

portion of the total power. Consequently, architectural and physical level leakage

management techniques such as power-gating and employing multiple voltage do-

mains and multiple threshold devices will be needed.

At the same time, CMOS technology scaling will facilitate direct mapping of

longer LDPC codes into hardware, resulting in fully-parallel decoders with higher

throughput and better BER performance. Furthermore, it is known that the ratio

of global interconnect delays to the logic delays will grow as the CMOS technology

scales down [68]. Since LDPC decoders intrinsically have a large number of global

connections between VNUs and CNU, addressing the global wire delay problem will

be a key to successfully increasing code lengths of fully-parallel LDPC decoders in

future technologies.
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7.3.2 Multi-rate and multi-length decoders

The fully-parallel decoder architectures presented in this work directly map the LDPC

code graph into hardware. This implies that changing the LDPC code in general

requires re-synthesizing the decoder based on the new parity check matrix. Although

this is acceptable for applications such as 10GBase-T which specify only one fixed

code in the standard, other applications such as WiMAX need to be able to decode

multiple LDPC codes with different lengths and rates, depending on the channel

condition and desired BER.

Developing flexible fully-parallel LDPC decoders that can support multiple codes

needs further investigation. One possible direction is to implement the hardware

decoder for a Tanner graph that contains all the individual codes as its subgraphs.

In such a decoder, different nodes and edges need to be activated or deactivated

depending on the specific code. In the case of WiMAX standard for example, there

are multiple codes specified in the standard with rates ranging from 1/2 to 5/6 and

lengths ranging from 576 to 2304. It can be seen that all these codes can be generated

by puncturing and shortening the rate-1/2 2304-bit code (i.e., by removing some rows

and columns from the parity check matrix of the rate-1/2 2304-bit code). As a result,

a fully-parallel LDPC decoder compliant with WiMAX standard can be realized by

implementing this code and adding the control logic to disable some VNUs, CNUs

and edges depending on the target LDPC code.

7.3.3 Custom layout for sub-blocks

A fully-parallel LDPC decoder contains a large number of identical sub-blocks (i.e.,

check nodes and variable nodes). One possible alternative to the digital standard

cell design flow is to develop an optimized CNU and VNU with custom logic circuit

and layout, and then instantiate them multiple times in the top-level of the decoder

design.

Although the single CNUs and VNUs can be developed manually, the large size

of decoder still necessitates the use of automated CAD tools for top-level design

tasks such as placement, clock tree generation, power routing and global routing.

In addition, although the CNUs and VNUs are similar across the chip, they will

have different output loads to drive due to the difference in the length of the global

check-to-variable and variable-to-check wires. This again requires automated timing
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analysis and optimization. To integrate the custom designed sub-blocks with the

standard digital design flow, one needs to characterize them in the proper timing and

physical library formats usable by the CAD tools.

Another similar design approach is to customize not a complete VNU or CNU but

only portions of the nodes that are instantiated frequently in each VNU or CNU. For

example, the Next-state-logic block in the bit-serial CNU design of Fig. 6.4 is a

purely combinational logic block that is repeated dc times in each CNU. Therefore, a

more manageable solution might be to create a custom layout with optimized timing,

area and power for this block and then instantiate it as a standard cell in the top-level

digital design flow.

7.3.4 Hardware-based Gaussian noise generation

The BER measurements in Chapter 6 were reported only down to 10−8. This was

because the speed of the frame tests was limited by the software-based Gaussian

noise generation and the required data transfer between the workstation and the

test board. This rate could increase by several orders of magnitude if a high-speed

noise generation module (such as the FPGA-based Gaussian noise generator in [69])

was integrated with the test setup providing an incoming frame rate closer to the

maximum potential decoder throughput. A hardware-based Gaussian noise generator

along with an FPGA decoder can also be used as a fast LDPC code simulation engine

for evaluating and exploring the performance of different LDPC codes at BER’s lower

than 10−9 or 10−10 [70].

7.3.5 Adjustable message word length

For the bit-serial decoder architecture reported in this work, the decoding throughput

is directly affected by the value of message word length, q. This is because each

decoding iteration consists of 2q clock cycles: q cycles for the CNU update and q

cycles for the VNU update.

