Welcome to

DESIGNCON® 2020 WHERE THE CHIP MEETS THE BOARD

Expo

Conference

January 28 - 30, 2020

January 29 - 30, 2020

Santa Clara Convention Center

#DesignCon

A Statistical Modeling Approach for FEC-Encoded High-Speed Wireline Links

Ming Yang, University of Toronto Shayan Shahramian, Huawei Canada Hossein Shakiba, Huawei Canada Henry Wong, Huawei Canada Peter Krotnev, Huawei Canada Anthony Chan Carusone, University of Toronto

#DesignCon

- Motivation 1
- 2. Statistical Model for BER Estimation
 - Modeling DFE Error Propagation in 2-PAM а.
 - 4-PAM Statistical Model b.
 - c. Post-FEC BER Estimation for Non-Binary Linear Block Codes
- 3. Common Coding Techniques in Wireline Links
 - Interleaved FEC Code а.
 - b. MOD4 Precoding
- 4. Modeling Other Type of Noise Sources
 - **Residual ISI** а.
 - b. Jitter
- 5. Experimental Verification
- 6. Conclusion

3

Motivation

- We want to confirm post-FEC BERs in simulation down to 10⁻¹⁵ – 10⁻²¹ quickly and accurately
- To be accurate, the method must capture the statistics of errors
- Bit or symbol error occurrences are correlated; they sometimes occur in bursts due to DFE error propagation, low-frequency clock jitter, supply noise, etc.
- Error statistics strongly affect the performance of FEC

Example: Cases A & B are two different channels and DFE tap weights resulting in very different post-FEC BER for the same pre-FEC BER

Signal Integrity Analysis Paradigms

Monte Carlo

- Simulate with random data, random noise, and track the state of the transmitter, channel, and receiver, including FEC encoder/decoder, as the simulation progresses
 - o Captures how "memory" in the link ultimately effects the error statistics
 - Impractical to capture post-FEC BER of 10⁻¹⁵ 10⁻²¹

Statistical

- Determine the probability of pre-FEC errors
 - Typical techniques consider ISI and other statistical correlations in the transceiver and channel
 - Accurate even for low probabilities
 - The results generally do not capture the time-correlation of error events
- Apply the FEC-limit paradigm
 - e.g. using a particular code, a pre-FEC BER of 10⁻⁵ produces a post-FEC BER of 10⁻¹⁸
 - Does not account for the fact that FEC performance depends on the time-correlation of errors

This Work

This Work

• This work seeks Statistical methods to address these two shortcomings:

- Capture time-correlation of error events (focusing on DFE errors)

- Capture how those error statistics impact FEC performance

Statistical

- Determine the probability of pre-FEC errors
 - Typical techniques consider ISI and other statistical correlations in the transceiver and channel
 - Accurate even for low probabilities
 - The results generally do not capture the time-correlation of error events
- Apply the FEC-limit paradigm
 - e.g. using a particular code, a pre-FEC BER of 10^{-5} produces a post-FEC BER of 10^{-18}
 - Does not account for the fact that FEC performance depends on the time-correlation of errors

6

- 1. Motivation
- 2. Statistical Model for BER Estimation
 - a. Modeling DFE Error Propagation in 2-PAM
 - b. 4-PAM Statistical Model
 - c. Post-FEC BER Estimation for Non-Binary Linear Block Codes
- 3. Common Coding Techniques in Wireline Links
 - a. Interleaved FEC Code
 - b. MOD4 Precoding
- 4. Modeling Other Type of Noise Sources
 - a. Residual ISI
 - b. Jitter
- 5. Experimental Verification
- 6. Conclusion

Markov Model for DFE Error Propagation

• 2-Tap DFE Example

2-tap DFE, 2PAM [1 -1] Error distance: D_k ∈ [2, 0, -2] 9 possible states: (0,2) (0,-2) (2,0) (-2,0) (2,2) (2,-2) (-2,2) (-2,-2) (0,0)

