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Abstract 
This paper presents a statistical modeling approach to accurately estimate post-FEC BER for 

high-speed wireline links using standard linear block codes, such as the RS(544,514,15) KP4 and 

RS(528,514,7) KR4 codes. A hierarchical approach is adopted to analyze the propagation of 

PAM-symbol and FEC-symbol errors through a two-layer Markov model. In this paper, we will turn 

our proposed BER estimation method into a set of tools to assist in making architectural choices for 

wireline transceivers, such as co-design of the equalization and FEC in the presence of DFE error 

propagation and various noise sources including residual ISI, crosstalk, transmitter and receiver jitter. 
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1. Introduction 
Forward error correction (FEC) codes have become an integral part of many high-speed wireline links 

at data rates above 25Gb/s. Depending on the equalization techniques used in wireline links, the same 

pre-FEC BER may result in different post-FEC BER. Decision feedback equalizer (DFE) error 

propagation and other noise sources such as inter-symbol interference (ISI), crosstalk and jitter can 

also significantly impact the accuracy of post-FEC BER analysis. Ideally, one may perform a 

transient simulation to fully capture the characteristics from all noise sources. However, the targeted 

<10-15 BERs make time-domain simulations prohibitively long, especially for exploring architectural 

design alternatives. Therefore, an efficient statistical model that accurately predicts very low 

post-FEC BERs serves an essential function in the design of high-speed wireline links. 

 

This paper presents a statistical modeling approach to accurately estimate post-FEC BER for 

high-speed wireline links using standard linear block codes, such as the RS(544,514,15) KP4 and 

RS(528,514,7) KR4 codes. A hierarchical approach is adopted to analyze the propagation of 

PAM-symbol and FEC-symbol errors through a two-layer Markov model. A series of techniques 

including state aggregation, time aggregation, state reduction, and dynamic programming are 

introduced making the time complexity to compute post-FEC BERs below 10-15 reasonable. The 

efficiency of the proposed model allows it to handle a larger state space, more DFE taps, and more 

sophisticated linear block codes than prior work. 

 

In this paper, we will turn our proposed BER estimation method into a set of tools to assist in making 

architectural choices for wireline transceivers, such as co-design of the equalization and FEC in the 

presence of DFE error propagation and various noise sources. First, the impact on FEC performance 

is investigated using various coding schemes including bit multiplexing, MOD4 precoding and 

interleaved FEC codes. Behavioral time-domain simulation results are reported along with the 

statistical results to verify the accuracy of the model. Second, the impact on burst errors and FEC 

failures is analyzed by considering various noise sources including residual ISI, crosstalk, transmitter 

and receiver jitter. Specifically, the proposed model will be used to demonstrate how negative 

residual ISI may significantly impacts DFE error bursts. In addition, a novel statistical ISI analysis 

method is presented to incorporate transmitter and receiver jitter into the post-FEC BER estimation. 

The approach can accurately estimate the data-dependent ISI distribution through jittered half-UI 

pulses that are derived from the standard unit-pulse response. This procedure allows efficient 

computation of the ISI probability density function in the presence of arbitrary uncorrelated jitter 

distributions. Lastly, a 4-PAM 60 Gb/s wireline transceiver fabricated in 7 nm FinFET technology is 

used as a test vehicle to validate our proposed BER estimation methodology. The methodology can 

accurately predict very low post-FEC BERs (<10-12) that are difficult to measure in real-time. 

 

 
Figure 1.  A zero-forcing N-tap DFE example for wireline SerDes 



2. Modeling DFE Error Propagation in 2-PAM 
Consider the link model shown in Figure 1 communicating symbols bk with time index k. The 

symbols are filtered by a finite-impulse-response (FIR) channel response hp with main cursor h0, and 

subject to additive noise, nk. We start by assuming that all pre-cursor and higher-order post-cursor 

ISIs have been removed by linear equalizers. The detected symbols dk may differ from the transmitted 

symbols resulting in the error sequence, 
 

                                                                     𝐷𝑘 = 𝑑𝑘 − 𝑏𝑘 .                                                                  (1) 
 

This results in an additive error nk
dfe generated by non-zero error terms in the DFE feedback path. 

Assuming a perfect zero-forcing N-tap DFE, 
 

                                                             𝑛𝑘
𝑑𝑓𝑒

= −∑ 𝐷𝑘−𝑝
𝑁
𝑝=1 ℎ𝑝.                                                          (2) 

 

Then the DFE slicer input rk becomes 
 

                                                              𝑟𝑘 = 𝑏𝑘ℎ0 + 𝑛𝑘 + 𝑛𝑘
𝑑𝑓𝑒

.                                                          (3) 
 

Error propagation is modeled as a Markov process whose state is specified by the error terms in the 

DFE feedback, Dk-1, Dk-2, … Assuming additive white Gaussian noise (AWGN) nk ~ N(0, σ2), we have 

rk ~ N(bkh0+nk
dfe, σ2). Hence, the rates at which dk  bk and dk = bk can be determined from the 

appropriate standard error function. The one-step state-transition probabilities qi’i from a source state 

‘i’’ to a sink state ‘i’ can be calculated by applying (3) to each pair of valid transitions i’i in the 

Markov model, where the term nk
dfe in (3) is exclusively dictated by the source state ‘i’’. With all qi’i 

calculated, we may find the steady-state probability, πi, of any state i in the Markov model by solving 

the global balance equation [1], 
 

                                                                    𝜋𝑖 = ∑ 𝑞𝑖′𝑖𝜋𝑖′𝑖′ .                                                                 (4) 
 

subject to 
 

                                                                        ∑ 𝜋𝑖𝑖 = 1.                                                                      (5) 
 

Applying state lumping (sometimes referred as state aggregation) to a Markov process allows the 

generation of an aggregated chain with a comparatively smaller state space resulting in reduced 

analytical complexity. The aggregated chain provides a coarser analysis of the state space and can be  

 

                        

Figure 2.  Markov chain model for a 2-tap DFE and 2-PAM symbols bk  {-1,+1}: (a) before lumping [16] (b) after 

lumping. States are labelled Dk-1, Dk-2. 



used to perform DFE error-rate analysis for the original Markov chain without losing analytical 

accuracy [2]. For an N-tap DFE with 2-PAM signaling, the original state space S = {1,2,…, 3N} can 

be reduced to 𝑆̅ = {1,2,⋯ , 2𝑁} using weak lumpability. A 2-tap DFE example is given in Figure 2, 

and states are labelled according to the errors registered in the DFE: i.e. <Dk-1, Dk-2>. With 2-PAM 

bk = ±1, Dk  {+2, -2, 0} and the DFE may be in 32 = 9 different states as in Figure 2(a). We obtain 

the 22 = 4 Markov states in Figure 2(b) by lumping all +2 and -2 states at each DFE tap position. The 

lumped state ±2 preserves the coarser bit-error information by discarding the sign of Dk. 

 

In the scope of this work, we consider the link illustrated in Figure 1 subject to AWGN, having 

equally spaced DFE slicer thresholds, and an equally probable symbol set bk that is independent of 

noise sample nk. Without the presence of data-dependent residual ISIs, it is proven in [2] that an N-tap 

DFE Markov process is always lumpable with respect to the partition lumping all states having the 

same error magnitude |Dk| at each DFE tap. 