One advantage of bit-serial decoding is that it allows for efficient switching between

different word lengths on the fly. This property can be utilized to improve the decoder

throughput and power dissipation by adjusting the word length of the LLR messages

according to the channel conditions and the target BER. By adjusting the value of

q based on the input SNR and choosing the smallest q needed for the target BER
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one can increase the throughput during the high input SNR periods of operation as

less number of clock cycles are needed per iteration. Alternatively, one can keep the

throughput constant in those periods but reduce the operating frequency and the

supply voltage, hence reduce the power consumption.

Another possibility is to adopt a decoding strategy similar to the gear-shift decod-

ing [59] where the decoding parameters and update rules change as decoding iterations

proceed for each frame. In this technique, the first few decoding iterations use more

powerful and computationally-intensive update rules such as Sum-Product to be able

to correct more errors. As the number of remaining errors decreases, the later it-

erations use simpler update rules such hard-decision message passing or bit-flipping

resulting in reduced overall decoding complexity.

In the context of the bit-serial decoders in this thesis, the gear-shift decoding can

be realized by keeping the update rules unchanged but reduce the word length, q, as

the iterations proceed for each frame. This technique can potentially reduce the total

number of clock cycles for decoding each frame, hence increase the throughput, or

alternatively, reduce the power consumption for a fixed throughput.



A Parity-Check Matrix for FPGA-Based

Decoder

Table A.1 specifies the RS-based LDPC code used for the the FPGA-based decoder

reported in Section 6.4.1. The first entry in each line of the table is the row number of

the H matrix and the rest of the entries indicate the indices of the non-zero elements

in that row.

Table A.1: The (4, 15)-regular (480, 355) LDPC code.

1 1 33 65 97 129 161 193 225 257 289 321 353 385 417 449

2 2 56 70 99 157 167 221 244 280 318 345 374 398 424 458

3 3 44 75 101 158 173 222 228 268 320 342 368 411 431 467

4 4 61 80 103 130 171 194 241 285 291 334 379 408 426 476

5 5 55 85 105 160 185 224 231 279 316 336 383 402 445 450

6 6 34 82 107 132 191 196 246 258 295 344 364 413 444 457

7 7 62 95 109 131 181 195 230 286 293 347 370 396 435 468

8 8 43 92 111 159 179 223 247 267 314 323 357 391 438 475

9 9 42 78 113 156 182 220 237 266 308 351 378 392 446 451

10 10 63 73 115 136 180 200 256 287 303 327 365 395 443 460

11 11 35 72 117 135 186 199 240 259 301 332 375 414 436 465

12 12 54 67 119 155 192 219 253 278 306 340 356 401 437 474

13 13 64 90 121 133 174 197 235 288 297 338 360 407 418 452

14 14 41 93 123 153 172 217 250 265 310 330 371 412 423 459

15 15 53 84 125 154 162 218 234 277 312 325 361 397 432 466

16 16 36 87 127 134 168 198 251 260 299 349 382 386 425 473

17 17 51 91 102 148 176 212 249 275 292 346 376 399 448 453

18 18 38 96 104 144 170 208 236 262 319 322 355 388 441 462

19 19 58 81 98 143 164 207 252 282 317 333 377 405 434 471
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20 20 47 86 100 147 166 211 233 271 290 341 366 410 439 480

