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Motivation

▪ Common receiver DSP equalizer blocks in 100Gb/s+ wireline applications:

▪ Feed-forward Equalizer (FFE)

▪ Noise amplification

▪ High speed operation

▪ No error propagation

▪ Decision-Feedback Equalizer (DFE)

▪ Error propagation

▪ Speed limited by critical feedback path

▪ No noise amplification 

▪ Forward-Error Correction (FEC) code have also become an integral part of the DSP

▪ Standard Reed-Solomon (RS) to mitigate DFE error propagation

▪ Ex: RS(544,514,15) KP4 code to achieve a targeted post-FEC BER <10-15
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Motivation

▪ Three performance metrics for optimizing equalizer coefficients in wireline

transceivers:

o SNR (Implicitly the optimization criteria when using LMS adaptation)

o Pre-FEC BER

o Post-FEC BER
Metric

FFE Noise 
Amplification

DFE Error 
Propagation

Sensitivity to Long Burst 
Errors at very low BER

SNR ✓ × ×

Pre-FEC BER ✓ ✓ ×

Post-FEC BER ✓ ✓ ✓

SNR Pre-FEC BER

Post-FEC BER
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Motivation
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▪ FFE and DFE tap coefficients are typically optimized to maximize signal-to-noise ratio (SNR) 

or to minimize the mean-squared error (MMSE) or pre-FEC BER [1-3]

▪ Equalizer parameters found by conventional methods do not necessarily minimize post-FEC 

BER 

▪ This work presents an accurate and efficient methodology for finding transceiver parameters 

using Genetic Algorithm, based on post-FEC BER
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Transceiver Model – System Overview
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▪ Equalized pulse response α(z) is generated by convolving 

the physical channel’s pulse with the impulse response of 

other components in the link, such as the TX FFE, TX 

driver, CTLE and RX FFE

▪ Additive white Gaussian noise (AWGN) assumed at CTLE 

input, creating correlated noise samples after CTLE 

filtering
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Statistical Model – DFE Error Propagation 

[Yang, TCAS-I, 2020]
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▪ Example of a 2-tap DFE represented by a simplified 4-state Markov model

▪ Time-unrolling the Markov DFE model to generate PAM trellis 

▪ Apply trellis dynamic programming to the PAM trellis to efficiently collect all error patterns
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Statistical Model – DFE Error Propagation 

[Yang, TCAS-I, 2020]
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Pre-FEC vs Post-FEC BER Optimum - Link Setup
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▪ A channel model with 30 dB insertion loss for a link communicating 4-PAM symbols at 56 

GBaud/s subject to 0.55 VP-P swing at TX, 4.58 mVrms integrated rms noise

▪ A simplified CTLE model provides 12 dB peaking gain with 0 dB gain at DC

▪ A 1-tap DFE and a 7-tap FFE with 2 pre-cursor and 4 post-cursor taps at RX

▪ The post-FEC BER is calculated assuming the standard KP4 RS(544,514, 15) code
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Pre-FEC vs Post-FEC BER Optimum
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▪ Vastly different optimal point with proposed optimization approach

▪ Tradeoff between FFE noise amplification and DFE error propagation

Significant improvement in post-FEC BER 
using proposed optimization approach

Pre-FEC
Optimization

Post-FEC
Optimization 

Pre-FEC BER 2.38x10-8 4.88x10-7

Post-FEC BER 3.51x10-16 1.06x10-39

Conventional Proposed
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Simulation Results: 1-Tap DFE
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▪ More extensive simulation results using six measured channel responses to validate our 

methodology using post-FEC BER

▪ TX has a 2-tap FFE providing 5 dB pre-emphasis, and the RX FFE has 15 taps, including 3   

pre-cursor taps and 11 post-cursor taps

▪ An 8th-order CTLE model was applied to equalize all six channels having 30–40 dB 

insertion loss 

▪ The equalized pulse responses including TX FFE, CTLE and PHY channel are tabulated in 

Table I of the paper
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Simulation Results: 1-Tap DFE
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▪ Plot both the pre-FEC BER and post-FEC BER as a function of DFE tap weight α1/α0 for 

the 36 dB channel 

▪ Simulated at two integrated rms noise levels: 1.62 mVrms (low noise) and 2.42 mVrms (high 

noise)

▪ Different DFE coefficients at pre-FEC and post-FEC optimal

o Post-FEC BER is minimized at a lower α1/α0 than pre-FEC
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Simulation Results: 1-Tap DFE
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▪ Repeating the same analysis for all six measured 

channels

▪ The optimal post-FEC BER obtained by post-FEC 

optimization is always superior

            

                           

   

   

   

   

   

   

   

   

 

  
 
 
 
  
 
 
  
 
 
 
  
 
 
 

                                     

                                      

                                    

                                     



Information Classification: General

1/(1+D) Pre-Coding [Yang, DesignCon, 2020]
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▪ A wireline transceiver model incorporating 1/(1+D) pre-coding to mitigate DFE error bursts

▪ 1/(1+D) decoder removes burst errors because the error dk-bk in the current received 

symbol is added to the error dk-1-bk-1 in the previously received symbol

▪ Isolated individual symbol errors give rise to two consecutive symbol errors after 

decoding

▪ Method in [8] is used to generate the post-FEC BER results including 1/(1+D) pre-coding
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Optimizing for (1+αD) Type of Partial Response
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▪ Prior FFE+DFE equalization strategy:

o Only use the N-tap DFE to equalize the first N post-cursor ISIs, the first N FFE post-cursor taps are set 

to zero. Here we denote the FFE-equalized pulse response as αk-intrinsic

▪ This work:

o FFE-equalized pulse response is (1+α1∙D+α2∙D
2+…) where αk > αk-intrinsic for 1 ≤ n ≤ N. Extra SNR margin 

can be obtained by reducing FFE noise amplification. DFE taps are selected to cancel the new αn and 

