

A Methodology for Accurate DFE Characterization

Alireza Sharif-Bakhtiar*

Anthony Chan Carusone

Integrated Systems Laboratory

isl.utoronto.ca

Department of Electrical and Computer Engineering, University of Toronto, Canada

* - Now with Huawei Canada, Toronto

Outline

Motivation

- Methodology to Characterize and Quantify DFE Performance
- Illustration on Example 1-Tap DFE
- Application to IIR DFE and Comparison with Measurements
- Summary

2

Ideal Model of a DFE

- Tap weights typically assumed to be constant, H_k, independent of:
 - -Clock frequency
 - In fact, incomplete settling of the feedback loop may impact the DFE's effect
 - -Amplitude at the input to the latch
 - Impacts the delay and hence efficacy of the DFE
 - -Each other
 - In fact, increasing one tap weight may impact the effect of another tap weight

Motivation

- Many DFE circuits have unusual responses and timing requirements
 - -IIR DFEs (shown on right)
 - -Switched capacitor DFEs
 - "Soft" DFEs
- How do we ensure a particular DFE **CLK** circuit will meet the system specifications?
 - -Extensive post layout simulations \Rightarrow costly
 - "By design" (e.g. ratio-based design techniques)
 - \Rightarrow not always possible

Outline

- Motivation
- Methodology to Characterize and Quantify DFE Performance
- Illustration on Example 1-Tap DFE
- Application to IIR DFE and Comparison with Measurements
- Summary

5

 \Rightarrow Example: 1-Tap DFE

• Example simulation in 65-nm CMOS:

Example: DFE Tap Weight vs. Clock Phase

Maximum DFE Operating Frequency

Maximum DFE Operating Frequency

Maximum DFE Operating Frequency

- Transient simulations reveal the problem at the output of the summing node
- Some DFE circuits do not permit direct observation

Sensitivity of the DFE

• Clock-to-Q delay of the DFE depends upon its input amplitude

• e.g. Smaller amplitude A₁ \Rightarrow slower clock-to-Q delay

 \Rightarrow incomplete settling of DFE feedback path

- \Rightarrow lower effective DFE tap weight
- Hence, this one-tap DFE provides 50 mV effective tap weight \bullet as long as the input is at least 50 mV at 11Gbps or lower

85

Outline

- Motivation
- Methodology to Characterize and Quantify DFE Performance
- Illustration on Example 1-Tap DFE
- Application to IIR DFE and Comparison with Measurements
- Summary

 IIR DFEs can provide many taps of equalization without multiple parallel feedback paths

> This example incorporated into an optical receiver consuming only 0.7pJ/bit at 20Gb/ps

Decision Circuit MUX Summer

Feedback

- Wish to characterize this DFE over PVT, for different settings of R_F, C_F, different input common-mode, etc...
- "Tap weight" is not determined by a ratio, and is not directly observable

IIR DFE Characterization

Single-pulse test used to find effective tap weight while varying input common-mode

RMo2C-3

 V_{dd}

M5a

Finding the IIR DFE Response

- Performing double-pulse test while varying the delay, D, allows one to observe how the effect of the first pulse upon the DFE threshold decays over time
- Can also be applied to discrete-time multi-tap DFE

Finding the IIR DFE Response

combinations of R_F and C_F

IIR DFE Characterization

- Resistor R_F implemented with 8 settings, N = 0, 1, ... 7
- Post-layout characterization results (bottom left) are fit to single time constant responses (dashed) with time constants τ
- These agree well with the products R_FC_F (bottom right)

RMo2C-3

M5a

CLK •

CLK-

CLK→

Comparison with System Simulations

• First, a system simulation model is used to predict the best values of τ to find the best

 $\ge 1/(2\pi\tau) = 1.2 \text{ GHz} \Rightarrow \tau = 132 \text{ ps} \Rightarrow \text{between N} = 1 \text{ and N} = 2$

➢ Measurement results agree: best results at N = 1, and next-best results at N = 2

Summary

- DFE response is a critically specified part of wireline links
- Verifying a DFE response can be difficult, especially when highly optimized circuit topologies are used
- A methodology to characterize DFEs was presented -Relies upon short simulations with contrived input waveforms to extract
 - the DFE's effective response in situ
 - -Can capture all nonidealities of a post-layout circuit
- Methodology was validated on a 65nm CMOS prototype IIR-DFE [5]