 

Denote pi’mim as the one-step state-transition probability from a lumped state ‘i’m’ to a lumped state 

‘im’. Transition matrix P = [pi’mim] of the lumped process can be solved using a two-step procedure 

provided in [3]. First, the aggregated steady-state probabilities Πim can be calculated from the results 

obtained by (4) and (5), 
 

                                                                    𝛱𝑖𝑚 = ∑ 𝜋𝑖𝑖𝜖𝑖𝑚 .                                                                 (6) 
 

Next, the aggregated state-transition probabilities pi’mim can be computed by 
 

                                                             𝑝𝑖𝑚′ 𝑖𝑚 = ∑
𝜋
𝑖′
𝑞
𝑖′𝑖

𝛱
𝑖𝑚
′

𝑖′𝜖𝑖𝑚
′ ,𝑖𝜖𝑖𝑚

.                                                        (7) 

 

3. 4-PAM Statistical Model for Non-Binary Linear Block Codes 
In the previous section, we have reviewed a 2-PAM statistical model to model DFE error propagation. 

In current long-reach wireline SerDes applications, such as 100GBase-KP4, Gray-coded 4-PAM 

signaling and RS FEC are standard. For linear FEC codes on GF(2m), the encoder groups every m bits 

into one FEC symbol, and correspondingly the decoder can detect and correct up to t erroneous FEC 

symbols in an n-symbol codeword. All m bit errors in each erred FEC symbol can be corrected so 

long as the total number of FEC symbol errors does not exceed t. Hence higher-order RS codes 

provide stronger burst-error correction ability than BCH codes, a measure taken in part to 

accommodate DFE error propagation. In this section, we extend this statistical model to higher-order 

M-PAM schemes and linear block FEC codes on GF(2m), for m being an integer multiple of log2(M) 

including the standardized wireline RS codes. 

 

Figure 3.  A receiver eye diagram indicating all possible symbol-detection outcomes for a link communicating 

Gray-coded 4-PAM symbols bk  {±3, ±1}. 



3.1 4-PAM Markov Model 

Figure 3 demonstrates a receiver eye diagram indicating all possible detection outcomes for a link 

communicating Gray-coded 4-PAM symbols bk  {±3, ±1}. All 16 error values Dk  {0T, 0M1, 0M2, 

0B, ±2T, ±2M, ±2B, ±4T,±4B, ±6}, together with their associated bit-error patterns, are also labeled in 

the same figure. The subscript of each error value denotes its relative position in the 4-PAM eye from 

top to bottom. Note that states having the same error value may correspond to different bit-error 

patterns. For example, subject to an error event Dk = +2M, the 1st bit of the received PAM symbol is in 

error, which corresponds to the pdf plot superimposed in Figure 3 with bk = -1, dk = +1 and nk
dfe = 0. 

However, the combination of bk = +1 and dk = +3 results in Dk = +2T, which instead makes the 2nd bit 

erroneous while having the same error value. 

 

Next, in the 16N-state Markov model, all states having the same error magnitude are aggregated 

together by applying weak lumpability, resulting in a much smaller 4N-state state space. Specifically, 

we can define a new set of Dk  {0, ±2, ±4, ±6} for the 4-PAM example given in Figure 3. 

Steady-state and state-transition probabilities of the new aggregated chain can be calculated using (6) 

and (7), similar to what has been done in the 2-PAM case. 

 

         

Figure 4.  4-PAM trellis paths for calculating ∑jPrj
2(2) with N = 1 and B = 2 using (a) lumped trellis model (b) 

lumped trellis model ignoring ±4 and ±6 error events. 

 

We next apply trellis-based dynamic programming to the Markov model to efficiently calculate the 

probability of bit errors in a codeword. The lumped Markov model for an N-tap DFE with M-PAM 

signaling may be represented by an MN-state radix-M trellis. Rather than finding the BER by 

enumerating all possible error patterns in the trellis, dynamic programming solves the problem much 

faster by grouping the probability of all trellis paths having the same number of bit errors. The same 

aggregation procedure is repeated recursively when traversing through each stage in the trellis, 

resulting in a significant reduction in computational complexity. 

 

When traversing an M-PAM trellis using dynamic programming, each branch decision corresponds to 

between 0 and at most log2M bit errors. We define jPAM as the number of bit errors in a PAM symbol 

detection. For example, in a link communicating 4-PAM symbols bk  {±3, ±1}, jPAM  {0, 1, 2} and 

the receiver error sequence defined in (1) is Dk  {±6, ±4, ±2, 0}. Assuming Gray-coding, an error 

value ±2 or ±6 corresponds to jPAM = 1, whereas an error value ±4 indicates jPAM = 2. In each trellis 

iteration, for states ‘i’ where the most recently received 4-PAM symbol has jPAM-bit errors, 



 

                                            𝑃𝑟𝑘+1
𝑗 (𝑖) = ∑ 𝑃𝑟𝑘

𝑗−𝑗𝑃𝐴𝑀(𝑖′)𝑝𝑖′𝑖𝑖′ .                                                  (8) 

 

Figure 4(a) shows an example for a 4-PAM 1-tap-DFE Markov model with B = 2, highlighting all 

possible paths ending in state ±2 (i = 2). For example, Pr2
j(2) represents the probability of arriving at 

state #2 at the 2nd stage of the trellis having traversed any trellis paths corresponding to exactly j-bit 

errors, and the highlighted paths in Figure 4(a) indicate all possible error patterns contributing to 

∑jPrj
2(2). Hence, from (8) we know ∑jPrj

2(2)= Pr1
0(1)p12+Pr1

1(2)p22+Pr1
2(3)p32+Pr1

1(4)p42, where 

the only possible node for k = 1 and j = 2 is #3. Without lumping, the Markov model would have 

71 = 7 states for a 4-PAM 1-tap DFE, but it can be reduced to 4 as in Figure 4(a) by lumping the 1-bit 

errors ±2/±6 and the 2-bit errors ±4. Note that lumping reduces the model’s complexity much more as 

the number of DFE taps increases. Furthermore, the trellis model can be simplified to a 2N-state 

radix-2 trellis as demonstrated in Figure 4(b) by ignoring all the dotted paths in Figure 4(a) that have 

unlikely ±4 and ±6 error events. 

 

3.2 Time-Aggregated FEC Trellis Model 

Using the methods described so far, every FEC symbol in GF(2m) can be decomposed into a 

length-m/2 4-PAM trellis describing link behavior in the physical layer. Recall the example in Figure 

5 that we apply (8) to recursively compute Prk
j(i) in order to aggregate the probability of error patterns 

having exactly j bit errors, where j  {0 … m/2}. 

 

 

Figure 5.  A time-aggregated 4-PAM trellis example with N = 1. 

 

Note that all paths in the trellis representing Prj
k(i), the probability of arriving at state i at the kth stage 

of the trellis after traversing all trellis paths containing exactly j bit errors, can be decomposed into 2N 

groups of trellis paths and each starts with one of the 2N Markov states at k = 0. For example, in 

Figure 4(b) all trellis paths representing Pr1
2(2) must begin with one of the two DFE states at k = 0. 