21 21 37 79 110 141 184 205 255 261 313 343 362 416 420 454

22 22 52 76 112 145 178 209 238 276 294 335 381 403 421 461

23 23 48 69 106 146 188 210 254 272 296 324 359 390 430 472

24 24 57 66 108 142 190 206 239 281 315 348 372 393 427 479

25 25 60 88 118 137 187 201 245 284 305 328 367 394 419 455

26 26 45 83 120 149 189 213 232 269 302 352 380 389 422 464

27 27 49 94 114 150 183 214 248 273 304 339 354 404 429 469

28 28 40 89 116 138 177 202 229 264 307 331 373 415 428 478

29 29 46 68 126 152 163 216 243 270 300 329 369 409 447 456

30 30 59 71 128 140 165 204 226 283 311 337 358 406 442 463

31 31 39 74 122 139 175 203 242 263 309 350 384 387 433 470

32 32 50 77 124 151 169 215 227 274 298 326 363 400 440 477

33 23 57 76 104 149 180 197 230 282 298 344 362 410 442 458

34 24 48 79 102 137 182 217 247 271 309 336 381 405 447 449

35 21 52 66 100 138 192 218 231 275 311 323 359 388 440 476

36 22 37 69 98 150 186 198 246 262 300 347 372 399 433 467

37 19 47 96 112 140 172 220 228 272 307 345 376 393 422 457

38 20 58 91 110 152 174 200 241 281 304 321 355 390 419 450

39 17 38 86 108 151 168 199 225 261 302 334 377 403 428 475

40 18 51 81 106 139 162 219 244 276 305 342 366 416 429 468

41 31 50 71 120 144 167 224 234 273 315 330 369 415 421 460

42 32 39 68 118 148 161 196 251 264 296 338 358 404 420 451

43 29 59 77 116 147 171 195 235 284 294 349 384 389 427 474

44 30 46 74 114 143 173 223 250 269 313 325 363 394 430 465

45 27 40 83 128 145 191 193 240 263 290 327 367 400 441 459

46 28 49 88 126 141 185 221 253 274 317 351 380 387 448 452

47 25 45 89 124 142 179 222 237 270 319 340 354 406 439 473

48 26 60 94 122 146 181 194 256 283 292 332 373 409 434 466

49 7 43 82 99 136 189 216 254 268 299 335 383 408 423 462

50 8 62 85 97 156 187 204 239 285 312 343 364 411 418 453

51 5 34 92 103 155 177 203 255 257 310 348 370 398 425 480

52 6 55 95 101 135 183 215 238 280 297 324 357 385 432 471

53 3 61 70 107 153 165 201 252 286 306 322 353 391 443 461
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54 4 44 65 105 133 163 213 233 267 301 346 374 396 446 454

55 1 56 80 111 134 169 214 249 279 303 341 368 413 437 479

56 2 33 75 109 154 175 202 236 258 308 333 379 402 436 472

57 15 36 93 115 157 170 205 242 259 314 337 360 401 444 464

58 16 53 90 113 129 176 209 227 278 293 329 371 414 445 455

59 13 41 87 119 130 166 210 243 266 295 326 361 395 438 478

60 14 64 84 117 158 164 206 226 287 316 350 382 392 435 469

61 11 54 73 123 132 178 212 248 277 291 352 378 386 424 463

62 12 35 78 121 160 184 208 229 260 320 328 365 397 417 456

63 9 63 67 127 159 190 207 245 288 318 331 375 412 426 477

64 10 42 72 125 131 188 211 232 265 289 339 356 407 431 470

65 10 54 87 111 142 164 201 235 280 307 332 371 408 440 467

66 9 35 84 109 146 166 213 250 257 304 340 360 411 433 476

67 12 63 93 107 145 176 214 234 285 302 351 382 398 442 449

68 11 42 90 105 141 170 202 251 268 305 327 361 385 447 458

69 14 36 67 103 147 188 216 237 258 298 325 365 391 428 468

70 13 53 72 101 143 190 204 256 279 309 349 378 396 429 475

71 16 41 73 99 144 184 203 240 267 311 338 356 413 422 450

72 15 64 78 97 148 178 215 253 286 300 330 375 402 419 457

73 2 61 92 127 151 183 212 231 287 290 342 364 401 427 465

74 1 44 95 125 139 177 208 246 266 317 334 383 414 430 474

75 4 56 82 123 140 187 207 230 278 319 321 357 395 421 451

76 3 33 85 121 152 189 211 247 259 292 345 370 392 420 460

77 6 43 80 119 138 175 205 225 265 315 347 374 386 439 466

78 5 62 75 117 150 169 209 244 288 296 323 353 397 434 473

79 8 34 70 115 149 163 210 228 260 294 336 379 412 441 452

80 7 55 65 113 137 165 206 241 277 313 344 368 407 448 459

81 26 40 77 108 159 173 220 243 262 306 339 358 410 425 471

82 25 49 74 106 131 171 200 226 275 301 331 369 405 432 480

83 28 45 71 112 132 161 199 242 271 303 328 363 388 423 453

84 27 60 68 110 160 167 219 227 282 308 352 384 399 418 462

85 30 50 89 100 130 181 197 245 276 299 350 380 393 437 472

86 29 39 94 98 158 179 217 232 261 312 326 367 390 436 479

87 32 59 83 104 157 185 218 248 281 310 329 373 403 443 454
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88 31 46 88 102 129 191 198 229 272 297 337 354 416 446 461