1/(1+D) pre-coding is then applied to remove large DFE error propagation
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Simulation Results: 1-Tap DFE with 1/(1+D) Pre-Coding
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▪ Post-FEC BER of the previous 36dB channel case with and without 1/(1+D) pre-coding

▪ With pre-coding, both post-FEC and pre-FEC BER are minimized with the same equalizer 

coefficients
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Simulation Results: 2-Tap DFE
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▪ Pre-FEC BER performance surface of the 36dB loss channel at 2.42 mVrms noise level

▪ The 2-tap DFE affords the FFE post-cursor taps with one more degree of freedom to low-

pass filtering the noise

o significant BER improvement
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Simulation Results: 2-Tap DFE
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▪ Vastly different optimal points identified on each performance surface
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Simulation Results: 2-Tap DFE
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▪ Contrary to the 1-tap DFE example, with precoding enabled the post-FEC BERs 

optimized for post-FEC is better than the post-FEC BERs optimized for pre-FEC

▪ The post-FEC BERs optimized for post-FEC with precoding are optimal
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Summary
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▪ Although N is typically limited to 1-2 due to the critical timing path in the DFE feedback 

loop, in this example near optimal results can be achieved using a 2-tap DFE

▪ Suggests that we should optimize for 1+α1∙D+α2∙D
2 equalized pulse response in this 

example

▪ Only true if the post-cursor residual ISIs cancelled by the RX FFE are small
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GA-Assisted Transceiver Global Optimization
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▪ Although LMS adaptation and other gradient-descent methods are commonly employed 

for optimizing FFE and DFE coefficients, they are ill-suited to CTLE optimization which 

has a non-unimodal performance surface

▪ The time required to accurately evaluate each CTLE setting through an exhaustive 

search grows exponentially as the number of CTLE control parameters increases

▪ A genetic algorithm (GA) is combined with the statistical model to obtain the best 

candidate settings for each transceiver block
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Genetic Algorithm – Initial Condition Generation
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Genetic Algorithm – Parent Selection
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Genetic Algorithm – Crossover
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Genetic Algorithm – Mutation
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Genetic Algorithm – Next Generation
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GA-Assisted Transceiver Global Optimization
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▪ The optimization framework shown in the diagram includes:

o (1) a statistical model

o (2) a genetic algorithm optimizer

▪ The FFE-DFE co-optimization method is employed by assuming the FFE equalized pulse 

response has taken the form (1+α1∙D+α2∙D
2 +…) 

o (1) reduce search-space complexity and (2) achieve optimal noise filtering 
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Simulation Setup
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▪ A 14-inch orthogonal backplane channel from TE Connectivity [16] as the PHY channel 

model

o Channel model has 35 dB insertion loss at 28 GHz

▪ A simple RC-degenerated differential pair reported in [17] is used as the reference CTLE 

design

o A 5-bit digital control code is assigned to each CTLE component value
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Non-Unimodal Performance Surface
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▪ Pre-FEC BER surface plots are generated by sweeping Cs and CP

▪ Rs and RD set to global optimal (left) and suboptimal (right)
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Simulation Results
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▪ Link communicates 4-PAM symbols at 56 GBaud/s subject to 1 VP-P swing at TX

▪ The transmitter has a 3-tap FIR filter equalizing only pre-cursor ISIs

▪ A 2-tap DFE and a 13-tap FFE with 1 pre-cursor and 11 post-cursor taps at RX

▪ GA is used to optimize 8 parameters

o 4 CTLE component values, 2 TX FIR pre-cursor and 2 DFE tap weights

Performance 

Metric

CTLE Settings TX FIR DFE
Pre-FEC BER

Post-FEC BER

Rs Cs RD Cp β-1 β-2 c1 c2 No Pre-Coding With Pre-Coding

Pre-FEC 18 8 6 10 -0.06 0.10 0.98 0.31 4.66x10-6 7.12x10-15 2.46x10-23

Post-FEC 17 9 4 14 -0.06 0.10 0.69 0.22 1.44x10-5 5.44x10-24 2.95x10-22

Pre-Coded 

Post-FEC
20 7 8 8 -0.06 0.10 0.92 0.21 5.42x10-6 2.30x10-14 3.77x10-26
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▪ Using SNR or pre-FEC BER as performance metrics may not be effective in minimizing 

post-FEC BER when architecting and optimizing wireline links

o Links attain their minimum post-FEC BER with equalizer coefficients very different from those that 

minimize pre-FEC BER

o The introduction of pre-coding mitigates the impact of error bursts, ensuring that both pre-FEC and 

post-FEC BER are minimized with the same equalizer coefficients for the 1-tap DFE example

o Vastly different optimal equalizer settings with/without pre-coding for multi-tap DFE cases

▪ An optimization framework using Genetic Algorithm to find equalizer settings for minimum 

post-FEC BER on non-unimodal performance surfaces

o 1+alpha∙D type of partial responses are optimized by the GA to achieve optimal noise filtering and 

reduced search-space complexity
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