As such, we may simplify the entire length-m/2 2N-state radix-2 trellis to a length-1 2N-state 

radix- (2N·m/2) trellis by aggregating all j-bit-error paths within each of the 2N groups to a one-step 

direct transition between the two states at k = 0 and k = m/2. Each one-step transition in the simplified 



trellis is equivalent to traversing m/2 4-PAM symbols in the fully expanded trellis. Figure 5 shows an 

example of a time-aggregated 4-PAM trellis with N = 1, where we denote aj
i’i as the one-step 

state-transition probability from source state ‘i’’ to sink state ‘i’ with exactly j bit errors. Depending 

on the choice of sink state ‘i’ and the number of aggregated PAM-symbol stages, there are in total m/2 

possible transitions between any of the two states in the simplified trellis. For example, for the 

transition aj
22 in Figure 5, j  {1 … m/2} as all the aggregated paths end at i=2 has at least 1 bit error. 

 

As such, we may construct a new trellis model for the entire FEC block, assuming that each state 

transition from the kF
th to the (kF+1)th stage has traversed a group of length-m/2 PAM-trellis paths. 

This is referred as the time aggregation of a Markov decision processes [4]; we group trellis paths 

over m/2 consecutive 4-PAM symbols while the time-aggregated Markov model preserves both the 

time-homogeneity and bit-error information. We call this time-aggregated PAM trellis the FEC trellis 

model, distinguishing it from the PAM symbol-level trellis considered thus far. 

 

In order to analyze the FEC trellis, we must first find all the state-transition probabilities of these 2N 

states by analysis of each underlying 4-PAM trellis. Figure 6 shows an example illustrating the 

time-aggregation of a 4-PAM trellis for N = 1 and m = 6. The FEC trellis is expanded in Figure 6 

showing the underlying 4-PAM trellis to illustrate how we may find state-transition probabilities aj
i’i 

in the FEC trellis. First, we instantiate the expanded PAM trellis by assuming that the PAM trellis 

starts at the state ‘i’’ in aj
i’i with a probability of 1, 

 

                                                                       𝑃𝑟0
0(𝑖′) = 1.                                                                 (9) 

 

Next, after traversing the expanded 4-PAM trellis using the dynamic programming procedure 

described in (8), the transition probability aj
i’i to the next (kF+1)th FEC trellis stage can be calculated 

by summing the probability of all j-bit-error PAM-trellis paths ending at state ‘i’, 
 

                                                             𝑎𝑖′𝑖
𝑗
= 𝑃𝑟𝑚/2

𝑗 (𝑖)|
𝑃𝑟0

0(𝑖′)=1
.                                                    (10) 

 

For example, in Figure 6, a2
12 corresponds to the summed probability of all PAM-trellis paths starting 

with state i = 1 and ending at i = 2 where 2 bit errors are detected in the fully expanded PAM trellis. 

For this particular case, 
 

                                        𝑎12
2 = 𝑃𝑟3

2(2)|𝑃𝑟00(1)=1 = 𝑝11𝑝12𝑝22 + 𝑝12𝑝21𝑝12.                                 (11) 

 

To compute the post-FEC BER, we must apply dynamic programming to enumerate the probability of 

all error patterns having more than t FEC symbol errors in a codeword. However, the dynamic 

programming algorithm described by (8) can only track the total number of bit errors. Therefore, we 

create another error index allowing us to aggregate all error patterns in terms of both FEC symbol 

errors and bit errors. In the FEC trellis, we denote Pr_FECkF
js, jb(i) the probability of visiting Markov 

state i at time step kF after traversing all trellis paths containing exactly js FEC symbol errors and jb bit 

errors. Hence, the error probabilities at time kF +1, Pr_FECkF+1
js, jb(i), can be found iteratively from 

the values of Pr_FECkF
js,jb(i) and the branch probabilities ai’i

j. For a transition to state ‘i’ in the FEC 

trellis where the traversed m/2 PAM symbols have exactly j bit errors, 
 

                                       𝑃𝑟_𝐹𝐸𝐶𝑘𝐹+1
𝑗𝑠,𝑗𝑏 (𝑖) = ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹

𝑗𝑠−𝑚𝑖𝑛(1,𝑗),𝑗𝑏−𝑗(𝑖′)𝑎𝑖′𝑖
𝑗

𝑖′ .                                (12) 

 

 



 

Figure 6.  Time aggregating a 4-PAM trellis with m = 6 and N = 1 showing the time-aggregated PAM trellis and the 

corresponding aggregated one-step state-transition probability in the fully expanded PAM trellis. 

 

4. Post-FEC BER Estimation and Model Validation 
We first define Pr_FECn

 js, jb as the grouped probability of all error patterns having js symbol errors 

and jb bit errors along with a FEC trellis path of length n, computed by 
 

                                                      𝑃𝑟_𝐹𝐸𝐶𝑛
𝑗𝑠,𝑗𝑏 = ∑ 𝑃𝑟_𝐹𝐸𝐶𝑛

𝑗𝑠,𝑗𝑏(𝑖)𝑖 .                                               (13) 
 

Next, denote W(js) the probability of having exactly js FEC symbol errors in an n-symbol codeword, 
 

                                                          𝑊(𝑗𝑠) = ∑ 𝑃𝑟_𝐹𝐸𝐶𝑛
𝑗𝑠,𝑗𝑏

𝑗𝑠 ∙
𝑚

2

𝑗𝑏=𝑗𝑠
.                                                   (14) 

 

To calculate BER, we define Eavg(js) as the average number of bit errors in each erroneous FEC 

symbol given that exactly js symbol errors occurred in an n-symbol codeword, 
 

                                                       𝐸𝑎𝑣𝑔(𝑗𝑠) =
∑ (𝑃𝑟_𝐹𝐸𝐶𝑛

𝑗𝑠,𝑗𝑏 ∙𝑗𝑏)
𝑗𝑠∙

𝑚
2

𝑗𝑏=𝑗𝑠

𝑗𝑠∙𝑊(𝑗𝑠)
.                                                  (15) 

 

Then, the pre-FEC BER can be calculated as 
 

                                                   𝐵𝐸𝑅𝑝𝑟𝑒−𝐹𝐸𝐶 = ∑ [
𝑊(𝑗𝑠)∙𝐸𝑎𝑣𝑔(𝑗𝑠)∙𝑗𝑠

𝑛∙𝑚
]𝑛

𝑗𝑠=1
.                                           (16) 

 

Finally, to estimate the post-FEC BER for a t-error correcting RS code in GF(2m) of block length n, 
 

                                                 𝐵𝐸𝑅𝑝𝑜𝑠𝑡−𝐹𝐸𝐶 = ∑ [
𝑊(𝑗𝑠)∙𝐸𝑎𝑣𝑔(𝑗𝑠)∙𝑗𝑠

𝑛∙𝑚
]𝑛

𝑗𝑠=𝑡+1
.                                        (17) 

 



At low BER, as W(js) decreases exponentially with increasing js, pruning trellis paths having 

negligible probabilities can result in a significant reduction in computation. This is achieved by 

replacing the upper summation limit n in (16) and (17) with js
max, indicating only trellis paths having 

up to js
max FEC symbol errors are preserved. 

