An 81Gb/s, 1.2V TIALA-Retimer in Standard 65nm CMOS Technology

Shahriar Shahramian¹

Anthony Chan Carusone¹ Peter Schvan² Sorin P. Voinigescu¹

¹ University of Toronto, ² Nortel Networks

Motivation

- Emerging nanoscale CMOS with f_T and f_{MAX} beyond 200GHz
- Low voltage operation and high levels of integration
 - Wireline, serial 110Gb/s applications in a single chip solution

- High speed retimers
 - Wireline transceivers, equalizers, ADCs and CML memory

- Static frequency dividers up to 100GHz in 65nm SOI CMOS
 - Retimer speeds lag behind SiGe and InP technologies

Goal and Design Methodology

Demonstrate a record speed TIALA-retimer in a standard 65nm GPLP process

- Low-voltage nanoscale CMOS topologies
- Optimally sizing and biasing devices
- Optimized circuit cell layout

TIALA-Retimer Block Diagram

TIALA Front-end

TIALA Schematics

- 4-stage pseudo differential LA
- Low-noise, broadband front-end

- Combination of SVT & HVT devices
- TIA: 7dB gain and 3dB BW of 80GHz
- TIALA: > 20dB of gain and 45GHz BW
- Overcome latch metastability

Single-ended to Differential Conversion

Differential Buffers Schematics

Single-ended to differential conversion

- Operates in full switching mode
- Series-shunt peaking between stages

Clock Distribution

Clock Distribution Schematics

- Transformer for differential conversion
- CMOS TIA used in the 81GHz clock path
- Tuned differential amplifier chain
- > 6dB differential gain from 50G-85GHz

Flip-Flop (Retiming Block)

Flip-Flop Schematics

- Combination of HVT & LVT devices
- No current sources are used
- Operation from a 1.2V supply
- Layout is critical for 81Gb/s operation

TIALA-Retimer Signal Flow

Layout Considerations

 Layout optimized by interdigitating and merging transistors with common sources or drains in a single well

Latch example:

Chip Micrograph

DC and Biasing

- Standard 65nm GPLP CMOS process
 - Measure f_T and f_{MAX} of an 80x1um x 60nm n-MOSFET is 170GHz and 250GHz respectively measured at V_{DS} = 0.6V
- Chip area is 0.56mm x 1.2mm including pads

S-Parameter Measurement Results

S-Parameter Measurement Results

Transient Test Setup Block Diagram

Transient Test Setup Photograph

Measurement Results: 75Gb/s

Input eye amplitude is 40mV_{pp}, single-ended

Pattern Verification: 75Gb/s

Measurement Results: 78Gb/s

Input eye amplitude is 60mV_{pp}, single-ended

Measurement Results: 81Gb/s

Input eye amplitude is 80mV_{pp}, single-ended

Pattern Verification: 81Gb/s

Table of Comparison

Ref.	Technology	Rate (Gb/s)	Supply (V)	P _{LATCH} (mW)	P _{Total} (mW)
[2]	InP HEMT $f_T = 245GHz$	80	-5.7	N/A	1200
[3]	SiGe BiCMOS $f_T = 150GHz$	48	2.5	23	288
[4]	90nm CMOS Process $f_T = 120GHz$	40	1.2	10.8	130
This Work	65nm GPLP CMOS Process f _τ = 170GHz	81	1.2	9.6	200

Conclusions

- Fastest TIALA-retimer in any technology, operating at 81Gb/s
 - Latch power consumption is 9.6mW
 - TIA FoM is 118.5µW/Gb/s in differential operation
- Combination of LVT, SVT and HVT CMOS from 1.2V supply
- Low voltage CMOS nanoscale topologies
- Optimized transistor layouts and compact latch layout
- Combining low-noise, broadband CMOS TIA and high gain LA
- Optimized transistor sizing and biasing
- Series-shunt peaking techniques

Acknowledgments

We wish to acknowledge Nortel for funding and chip fabrication

Backup Slides

Simulated Clock Tree (Single-ended)

Simulated TIALA AC Response

Measurement Results: 81Gb/s

Input eye amplitude is ~ 300mV_{pp} , single-ended

