14 Gb/s AC Coupled Receiver in 90 nm CMOS

Masum Hossain & Tony Chan Carusone
University of Toronto
masum@eecg.utoronto.ca
OUTLINE

• Chip-to-Chip link overview

• AC interconnects
 • Link modelling
 • ISI & sensitivity

• AC Receiver architecture
 • Implementation in 0.18 um CMOS
 • Measured results

• Speed and sensitivity improvement techniques
 • Implementation in 90nm CMOS
 • Measured results

• Conclusion
Chip-to-Chip Link Overview

Goals:
- Achieve high speed
- Small area: small coupling capacitor
- High sensitivity
- Achieve good FOM mW/Gb/s

chip-to-chip link

DC coupled serial link AC coupled serial link

Proximity coupling AC coupled link over

[Miura ‘05, Drost ‘04] PCB trace [Luo‘05]
AC Coupled Link Overview

- Achieves high density
- 3-D Integration is possible
- All NMOS I/O driver
 1. Multi-standard integration
 2. Compatible common mode
 3. DC offset immune

- Low speed
- Complexity increases
- Have poor FOM mW/Gb/s >10 mW/Gb/s

Input Pulse swing (mV) vs. Data Rate (Gb/s)

Kohn ISCAS'95
Gabara JSSC'97
Kim CICC'04
Drost JSSC'04
Luo JSSC'06
Luo CICC'06
Miura ISSCC'07

100 200 300 400 500
Our goal is to increase both sensitivity and speed using standard CMOS process.
AC Coupled Link Modeling

![AC Coupled Link Modeling Diagram]

- C-coupling
- C (parasitic)

W/o T line

- 20 dB/dec

With 30 cm T line

- 20 dB/dec

Graph

- Frequency (Hz)
- |H| (dB)

- W/o T line
- With 30 cm T line
ISI & Rx Sensitivity

14 Gb/s input eye

20 mV

C = 50 fF

40 mV

C = 80 fF

80 mV

C = 150 fF

Coupling capacitor area ISI sensitivity requirement

Coupling capacitor area ISI sensitivity requirement
Rx Architecture

AC coupled Rx

Linear Rx
- 8b10b code
- Inductors
- Not robust

Non-linear Rx
- Clock forwarded
 [Miura’05]
 - Complexity & power
 - Timing margin
 - Clock distribution

Data recovery without clock
[Drost’04, Luo’05]
- Robust
- Low power
- Requires high speed hysteresis
Non-linear Clock less Rx

Hysteresis – Regenerates data from the transitions
Hysteresis Architecture

- Hysteresis Condition: $g_mR_L > 1$
- Unstable points: M,N (large gain g_mR_L)
- Bi-Stable points: A,B (non-linear gain)
Hysteresis Analysis

Latch Mode
\[\Delta V_{in} \ll V_{th} \]

[A-B]

\[v_{out}(t) = +I_{tail}R_L - v_{in}(t)g_{m-in}R_L \]

\[V_{in}(t) \ll V_{th} \quad v_{out}(t) \approx +V_0 \]

\[V_{in}(t) \approx V_{th} \quad v_{out}(t) \approx 0 \]

sensitivity \(\Rightarrow 2\left| V_{th} \right| = \frac{2g_m}{g_{m-in}}\left| V_o \right| \)
Hysteresis Analysis

Switching Mode

\[\Delta V_{\text{in}} \approx V_{\text{th}} \]
[B-C]

\[v_0(t) = -V_0 \exp\left(\frac{t}{\tau_{\text{settle}}}\right) - K v_{\text{in}}(t) \]

\[K = \frac{g_{m-in} R_L}{g_m R_L - 1} \]

\[\tau_{\text{settle}} = \frac{R_L C_{\text{Tot}}}{g_m R_L - 1} \]
Hysteresis Analysis

Latch Mode
\(\Delta V_{\text{in}} \gg V_{\text{th}} \)
[C-D]

\[
\Delta V_{\text{in}} \gg V_{\text{th}}
\]

\[
v_{\text{out}}(t) = -I_{\text{tail}}R_{L} - v_{\text{in}}(t)g_{m-in}R_{L}
\]

\[
v_{\text{in}}(t) \gg V_{\text{th}} \quad v_{\text{out}}(t) \approx -V_{0}
\]
Hysteresis Architecture

\[\tau = \frac{R_L C_{Tot}}{g_m R_L - 1} \]
Hysteresis Design Consideration

- Increase $g_m R_L$
- Increase C_{Tot}
- Increase power consumption
- Reduce C_{Tot}

Speed Improvement

$$\tau_{settle} = \frac{R_L C_{Tot}}{g_m R_L - 1}$$
Improved Hysteresis Architecture