 

                                                     𝐵𝐸𝑅𝑝𝑜𝑠𝑡−𝐹𝐸𝐶 ≈ ∑ [
𝑊(𝑗𝑠)∙𝐸𝑎𝑣𝑔(𝑗𝑠)∙𝑗𝑠

𝑛∙𝑚
]

𝑗𝑠
𝑚𝑎𝑥

𝑗𝑠=𝑡+1
.                                        (18) 

 

A 4-PAM statistical model is applied to a link as depicted in Figure 1 with two channel settings 

h = 0.6 + 0.2z-1 - 0.2z-2 and h = 0.6 + 0.2z-1 + 0.2z-2. The negative ISI cursor in the first case may, for 

example, arise from the combination of a lowpass channel and a continuous time linear equalizer 

(CTLE) that over-equalizes the channel. The solid lines in Figure 7 reports the pre-FEC vs post-FEC 

BER with the two channels, calculated using the statistical methods described above for the 

RS(544,536,4) code on GF(210). The dotted line reports the results neglecting DFE burst errors. 

Behavioral simulation results for the negative ISI case are superimposed on the same axes to verify 

the correctness of our model down to a post-FEC BER of 10-8. 

 

 

Figure 7.  Pre-FEC vs post-FEC BER plot for RS(544,536,4) with h = 0.6 + 0.2z-1 - 0.2z-2. 

 

In Figure 7, we may identify two regions of interest for the results generated by case 1. First, consider 

an extreme case where burst errors arise much less frequently than random errors. In such a case, a 

codeword will be decoded incorrectly only when there are (t+1) random bit errors, each having 

probability p. Hence, post-FEC BER ~ p(t+1). This case corresponds to the region (a) in Figure 7, 

where the slope of Post-FEC vs. Pre-FEC BER is (t+1) on a logarithmic scale. Another extreme case 

can be represented by region (b), where individual random bit errors turning into very long bursts are 

the dominant source of post-FEC errors. If some small fraction, b, of pre-FEC random errors will 

generate bursts long enough to create post-FEC errors, post-FEC BER ~ b·p. Thus, the slope of 

post-FEC vs. pre-FEC BER in this region is 1 on a logarithmic scale. 

 

Note that a much higher error floor is observed in case 1 though the two cases differ only in the sign 

of the second post-cursor ISI. The large but negative second DFE tap in case 1 comparatively 

increases the probability of error propagation in the DFE feedback loop, resulting in a much higher 

error floor, region (b) in Figure 7. 
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Figure 8. A 2-PAM trellis example showing a burst across 3 bits with N = 2; solid lines are the more probable trellis 

paths if h1 > 0. 

 

Here we will use a 2-tap DFE in 2-PAM as an example to prove that DFE error propagation is 

enhanced by negative DFE tap weights located at even tap locations, and this proof can be easily 

extended to a N-tap DFE using M-PAM signaling. Figure 8 shows the 2-PAM trellis for a burst of 

errors across 3 bits using the original non-aggregated Markov model where the 32 DFE states 

correspond to those in Figure 2(a). We further simplify Figure 8 by omitting all state transitions and 

the associated states which do not lead to consecutive decision errors. In the example, the burst is first 

triggered by a random error in the (k+1)th bit of a codeword, and is then followed by consecutive 

errors across subsequent trellis stages. Therefore, the trellis starts at time k in state i = 1 without any 

preceding DFE errors, nk
dfe = 0. At k+1, two trellis paths are highlighted in red and blue corresponding 

to errors with bk+1 = -1 and +1, respectively. According to (2) the first random receiver error Dk+1 in 

Figure 8 results in an additive error at the receiver input at k + 2 
 

                                                                   𝑛𝑘+2
𝑑𝑓𝑒

= −𝐷𝑘+1ℎ1.                                                           (19)    
 

Thus, with h1 > 0, past bit errors pass through the negative feedback of the DFE tend to cause a 

subsequent error of opposing sign. The solid and dashed lines in each set of colored paths represent 

the more probable and less probable burst error paths through the trellis. For example, with h1 > 0, 

P8,9>>P8,6 and P9,2>>P9,5 indicating that burst errors are more likely to be in the form 

“… +2, -2, +2 …”. 

 

After two consecutive errors, the additive DFE error at time k + 3 is 
 

                                                          𝑛𝑘+3
𝑑𝑓𝑒

= −𝐷𝑘+1ℎ2 −𝐷𝑘+2ℎ1.                                      (20) 
 

Since with h1 > 0, Dk+1 and Dk+2 are most likely to have opposing signs, the two terms in (20) will add 

constructively resulting in the largest possible additive error term only if h1 and h2 have opposing 

signs, implying h2 < 0.  

 

 



Alternatively, if h1 < 0 the additive error (19) is of the same sign as Dk+1 increasing the probability of 

another error Dk+2 having the same sign. In this case, the additive error (20) is increased when h2 has 

the same sign as h1; that is, when h2 < 0. Thus, in either case the probability of propagating errors two 

or more time steps is maximized by a negative h2. 

 

To prove that the probability of having errors with opposing signs is higher if h1 > 0 and vice versa, 

we assume Dk+1 = ±2 and an equal probability of transmitting bk  {±1}. According to (3) the 

probability of Dk+2 = +2 is 
 

                                                                 𝑃+2 =
1

2
𝑄 (

−ℎ0∓2ℎ1

𝜎
).                                                         (21) 

 

Similarly, under the same assumption the probability of Dk+2 = -2 is 
 

                                                                 𝑃−2 =
1

2
𝑄 (

−ℎ0±2ℎ1

𝜎
).                                                         (22) 

 

With a h0 and h1 both being positive, P+2 < P-2 if Dk+1 = +2 and P-2 < P+2 if Dk+1 = -2. Therefore, it is 

much more likely that Dk+1 and Dk+2 have opposing signs if h1 > 0. Similarly, in (21) and (22) if h1 < 0, 

since P+2 > P-2 if Dk+1 = +2 and P-2 > P+2 if Dk+1 = -2, it can be easily proven that Dk+1 and Dk+2 are 

more likely to have the same sign. 

 

Figure 9 gives an example on finding the transition probability P1,8, P8,6, P8,9, P9,2 and P9,5 that are 

highlighted in Figure 8 using the channel setting in case 1 where h = 0.6 + 0.2z-1 - 0.2z-2. The 

distribution of the DFE slicer input rk in (3) is shown in each subplot assuming a 2-tap zero-forcing 

DFE with AWGN having a standard deviation σ. Knowing nk
dfe = 0 at the kth bit, we can arbitrarily 

assign  bk = bk-1 = -1 without affecting the results of our analysis. First, following the blue path we 

start by sending bk+1 = +1 as shown in Figure 9(a) and the error probability P1,8 can be calculated 

using the standard error function  
 

                                                          𝑃1,8 =
1

2
𝑄 (

−ℎ0

𝜎
) =

1

2
𝑄 (

−0.6

𝜎
).                                                  (23) 

 

Next, given Dk+1 = -2, the two state transitions P8,6 and P8,9 leading to Dk+2  0 are plotted in Figures 