89 18 47 66 124 134 186 193 255 269 291 333 381 415 438 469

90 17 58 69 122 154 192 221 238 284 320 341 362 404 435 478

91 20 38 76 128 153 182 222 254 264 318 346 372 389 444 455

92 19 51 79 126 133 180 194 239 273 289 322 359 394 445 464

93 22 57 86 116 155 162 224 249 283 314 324 355 400 426 470

94 21 48 81 114 135 168 196 236 270 293 348 376 387 431 477

95 24 52 96 120 136 174 195 252 274 295 343 366 406 424 456

96 23 37 91 118 156 172 223 233 263 316 335 377 409 417 463

97 32 46 94 106 154 177 205 240 271 316 349 380 399 431 476

98 31 59 89 108 134 183 209 253 282 295 325 367 388 426 467

99 30 39 88 110 133 189 210 237 262 293 330 373 405 417 458

100 29 50 83 112 153 187 206 256 275 314 338 354 410 424 449

101 28 60 74 98 135 169 212 234 281 289 340 358 416 435 475

102 27 45 77 100 155 175 208 251 272 318 332 369 403 438 468

103 26 49 68 102 156 165 207 235 276 320 327 363 390 445 457

104 25 40 71 104 136 163 211 250 261 291 351 384 393 444 450

105 24 37 81 122 131 166 216 228 264 297 323 355 394 436 474

106 23 52 86 124 159 164 204 241 273 310 347 376 389 437 465

107 22 48 91 126 160 170 203 225 269 312 344 366 404 446 460

108 21 57 96 128 132 176 215 244 284 299 336 377 415 443 451

109 20 51 69 114 158 190 201 230 274 308 334 381 409 432 473

110 19 38 66 116 130 188 213 247 263 303 342 362 406 425 466

111 18 58 79 118 129 178 214 231 283 301 345 372 387 418 459

112 17 47 76 120 157 184 202 246 270 306 321 359 400 423 452

113 16 64 72 109 139 192 224 248 285 313 326 365 385 434 480

114 15 41 67 111 151 186 196 229 268 294 350 378 398 439 471

115 14 53 78 105 152 180 195 245 280 296 337 356 411 448 462

116 13 36 73 107 140 182 223 232 257 315 329 375 408 441 453

117 12 42 84 101 150 168 193 242 267 292 331 371 402 430 479

118 11 63 87 103 138 162 221 227 286 319 339 360 413 427 472

119 10 35 90 97 137 172 222 243 258 317 352 382 396 420 461

120 9 54 93 99 149 174 194 226 279 290 328 361 391 421 454

121 8 55 75 125 146 171 197 252 278 300 348 374 392 429 478



A Parity-Check Matrix for FPGA-Based Decoder 101

122 7 34 80 127 142 173 217 233 259 311 324 353 395 428 469

123 6 62 65 121 141 167 218 249 287 309 335 379 414 419 464

124 5 43 70 123 145 161 198 236 266 298 343 368 401 422 455

125 4 33 95 117 143 179 220 254 260 305 341 364 407 433 477

126 3 56 92 119 147 181 200 239 277 302 333 383 412 440 470

127 2 44 85 113 148 191 199 255 265 304 322 357 397 447 463

128 1 61 82 115 144 185 219 238 288 307 346 370 386 442 456
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B Parity-Check Matrix for 0.13-µm CMOS

Decoder

Table B.1 specifies the PEG-based LDPC code used for the the 0.13-µm CMOS

decoder reported in Section 6.4.2. The first entry in each line of the table is the row

number of the H matrix and the rest of the entries indicate the indices of the non-zero

elements in that row.

Table B.1: The (4, 15)-regular (660, 484) LDPC code.

1 1 45 91 135 179 224 270 312 355 401 442 486 530 573 618

2 2 46 92 136 180 225 271 313 356 402 443 487 531 574 619

3 3 47 93 137 178 226 272 314 357 403 444 488 532 575 620

4 4 48 94 138 181 227 273 310 358 404 442 489 533 576 621

5 5 49 92 139 182 228 267 315 359 405 445 490 534 577 622

6 6 50 95 140 183 229 274 316 360 406 446 491 535 578 623

7 7 51 96 141 183 230 275 317 352 407 447 485 536 579 621

8 2 52 97 142 184 226 276 318 361 408 442 492 537 580 624

9 8 53 98 143 185 231 277 319 362 398 448 493 538 581 625

10 9 54 99 125 176 228 275 320 363 409 449 494 532 573 626

11 9 55 100 144 186 232 278 293 364 410 450 495 539 582 627

12 10 52 101 145 187 233 279 313 349 411 447 495 530 583 628

13 11 56 93 143 186 222 236 270 365 412 445 496 540 584 629

14 7 57 92 146 188 224 280 321 366 413 451 497 541 585 630

15 12 58 102 141 189 234 278 320 367 369 452 498 542 586 631

16 13 59 103 147 190 235 281 322 368 414 453 499 533 579 632

17 14 59 104 148 191 236 282 316 369 415 454 500 543 587 630

18 13 60 105 149 192 237 283 323 370 416 455 501 528 578 629

19 15 54 106 146 193 221 284 318 355 417 441 502 544 588 621
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20 16 61 107 145 194 238 275 324 355 399 453 503 545 589 622