- Condition for hysteresis: \((g_{m2}R_{L2})(g_{m3}R_{L1}) > 1\)
- \(g_{m2}\) buffers node \(V_{HYST}\) from capacitive loading
- \(R_{L2}, R_{L3}\) distributes the output capacitance
10+ Gb/s Hysteresis Design

- **Hysteresis condition:** \((g_{m2} R_L) (g_{m3} R_{OUT}) = 1.3347 > 1\)

- **Sensitivity & Logic levels:** \(|V_{th}| = 40\,\text{mV}; \ 2|V_0| = \frac{2g_{m-in}}{g_{m2}}|V_{th}| = 76\,\text{mV}\)

- **Rise time:** \(\tau_{HYST} = R_L C_{Tot} = 18\,\text{ps}\)

- **Power Consumption:** \((1.8 \times 10) < 20\,\text{mW}\)
Implementation & Measurement

- Active area 200 um X 300 um
- Only single ended testing was possible
- Measured swing will be 25% of actual swing
10 Gb/s Measured eye
10 Gb/s Measured sequence

Error free operation verified with 127 bit pattern
14 Gb/s Measured eye

Rx eye

Recovered eye
Performance Summary

- Process 0.18 um CMOS
- Bit rate 10+ Gb/s
- Output Eye amplitude 80 mVp-p differential
- Coupling capacitor of 150 fF
- Power consumption 20 mW

90-nm Implementation

- Coupling C = 80fF : improve sensitivity
- Eye Amplitude > 250 mV : increase output swing
- Bit Rate = 15 Gb/s : improve speed
Improving sensitivity

Cascaded Gain stages

Rx Eye Diagram

Eye Diagram

5x Improvement in sensitivity !!
Bandwidth of the Pre-amp

Slope eye [10 Gb/s]

Recovered NRZ eye [10 Gb/s]

Jitter due to pre-amp (BW = 8GHz)

Pre-amp requires more BW in AC coupled receivers !!!
Bandwidth of the Pre-amp

- **Pre-amp**
 - BW 8 GHz
 - Gain 18 dB
 - Rise Time 25 ps

- **Hysteresis**

14 Gb/s eye diagram

16 Gb/s eye diagram

How can we improve Jitter and ISI??
Speed Improvement

- Improve speed by using available data transitions
- How to match the latency?
- Can we have sufficient BW?
Speed Improvement

\[
A_v = \frac{A_{vo} \omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}
\]

[Galal ’02]
Speed Improvement

Hysteresis

Pre-amp

Slope Amp

16 Gb/s eye diagram

V_{HYST}

V_{SLOPE}

V_{EQ}

16 Gb/s eye diagram
Implementation in 90-nm CMOS

- Each stage $A_v = g_m R_L = 1.9$
- Bandwidth > 15 GHz
- Power consumption 2 mW

- Total Gain: $7.6 > 5$
- Bandwidth $= 11$ GHz
- Total power $= 8$ mW
Implementation in 90-nm CMOS

Pre-amp (8 mW)

Slope Amp (7 mW)

Hysteresis

\[V_{\text{HYST}} \]

\[V_{\text{SLOPE}} \]

\[V_{\text{EQ}} \]

Pre-amp + Slope-amp

Voltage Gain (dB)

Frequency (GHz)

2 GHz
Implementation in 90-nm CMOS

(7 mW) V_{HYST}

(8 mW)

Weighted Adder
(7 mW)

V_{SLOPE}

V_{EQ}

10 Gb/s eye

V_{HYST}

V_{SLOPE}

From Hysteresis

Equalization control

From Slope Amp
Implementation in 90-nm CMOS

Arrow indicates error bits

Transmitted sequence

Bit period 50 ps
Implementation in 90-nm CMOS

• Active area 100 um X 300 m
• Total power 32 mW
10 Gb/s Measured eye

Slope path was turned off at 10 Gb/s
14 Gb/s Measured eye

Slope Path OFF

Slope Path ON

Vertical scale: 25 mV/div
Horizontal scale: 50 ps/div

Vertical scale: 50 mV/div
Horizontal scale: 50 ps/div
14 Gb/s Measured BER Bathtub

14 Gb/s recovered eye with Hysteresis only

14 Gb/s recovered eye with Hysteresis + Slope-path
Conclusion

• 10+ Gb/s hysteresis circuit topology is implemented and tested in 0.18-um CMOS process (FOM 2 mW/Gb/s)

• High speed AC coupled receiver architecture is introduced:
 1. Additional slope path reduces ISI at hysteresis output
 2. Additional slope path reduces jitter

• 14 Gb/s AC coupled receiver is implemented and tested in 90-nm CMOS
 • FOM 1.80 mW/Gb/s @ 10 Gb/s
 • FOM 2.28 mW/Gb/s @ 14 Gb/s