9(b) and 9(c), respectively. With h0 = 0.6 and h1 = 0.2, we can directly compare the two transition 

probabilities using (21) and (22), 
 

                         𝑃8,6 =
1

2
𝑄 (

−ℎ0−2ℎ1

𝜎
) =

1

2
𝑄 (

−1

𝜎
) ≪ 𝑃8,9 =

1

2
𝑄 (

−ℎ0+2ℎ1

𝜎
) =

1

2
𝑄 (

−0.2

𝜎
).                  (24) 

 

Then, at k + 3, with h2 < 0 the two most-probable error terms Dk+2 = +2 and Dk+1 = -2 in (20) add 

constructively resulting in the largest possible nk+3
dfe. State transition probabilities P9,2 and P9,5 are 

evaluated in Figures 9(d) and 9(e), 
 

                   𝑃9,2 =
1

2
𝑄 (

−ℎ0+2ℎ1−2ℎ2

𝜎
) =

1

2
𝑄 (

0.2

𝜎
) ≫ 𝑃9,5 =

1

2
𝑄 (

−ℎ0−2ℎ1+2ℎ2

𝜎
) =

1

2
𝑄 (

−1.4

𝜎
).          (25) 

 

Therefore, subject to a 3-bit error burst starting at time (k+1) in Figure 8, P8,9>>P8,6 and P9,2>>P9,5, 

showing the probability of having errors with opposing signs in between any two neighboring bits is 

much more likely if h1 > 0. Similarly, this example can be easily extended to the case having h1 < 0, 

where we would have P8,9<<P8,6 and P9,2<<P9,5 hence all subsequent error values in a burst are most 

likely to have the same sign as the initial random error.  

 



 
(a) Finding P1,8 at the kth bit of a codeword 

 

 
(b) Finding P8,6 at the (k+1)th bit of a codeword 

 

 
(c) Finding P8,9 at the (k+1)th bit of a codeword, P8,9>>P8,6 if h1 > 0 

 

 
(d) Finding P9,2 at the (k+2)th bit of a codeword, note DFE errors add constructively if h2 < 0 

 

 
(d) Finding P9,5 at the (k+2)th bit of a codeword, P9,5<<P9,2 if h1 > 0 and h2 < 0 

 

Figure 9. Finding the transition probability P1,8, P8,6, P8,9, P9,2 and P9,5 in each subplot showing the probability 
distribution of DFE slicer input rk with h = 0.6 + 0.2z-1 - 0.2z-2. 

 

 

5. Common Coding Techniques in Wireline Links 
In this section we will discuss three common coding methods that impact burst-error probability and 

post-FEC BER. First, interleaved FEC codes, which increase latency but spread burst errors, are 

considered in Section 5.1. Then, MOD4 precoding is presented in Section 5.2 as a simple but 

effective method to minimize DFE bursts. Lastly, bit multiplexing is often required to combine 

several slower serial data streams in high-speed wireline links, and it is briefly discussed in Section 

5.3. 

𝑃1,8 =
1

2
𝑄(
−ℎ0

𝜎
) 

𝑃8,9 =
1

2
𝑄 (

−ℎ0 + 2ℎ1

𝜎
) ≫ 𝑃8,6 

𝑃9,2 =
1

2
𝑄(
−ℎ0 + 2ℎ1 − 2ℎ2

𝜎
) 

𝑃8,6 =
1

2
𝑄(
−ℎ0 − 2ℎ1

𝜎
) 

𝑃9,5 =
1

2
𝑄 (

−ℎ0 − 2ℎ1 + 2ℎ2

𝜎
) ≪ 𝑃9,2 



5.1 Interleaved FEC Code 

Figure 10(a) shows an example of 1:3 FEC symbol interleaving at a transmitter using the RS (544, 

514, 15) KP4 code. Each transmitted codeword in the PHY layer is generated through a 3:1 FEC 

symbol multiplexer by taking FEC symbols from the three encoded codewords in a round-robin 

fashion. At the receiver shown in Figure 10(b), the signal flow is reversed to retrieve the codewords. 

Burst errors across multiple FEC symbols in the PHY layer are interleaved into 3 codewords, thus 

significantly reducing the probability of decoder failure in the presence of long DFE bursts. 

 

 
 

 
Figure 10. An example of 1:3 FEC symbol interleaving using the RS (544, 514, 15) KP4 code: (a) at transmitter (b) 

at receiver, errors across multiple FEC symbols are interleaved into 3 codewords. 
 

To model FEC symbol interleaving, we must consider error propagation in the PHY layer using the 

FEC trellis model. For a 1:x interleaved FEC, the block length of the FEC trellis model must be 

extended to x times longer than codeword length n. Figure 11 shows the modeling of 1:3 FEC symbol 

interleaving using a length-3n FEC trellis model with 4-PAM and N = 1. In the example we may 

arbitrarily choose codeword C for BER analysis. When iterating each FEC trellis stage in Figure 11 

using (12), the error indices js and jb only increase if errors occur in codeword C. Without FEC 

interleaving, random and burst errors may corrupt multiple FEC symbols within the non-interleaved 

codeword, while in the example of Figure 11 the same errors will instead spread into 3 interleaved 

codewords making the post-FEC BER better. 

 

 
Figure 11. Modeling 1:3 FEC symbol interleaving using a length-3n FEC trellis model with 4-PAM and N = 1, the 

error index js and jb only increases if errors are located in codeword C. 
 

A 4-PAM statistical model is applied to a link as depicted in Figure 1 with a channel response 

h = 0.5 + 0.25z-1 - 0.25z-2. The solid line in Figure 12 reports the pre-FEC vs post-FEC BER  

(a) 

(b) 



 
Figure 12. Pre-FEC vs post-FEC BER plot for interleaved RS(1000,992,4) codes with  

h = 0.5 + 0.25z-1 - 0.25z-2. 
 

calculated using the methods described above with three interleaved RS(1000,992,4) codes. 

Behavioral simulation results are superimposed in the same figure. The dotted lines report the results 

neglecting DFE burst errors. Note that as SNR increases, long burst errors in the PHY layer 

eventually corrupt the interleaved FEC decoder, hence the burst-free performance described by the 

dotted line can never be achieved by FEC interleaving. As we increase the number of interleaved 

codewords, better post-FEC BERs are observed in Figure 12 at the cost of multiplying the overall 

system latency by the same ratio.  

 

5.2 MOD4 Precoding 

 
Figure 13. System-level diagram of a 4-PAM wireline SerDes example with a zero-forcing N-tap DFE and MOD4 

precoding. 
 

MOD4 precoding is a simple technique that can be used to minimize the impact of DFE error 

propagation. Figure 13 shows a system-level diagram of a 4-PAM wireline SerDes example with a 

zero-forcing N-tap DFE and MOD4 precoding. MOD4 precoding can be considered a multilevel 

version of the 2-PAM duo-binary precoder: at the transmitter, a MOD4 precoder encodes the 4-PAM 

signal, tk, into bk = (tk + bk-1) mod 4; the receiver decodes the DFE output, yk = (dk + dk-1) mod 4. 