21 17 62 101 146 185 239 285 325 371 418 456 504 546 590 619

22 18 63 108 150 195 220 286 326 367 406 457 505 530 591 633

23 19 61 104 151 196 240 287 323 372 419 458 506 529 590 634

24 20 49 109 152 197 241 288 327 373 420 459 507 547 592 635

25 19 63 110 146 178 242 289 319 374 421 460 495 548 593 623

26 21 47 111 140 198 243 290 328 375 401 461 508 549 594 636

27 22 64 106 153 199 244 291 329 376 420 453 508 550 587 637

28 19 55 112 153 197 233 281 330 377 418 445 509 551 595 621

29 22 59 90 154 194 227 286 331 359 401 448 510 531 596 638

30 22 65 113 136 200 237 292 312 378 410 462 511 542 580 639

31 23 66 114 155 201 245 293 332 379 421 455 503 552 591 640

32 24 64 115 152 202 246 270 297 371 422 463 512 553 577 641

33 14 67 91 156 201 247 285 333 357 423 464 513 549 592 642

34 25 68 116 157 203 225 286 334 363 424 465 514 554 597 643

35 8 69 116 158 184 248 294 321 380 425 450 488 534 576 644

36 26 70 95 159 199 232 295 323 381 426 459 494 540 586 632

37 12 71 113 151 179 241 296 335 382 422 451 515 555 598 637

38 13 47 88 159 202 249 280 333 383 393 466 502 550 597 640

39 27 53 109 144 204 227 284 328 384 427 447 516 551 599 643

40 15 56 112 136 205 250 287 308 385 426 467 492 556 592 645

41 28 66 88 135 191 239 286 336 353 419 468 491 555 600 646

42 14 72 117 137 206 251 297 337 374 428 469 516 529 601 646

43 29 73 118 160 207 243 282 301 386 429 455 489 541 602 647

44 29 74 91 161 190 242 290 314 373 411 470 487 544 590 617

45 26 53 119 145 182 247 298 338 361 430 443 507 539 601 616

46 22 50 120 162 178 218 283 337 363 431 471 496 557 603 648

47 30 48 100 163 190 239 299 305 383 429 472 511 552 596 620

48 11 75 121 134 207 220 279 315 360 407 460 517 558 580 648

49 1 60 94 164 193 252 300 339 365 403 473 497 559 579 631

50 31 76 122 144 208 229 301 329 354 357 457 484 540 573 634

51 28 76 115 156 196 228 302 319 382 430 472 517 560 602 649

52 15 77 96 147 209 247 258 340 379 404 472 510 541 604 624

53 32 55 97 150 188 253 290 341 385 432 465 489 538 605 646
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54 32 78 123 155 193 254 303 331 387 433 450 498 561 606 624