 

In Figure 14 we present two examples of MOD4 precoding with h1 > 0 and a 4-PAM symbol set bk  

{0, 1, 2, 3}. Both examples use the same data pattern at precoder input tk and other important node 

values in Figure 13 are recorded in each subplot of Figure 14. In Figure 14(a) the random error 

triggers a burst of errors across 4 4-PAM symbols at the DFE output dk. As described in Section 4, 
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each non-zero error Dk in the burst alternates between opposing signs if h1 > 0. The MOD4 decoder at 

the receiver minimizes the burst length by summing the current error value Dk with Dk-1. This would 

reduce any DFE error burst into two errors at the decoder output, one at the start and another at the 

end of the burst. However, as a result we see in Figure 14(b) that a lone random error subject to the 

MOD4 decoder produces two errors at its output. 

 

  
(a) a random error triggers a burst across 4 PAM symbols 

 
(b) a random error without triggering DFE burst 

Figure 14. Two numerical examples of MOD4 precoding with h1 > 0 and bk  {0, 1, 2, 3}. 
 

The operation of MOD4 precoding can be divided into four cases based on the current and the 

previous error value: Dk = Dk-1 = 0; Dk  0 and Dk-1 = 0; Dk  0 and Dk-1  0; Dk = 0 and Dk-1  0. The 

dynamic programming procedure described by (8) should be modified to track both Dk and Dk-1 at 

each trellis node. Figure 15 shows a trellis model of 4-PAM MOD4 precoding with N = 2. The trellis 

path highlighted in the example corresponds to the numerical example in Figure 14(a). First, at k = 0, 

the link has no error and Dk = Dk-1 = 0. Correspondingly we have 
 

                                                 𝑃𝑟𝑘+1
𝑗 (𝑖) = ∑ 𝑃𝑟𝑘

𝑗(𝑖′)𝑝𝑖′𝑖𝑖′ .                                                    (26) 
 

Next, if there is a random error in the PHY layer at k = 1 where Dk  0 and Dk-1 = 0, an error is 

produced at the MOD4 decoder output,  
 

                                               𝑃𝑟𝑘+1
𝑗 (𝑖) = ∑ 𝑃𝑟𝑘

𝑗−1(𝑖′)𝑝𝑖′𝑖𝑖′ .                                                  (27) 
 

 
Figure 15. Modeling MOD4 precoding using the 4-PAM trellis model with N = 2; the trellis path in the example 

corresponds to the error values in Figure 14(a). 



 

Then, assuming the random error at k = 1 triggers an error burst in the DFE, in the next UI Dk  Dk-

1  0, the error values with opposing signs cancel each other out and generate an error-free 4-PAM 

symbol at the decoder output (assuming h1 > 0), 
 

                                                 𝑃𝑟𝑘+1
𝑗 (𝑖) = ∑ 𝑃𝑟𝑘

𝑗(𝑖′)𝑝𝑖′𝑖𝑖′ .                                                   (28) 
 

Lastly, at k = 5, a MOD4 decoder error is generated at the end of the error burst where Dk = 0 and 

Dk-1  0, 
 

                                               𝑃𝑟𝑘+1
𝑗 (𝑖) = ∑ 𝑃𝑟𝑘

𝑗−1(𝑖′)𝑝𝑖′𝑖𝑖′ .                                                  (29) 

 

 
Figure 16. Pre-FEC vs post-FEC BER plot for the RS(544,514,15) KP4 and RS(528,514,7) KR4 code with 

h = 0.6 + 0.2z-1 - 0.2z-2. 

 

The 4-PAM link depicted in Figure 13 with a channel response h = 0.6 + 0.2z-1 - 0.2z-2 is used to 

validate the proposed statistical model with MOD4 precoding. The solid line in Figure 16 reports the 

pre-FEC vs post-FEC BER calculated using MOD4 precoding with the RS(544,514,15) KP4 and 

RS(528,514,7) KR4 codes. Behavioral simulation results are superimposed in the same figure. The 

dotted and dashed lines report the results without MOD4 precoding, and in both cases the error floor 

presented at low BER is successfully removed by MOD4 precoding. If we qualitatively compare 

Figure 16 with the pre-FEC vs post-FEC BER plot in Figure 12, MOD4 precoding appears superior to 

the FEC interleaving due to its lower latency and burst-error performance at low BERs. However, this 

is only true if the link operates at low BERs where long DFE bursts are the dominant source of 

post-FEC errors. At high BERs where random errors are the dominant source, the additional errors 

created by the MOD4 decoder from individual random errors will make both the pre-FEC and 

post-FEC BER worse. 

 

 

 
Figure 17. System-level diagram showing FEC symbol distribution and 2:1 bit multiplexing at TX. 
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5.3 Bit Multiplexing 

To comply with IEEE standards, a bit multiplexer is required in high-speed wireline links, which we 

now show has an impact on post-FEC BER. Figure 17 demonstrates an example showing FEC 

symbol distribution and 2:1 bit multiplexing at the transmitter. FEC symbols C1, C2, … C544 in a 

KP4-encoded codeword are distributed to two PCS lanes (in a round-robin fashion). Then, a bit 

multiplexer in the PMA layer groups every two bits from each PCS lane (e.g. the first bit from the two 

FEC symbols C1 and C2 are C1
1 and C2

1) to form each physical-layer 4-PAM symbol. At the receiver, 

the signal flow in Figure 17 is reversed to retrieve the codeword C. As a result, even a short string of 

burst errors in the physical layer is shuffled across multiple FEC symbols thus making the post-FEC 

BER worse. A detailed explanation of modeling bit multiplexing using our proposed statistical model 

appears in [5]. 

 

 

6. Modeling Other Type of Noise Sources 
Until now, we have assumed that all pre-cursor and post-cursor ISI has been removed by TX and RX 

equalizers. In Section 6.1, we will first introduce a method to accurately consider residual ISI in BER 

estimation using our statistical model. This method serves as the basis of Section 6.2, allowing us to 

incorporate transmitter and receiver jitter into post-FEC BER estimation. 

 

6.1 Residual ISIs 

We start by considering a channel pulse response hp having both pre-cursor and post-cursor ISI. 

Assuming the equalizers are not perfectly zero-forcing, we may define h_ISIp as the equalized overall 

system pulse response with L1 residual pre-cursor ISIs, a main cursor h_ISI0 and L2 post-cursor ISIs 

by computing the convolved response for the channel, transmitter and receiver equalizers. Assuming 

an N-tap DFE with tap coefficients h_DFEp, the additive DFE error nk
dfe previously defined in (2) 

becomes 
 

                                                          𝑛𝑘
𝑑𝑓𝑒

= −∑ 𝐷𝑘−𝑝
𝑁
𝑝=1 ℎ_𝐷𝐹𝐸𝑝.                                                 (30) 

 

If we denote nk
ISI as the aggregated residual ISI amplitude at time index k, the DFE slicer input rk 

defined in (3) can be rewritten, 
 

                                                      𝑟𝑘 = 𝑏𝑘ℎ_𝐼𝑆𝐼0 + 𝑛𝑘 + 𝑛𝑘
𝑑𝑓𝑒

+ 𝑛𝑘
𝐼𝑆𝐼.                                             (31) 

 

Without considering the memory effect of the DFE, the aggregated residual ISI amplitude nk
ISI is 

 

                                             𝑛𝑘
𝐼𝑆𝐼 = ∑ 𝑏𝑝 ∙ ℎ_𝐼𝑆𝐼𝑝

−1
𝑝=−𝐿1

+∑ 𝑏𝑝 ∙ ℎ_𝐼𝑆𝐼𝑝
𝐿2
𝑝=1 .                                     (32) 

 

For a 4-PAM symbol set bk  {±3, ±1}, the pdf of nk
ISI can be obtained by enumerating all possible 

data patterns in (32). However, for an N-tap DFE the past N transmitted symbols are dictated by the 

DFE state <Dk-1, … Dk-N>, where each error value in the DFE state sets the transmitted symbol having 

the same time index. For example, if the error propagation in 4-PAM is modeled using the 16 error 

values Dk  {0T, 0M1, 0M2, 0B, ±2T, ±2M, ±2B, ±4T,±4B, ±6} as defined in Figure 3, one would be able 

to identify the past N transmitted symbols from the sign and subscript of each error value. 

Consequently, when calculating the one-step state-transition probabilities qi’i from a source state ‘i’’ 

to a sink state ‘i’ by applying (31) to each pair of valid transitions in the Markov model, if the first N 

post-cursor ISIs are equalized by a DFE, 
 



                         𝑛𝑘
𝐼𝑆𝐼 = ∑ 𝑏𝑝 ∙ ℎ_𝐼𝑆𝐼𝑝

−1
𝑝=−𝐿1

+∑ 𝑏𝑝 ∙ ℎ_𝐼𝑆𝐼𝑝
𝑁
𝑝=1 + ∑ 𝑏𝑝 ∙ ℎ_𝐼𝑆𝐼𝑝

𝐿2
𝑝=𝑁+1 ,                     (33) 

 

where the 4-PAM symbol set bk in the second term can only take up a single value from {±3, ±1} that 

is dictated by the source DFE state at each time index k  {1, 2 … N}. 

 

Subject to the data-dependent residual ISIs, we can no longer apply state lumping to produce a 

simplified 4N-state Markov model with Dk  {0, ±2, ±4, ±6}. However, we can still simplify the 

4-PAM trellis model by ignoring all the paths that have unlikely ±4 and ±6 error events. This results 

in a 10N-state Markov model with Dk  {0T, 0M1, 0M2, 0B, ±2T, ±2M, ±2B}. The same procedures 

discussed in Section 3 and 4 are used to compute post-FEC BER using the two-layer Markov model. 

 

6.2 Jitter 

RX jitter creates a sampling offset for each sampled point of the unit pulse response. This would 

make the equalized overall system pulse response h_ISIp previously defined in Section 6.1 becoming 

a function of RX sampling jitter Φ RX. The same procedures described by (30-33) can be applied to 

calculate the aggregated ISI pdf and thus estimate BER. RX jitter can be handled straightforwardly by 

convolving the BER at each sampling offset Φ RX with the RX jitter distribution. However, TX jitter is 

more difficult to model since it is filtered and possibly amplified by the channel ISIs. Thus, our 

primary focus is the modeling of TX jitter in this section. 

 

The ISI analysis in Section 6.1 calculates the total ISI distribution by enumerating all possible symbol 

values bk for each non-zero residual ISI cursor. The unit-pulse response is used to generate the ISI pdf 

for each cursor and the results of each cursor are convolved to obtain the total ISI pdf with 

uncorrelated transmitted data. However, transmitter jitter modulates the rising/falling edge of each 

data transition thus creates a correlation between neighboring transmitted symbols. If the link is 

subject to TX jitters, convolving the pdf of each ISI cursor based on pulse response can no longer be 

applied to finding the total ISI distribution. Ref [6] proposed a method to account for jittered ISIs 

using a segment-based analysis as shown in Figure 18. Segments are defined as a jittery transition 

from the right half-UI of a symbol to the left half-UI of the subsequent symbol. Since every data  

 

 
Figure 18. Calculating individual ISI pdf using the segment pulse response subject to TX jitter [6]. 



transition occurs in the middle of a segment, there is no jitter correlation between neighboring 

segments, and the pdf of each residual ISI in the presence of jitter derived can be found from segment 

pulse responses, as shown in Figure 18, then convolved to obtain the overall ISI pdf. 

 

The segment-based analysis can accurately estimate ISI statistics in the presence of jitter by tracking 

each TX transition, where the step-amplitude of each segment’s transition equals the distance between 

neighboring PAM symbols. However, the method in [6] works with non-return-to-zero segment pulse 

responses, which makes it difficult to use with 4-PAM where some waveform segments may have DC 

offset. Moreover, we seek a method compatible with conventional pulse-response-based simulations 

and measurements. Therefore, in this section we present an alternative statistical method to 

incorporate transmitter jitter into the post-FEC BER estimation. 

 

In Figure 19, we propose a new methodology to estimate the data-dependent ISI distribution through 

jittered half-UI pulses that are derived from the standard unit-pulse response. By dividing each 

segment pulse into two half-UI pulses, we can apply conventional pulse-response-based simulation to 

efficiently compute the ISI pdf, including the DC component, of each segment by linear superposition 

of the two half-UI pulse responses. Figure 19 shows the decomposition of three segment pulses that 

are subject to early, on-time and late TX jitter, respectively. Taking the first subplot as an example 

where the jitter phase Φ1 < 0 is early, the jittered segment pulse representing a transition from -1 to 1 

can be decomposed into two jittered half-UI pulses that are both subject to a phase shift on the same 

transition edge by Φ1. 

 

 
Figure 19. Estimating the segmented ISI pdf through jittered half-UI pulses. 



At the receiver we define HL(Φ, Nseg) and HR(Φ, Nseg) being the left half-UI and right half-UI pulse 

response of the Nseg
th segment. Both half-UI responses are derived from the standard unit pulse 

response and are a function of TX jitter Φ and the segment index Nseg. Assuming a transition from bk-1 

to bk in the Nseg
th segment, the segment pulse response J(Φ, Nseg, bk-1, bk) can be represented by 

 

                                   𝐽(𝛷, 𝑁𝑠𝑒𝑔, 𝑏𝑘−1, 𝑏𝑘) = 𝑏𝑘−1𝐻𝑅(𝛷, 𝑁𝑠𝑒𝑔) + 𝑏𝑘𝐻𝐿(𝛷,𝑁𝑠𝑒𝑔).                         (34) 
 

With an arbitrary TX jitter pdf pΦ (Φ), the jittered transition ISI pdf of the Nseg
th segment pISI(x, Nseg, 

bk-1, bk) can be computed by 
 

                                    𝑝𝐼𝑆𝐼(𝑥, 𝑁𝑠𝑒𝑔, 𝑏𝑘−1, 𝑏𝑘) = ∑ [𝑝𝛷(𝛷)]𝛷𝜖{𝐽(𝛷,𝑁𝑠𝑒𝑔 ,𝑏𝑘−1,𝑏𝑘)=𝑥}
.                           (35) 

 