55 33 79 123 157 196 255 274 342 366 386 474 500 540 607 650

56 34 78 108 161 186 256 304 338 381 404 467 518 543 577 620

57 27 78 104 165 200 255 299 314 382 417 455 513 562 608 646

58 35 80 124 156 180 233 273 343 388 415 475 488 555 591 651

59 36 77 111 139 195 236 305 344 378 424 474 491 563 609 652

60 2 71 119 166 210 257 305 334 389 425 453 489 564 610 630

61 37 80 125 140 200 224 276 338 356 428 447 498 560 593 627

62 4 81 126 162 191 254 306 345 379 434 476 519 559 609 629

63 21 75 106 167 211 241 293 333 380 432 473 520 537 611 653

64 31 82 111 135 212 244 304 326 390 414 448 520 542 608 627

65 38 46 126 168 197 222 307 342 391 435 448 486 541 582 644

66 17 83 122 169 198 240 267 310 370 395 460 513 552 612 651

67 39 84 122 170 213 248 305 332 371 405 443 515 565 603 642

68 25 72 114 153 208 258 299 315 362 433 449 521 544 585 627

69 6 71 118 130 214 254 279 346 368 431 477 500 554 595 617

70 16 69 108 140 201 259 303 308 373 396 465 522 550 601 625

71 13 85 123 167 185 259 271 346 360 403 461 523 529 600 639

72 34 66 127 147 177 238 280 345 380 411 465 507 535 613 654

73 17 86 128 152 200 216 298 347 392 434 477 508 566 614 633

74 15 76 116 161 214 260 262 348 393 436 478 512 566 584 653

75 28 58 110 171 213 235 265 349 364 416 459 518 567 589 652

76 37 48 110 155 182 259 297 329 384 437 446 515 538 608 655

77 6 49 93 138 215 261 292 348 372 433 479 510 539 609 619

78 40 87 104 164 180 262 295 315 394 438 452 514 538 598 635

79 41 54 128 171 195 263 289 350 368 439 443 501 564 606 650

80 33 81 90 137 212 248 298 319 391 440 478 524 568 592 628

81 16 58 106 168 215 257 304 340 362 409 480 509 546 575 642

82 5 73 102 133 192 246 308 313 358 421 458 524 569 579 651

83 23 81 129 172 204 260 283 331 343 426 444 520 543 590 626

84 28 65 109 160 184 260 266 324 395 422 464 525 559 573 632

85 35 58 117 142 198 264 306 341 365 402 470 521 550 604 634

86 41 85 115 162 187 245 282 335 376 436 481 506 570 581 655

87 42 72 118 128 180 259 278 325 372 390 482 499 563 613 641
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88 24 55 129 138 185 230 307 335 363 439 478 526 562 596 652

89 39 67 127 166 181 244 250 351 366 431 483 501 546 581 638

90 18 52 96 168 206 243 287 347 370 430 484 525 570 615 652

91 43 77 110 173 203 252 285 332 375 441 483 520 530 599 641

92 31 59 130 172 216 264 295 352 389 435 449 488 558 615 622

93 24 79 131 174 211 262 298 352 396 417 475 496 554 586 639

94 35 57 120 155 202 250 261 350 369 416 484 504 565 612 635

95 26 63 105 169 214 234 288 312 376 434 475 499 556 615 656

96 29 57 98 164 197 265 273 337 389 407 458 494 554 578 649

97 30 68 89 134 198 261 269 339 385 440 462 527 547 610 657

98 11 65 132 172 217 253 284 347 373 439 452 505 539 574 638

99 38 83 131 149 218 256 276 327 371 440 457 495 567 609 618

100 5 61 124 131 193 229 307 353 380 428 452 518 548 595 656

101 40 86 133 175 187 221 280 336 386 439 471 485 531 605 639

102 3 51 89 167 182 260 307 311 396 425 459 497 560 612 658

103 10 73 94 167 188 256 264 347 395 409 485 486 548 610 648

104 20 45 108 163 196 221 272 316 397 427 482 493 559 583 658

105 39 51 109 149 187 236 303 343 374 400 476 511 571 614 645

106 30 85 127 148 215 252 302 328 378 437 471 525 534 595 618

107 20 82 117 147 219 232 308 330 391 423 449 491 571 611 647

108 44 69 113 159 181 228 282 318 397 424 468 503 557 599 642

109 17 50 112 174 210 249 302 332 359 427 442 527 545 616 659

110 9 71 107 148 209 246 289 323 388 428 470 492 547 588 659

111 42 53 127 151 220 226 306 312 356 435 484 527 569 611 660

112 38 88 118 139 221 253 309 354 395 411 473 512 532 593 656

113 20 68 125 145 191 250 291 318 384 410 470 485 549 603 660

114 36 80 114 159 205 230 300 346 375 425 460 506 566 605 659

115 27 77 134 170 179 233 303 334 383 423 446 487 532 589 633

116 30 65 131 176 189 247 289 325 398 405 483 497 568 583 649

117 23 74 122 136 220 255 275 345 390 403 466 512 567 594 632

118 26 74 124 165 188 266 296 344 357 421 461 505 558 589 626

119 33 63 133 144 210 261 300 324 368 420 476 509 557 601 638

120 42 81 96 163 202 267 309 321 377 412 480 523 561 599 649

121 3 79 101 150 209 244 309 337 369 400 479 509 536 615 640
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122 32 68 95 175 212 237 273 340 392 402 479 493 553 613 630