Once the transition ISI pdf pISI(x, Nseg, bk-1, bk) of each segment is calculated, we can use this 

information to calculate the aggregated ISI pdf pAGG(x, Nseg, bk-1, bk) in each segment. Figure 20 shows 

an example on finding the aggregated ISI pdf for a link having 1 pre-cursor ISI and 4 post-cursor ISIs 

using the 2-PAM symbol set bk  {0, 1}. The link has a 2-tap DFE equalizing the first two 

post-cursor ISIs, and we assume the current DFE state assigns 0 and 1 to the two post-cursor ISIs, 

respectively. For any two neighboring segments, the transmitted half symbol within the same UI must 

be identical. In Figure 20, starting with segment 4, we first average the transition ISI pdfs 

pISI(x, Nseg, bk-1, bk) ending with the same bk, 
 

                                         𝑝𝐴𝑉𝐺(𝑥, 𝑁𝑠𝑒𝑔, 𝑏𝑘) = ∑ 𝑝𝐼𝑆𝐼(𝑥,𝑁𝑠𝑒𝑔, 𝑏𝑘−1, 𝑏𝑘)𝑏𝑘−1
.                                  (36) 

 

Next, in segment 3 where we have a transition from bk to bk+1, the accumulated ISI pdf pAGG(x, Nseg-1, 

bk, bk+1) is obtained by convolving the transition ISI pdf pISI(x, Nseg-1, bk, bk+1) with the averaged ISI 

pdf ending with the same symbol bk, 
 

                  𝑝𝐴𝐺𝐺(𝑥,𝑁𝑠𝑒𝑔 − 1, 𝑏𝑘 , 𝑏𝑘+1) = 𝑝𝐴𝑉𝐺(𝑥, 𝑁𝑠𝑒𝑔, 𝑏𝑘) ∗ 𝑝𝐼𝑆𝐼(𝑥, 𝑁𝑠𝑒𝑔 − 1, 𝑏𝑘 , 𝑏𝑘+1).            (37) 
 

We can then average the accumulated ISI pdfs in segment 3 ending with the same bk+1, 
 

                                 𝑝𝐴𝑉𝐺(𝑥, 𝑁𝑠𝑒𝑔 − 1, 𝑏𝑘+1) = ∑ 𝑝𝐴𝐺𝐺(𝑥, 𝑁𝑠𝑒𝑔 − 1, 𝑏𝑘 , 𝑏𝑘+1)𝑏𝑘
.                          (38) 

 

 
Figure 20. Finding the aggregated ISI pdf for a link having 1 pre-cursor ISI and 4 post-cursor ISIs using 2-PAM bk 

 {0, 1}; the link has a 2-tap DFE equalizing the first two post-cursor ISIs, and assuming the current DFE state 

assigns 0 and 1 to the two post-cursor ISIs, respectively. 



In Figure 20, the aggregated ISI pdf of each segment can be computed by applying (37) and (38) 

recursively until reaching segment 0. Note that due to the memory effect of the DFE, in the example 

certain paths from segment 0 to segment 3 are removed to make sure that 0 and 1 are assigned to the 

1st and 2nd post-cursor ISI, respectively. 

 

 

7. Experimental Verification  

7.1 Device Under Test 

We have measured a 4-PAM 60 Gb/s SerDes link fabricated in 7 nm FinFET technology. The overall 

system-level block diagram of the link is plotted in Figure 21. Specifically, subject to a 1Vppd 

maximum output swing, the transmitter has a programmable 3-tap FIR filter to mitigate both 

pre-cursor and post-cursor ISI. At the receiver, a 13-tap FFE with 5 pre-cursor taps and 7 post-cursor 

taps is adaptively optimized to cancel ISIs in the channel. A 2-tap DFE equalizes the first two 

post-cursor ISIs. A statistical unit on-chip monitors and stores BER for PRBS31 data in memory. 

Both the RS(544, 514, 15) KP4 and RS(528, 514, 7) KR4 codes in GF(210) are implemented in the 

FEC encoder/decoder. 

 

 
Figure 21.  System-level block diagram and test setup of the 60 Gb/s SerDes link [7]. 

 

7.2 Test Setup 

The test bench setup for the 60 Gb/s SerDes link is also superimposed in Figure 21. A FlexTC 

temperature forcing system from Mechanical Devices is used to keep the device at room temperature 

with ±0.2 °C accuracy. Approximately Gaussian-distributed crosstalk noise is coupled to the channel 



through a crosstalk injection board. Different measurement cases are established by varying the 

channel insertion loss using an ARTEK CLE1000 variable ISI channel. The corresponding overall 

pulse responses (including TX FIR, TX driver, channel, RX CTLE and ADC) for two different cases 

are also tabulated in Figure 21. 

 

In case A, the overall insertion loss is 29 dB. We intentionally configure the CTLE in this case to 

over-equalize so that the second post-cursor ISI of the overall pulse response becomes large but 

negative. DFE error propagation is particularly bad in this case compared with all-positive post-cursor 

ISIs. With large negative DFE tap weights, a measurable floor is expected in the post-FEC BER 

where burst errors due to error propagation in the DFE dominate. In this region, we expect to see a 

plot of post- vs. pre-FEC BER exhibit a slope of 1. In case B, the system has a lower overall insertion 

loss of 24 dB so that the KR4 code can provide adequate coding gain at low BER. 

 

Figure 22.  Measured and theoretical pre-FEC vs post-FEC BER plot for RS(528, 514, 7) and RS(544, 514, 15) 

code. 

 

7.3 Experimental Results 

In Figure 22, measured results for both the RS(544, 514, 15) KP4 and RS(528, 514, 7) KR4 codes are 

reported. Gray encoding is enabled to reduce BER. Different data points are generated by varying the 

amount of Gaussian-like crosstalk injected to the channel. To minimize the impact of jitter, all data 

points are measured by locking the CDR phase and DFE tap weights once the DFE tap weights’ LMS 

adaptation has converged. The link is subject to a TX and RX random jitter both being 160fsrms. The 

curves generated by our statistical model are also superimposed in Figure 22, treating the crosstalk as 

additive white Gaussian noise.  

 

All data points in Figure 22 are measured down to a post-FEC BER of 10-11. Good consistency is 

observed between the theoretical curves and measured results. Moreover, for case A where a large 

amount of error propagation is present, our statistical model can properly predict the error floor with 

the RS(528, 514, 7) KR4 code. Importantly, our statistical model accurately predicts the measured 

transition between the two regions for the KR4 and KP4 FEC in case A. The model indicates that for 

the KP4 FEC, in order to ensure a post-FEC BER of 10-18, a pre-FEC BER of 10-4 is adequate for case 

B, whereas a pre-FEC BER of 10-10 is required for case A, conclusions that would have been almost 
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impossible to draw using pre-existing methods. Our statistical model can be used to quantify the 

precise pre-FEC BER required to achieve very low post-FEC BER depending on the channel and 

equalizer. 

 

 

8. Conclusion  
We presented a statistical approach that accurately estimates post-FEC BER for high-speed wireline 

links subject to DFE burst errors and other important noise sources. The proposed statistical approach 

allows efficient aggregation of PAM-symbol and FEC-symbol errors through a series of techniques 

with controllable analytical accuracy in post-FEC BER estimation. This approach can simulate 

wireline links using different equalization techniques/coding schemes and subject to various noise 

sources. In addition, a novel statistical ISI analysis method is presented to calculate the 

data-dependent ISI distribution through jittered half-UI pulses derived from the standard unit pulse 

response. While this paper demonstrates the statistical analysis method in wireline context, the 

method is general and can be applied to model other communication systems having memory effects. 
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