123 29 62 115 141 177 237 281 326 361 413 473 519 556 604 626

124 10 66 95 176 222 240 294 343 393 432 469 519 551 574 618

125 33 56 107 165 219 245 310 333 396 429 483 494 565 575 619

126 4 76 119 173 206 224 263 309 360 405 471 502 571 596 631

127 7 64 132 171 214 268 272 320 379 438 464 490 568 581 654

128 6 87 134 154 184 245 251 338 398 409 474 490 536 585 647

129 40 69 100 177 217 263 288 342 388 441 481 521 561 575 616

130 34 86 99 178 207 264 271 322 382 438 482 516 553 606 631

131 12 79 114 173 216 223 284 336 399 438 446 518 569 613 629

132 10 84 113 174 204 251 268 351 354 406 461 499 570 582 657

133 39 75 97 173 194 239 295 344 372 391 462 508 572 616 655

134 32 83 102 143 190 251 311 353 375 416 456 514 531 614 650

135 37 62 103 151 186 248 291 313 385 399 466 513 557 602 653

136 3 54 98 169 201 225 296 316 388 413 466 490 545 576 660

137 2 89 91 171 192 227 274 330 383 414 463 517 570 588 637

138 1 86 129 142 157 258 310 349 381 410 468 528 546 602 625

139 44 62 111 154 223 268 274 327 358 415 444 502 572 603 645

140 24 82 105 158 194 265 299 346 366 418 454 492 561 610 623

141 12 60 112 160 195 269 297 354 362 420 458 504 535 605 653

142 14 70 120 157 213 231 238 341 377 408 478 525 542 611 659

143 35 90 100 149 207 268 277 339 387 418 463 522 543 574 643

144 7 88 121 166 219 223 287 335 397 398 433 504 534 586 650

145 31 52 99 143 211 252 291 342 377 415 451 522 562 597 620

146 41 45 102 138 208 249 271 317 378 419 445 500 535 591 647

147 1 75 130 137 177 266 277 340 356 426 456 526 547 577 658

148 19 84 85 135 183 225 293 341 358 400 430 505 563 584 628

149 37 70 126 160 211 258 272 331 355 436 479 511 556 607 657

150 25 87 105 168 181 266 311 327 364 436 467 496 562 593 628

151 43 87 101 132 218 241 301 324 390 419 477 517 569 604 625

152 18 83 129 148 199 223 300 314 394 434 451 507 553 584 622

153 8 46 117 150 179 229 283 320 389 437 482 514 572 617 636

154 40 47 119 153 213 256 294 325 365 406 475 498 572 612 643

155 41 70 121 158 204 242 288 344 400 440 456 523 555 597 641
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156 4 61 121 152 205 235 290 334 394 402 454 510 563 578 637

157 18 80 93 174 192 238 296 321 387 429 469 526 567 600 655

158 27 73 120 169 212 230 257 322 359 412 472 519 549 587 657

159 36 50 98 142 217 246 278 322 348 432 467 487 564 614 658

160 43 46 123 141 199 265 311 328 392 408 464 524 545 608 656

161 8 64 94 139 189 255 276 348 394 435 468 501 571 585 640

162 21 78 92 172 209 231 234 336 374 414 477 527 544 598 644

163 36 84 126 175 219 234 285 329 364 401 462 521 533 606 633

164 9 74 132 175 206 249 294 339 351 412 476 526 566 607 648

165 43 45 90 176 205 231 281 350 367 431 474 528 537 600 654

166 23 49 103 166 203 243 277 317 381 417 457 506 537 582 623

167 11 82 133 156 203 254 292 353 393 408 480 503 565 583 645

168 38 67 99 165 183 235 269 350 397 422 450 529 551 588 636

169 44 56 130 163 218 263 292 351 367 423 463 516 568 576 651

170 34 51 124 158 210 267 270 326 376 399 441 493 533 598 636

171 44 72 97 161 215 240 306 330 384 407 454 486 564 594 654

172 21 48 128 170 222 262 279 317 370 413 480 524 548 607 624

173 5 67 116 162 216 232 301 349 361 437 444 523 560 594 635

174 25 57 107 170 189 226 269 304 387 427 481 528 536 617 634

175 42 60 125 154 217 242 257 352 386 404 469 522 552 580 644

176 16 89 103 164 208 253 302 345 392 424 481 515 558 587 660
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