States are defined as possible combinations of error distance (D_{k-1}, D_{k-2})

8

Markov Model for DFE Error Propagation

Simplified Model using State Lumping

- Reduced complexity due to symmetry of the situation
- Fine if we don't care about the polarity of the bit error

q

Markov Model – State Transition Probability

Markov Model – State Transition Probability

Markov Model – State Transition Probability

Finding Error Pattern Probability in PAM Trellis

Example: Finding the probability of a specified error pattern

Transmit	1	1	-1	1	-1				
Detect	1	-1	1	1	-1				
Error	0	1	1	0	0				
Error State	rror State $1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 1$								

 Error Patter Probability: P₁₃₄₂₁=P(1)·P_{1,3}·P_{3,4}·P_{4,2}·P_{2,1}

Probability we are initially in state #1

Finding Error Pattern Probability in PAM Trellis

• Example: Finding the probability of a specified error pattern

Transmit	1	1	-1	1	-1				
Detect	1	-1	1	1	-1				
Error	0	1	1	0	0				
Error State $1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 1$									

 Error Patter Probability: P₁₃₄₂₁=P(1)·P_{1,3}·P_{3,4}·P_{4,2}·P_{2,1}

Probability we are initially in state #1

- 1. Motivation
- 2. Statistical Model for BER Estimation
 - a. Modeling DFE Error Propagation in 2-PAM
 - b. 4-PAM Statistical Model
 - c. Post-FEC BER Estimation for Non-Binary Linear Block Codes
- 3. Common Coding Techniques in Wireline Links
 - a. Interleaved FEC Code
 - b. MOD4 Precoding
- 4. Modeling Other Type of Noise Sources
 - a. Residual ISI
 - b. Jitter
- 5. Experimental Verification
- 6. Conclusion

4-PAM Markov Model

- All states having the same error magnitude are aggregated together by applying weak lumpability, D_k ∈ {0, ±2, ±4, ±6}
- More DFE error states are needed in the Markov Model

A receiver eye diagram indicating all possible symbol-detection outcomes for a link communicating Grey-coded 4-PAM symbols $b_k \in \{\pm 3, \pm 1\}$

4-PAM Trellis Model

±4 and ±6 events are unlikely at 10⁻¹⁵ post-FEC BER

Trellis example of a 1-Tap DFE for a 4-bit codeword with all possible paths ending in state ±2 (i=2)

Simplified trellis by ignoring all the dotted paths that have unlikely ±4 and ±6 error events

17

Finding Pre-FEC BER

- Over a sequence of *n* bits, the probability of:
 - 1 bit error is $Pr_n(1)$
 - 2 bit errors is $Pr_n(2)$
 - etc...
- Then, we can calculate the BER over a *n*-bit codeword

$$BER = \frac{1}{n} \sum_{j=1}^{n} j \cdot \Pr_n(j)$$

 In general, for L-PAM and N-tap DFE, traversing a length-n trellis exhaustively requires computations that are O(L^NLⁿ)

Example of Traversing Trellis

Example: 2-tap DFE, 8-bit codeword, 4PAM

• Finding $Pr_n(1)$, the probability of all trellis paths having exactly 1 bit error

January 28–30, 2020

Probability Model - Finding Pre-FEC BER

Example: 2-tap DFE, 8-bit codeword, 4PAM

Case 1: error at 1st stage . $Pr_n(1) =$

 $p_{13}p_{32}p_{21}p_{11}+p_{23}p_{32}p_{21}p_{11}+$ $p_{34}p_{42}p_{21}p_{11}+p_{44}p_{42}p_{21}p_{11}$

- Case 3: error at 3rd stage
- $Pr_n(1) =$

 $p_{11}p_{11}p_{13}p_{32}+p_{21}p_{11}p_{13}p_{32}+$ $p_{32}p_{21}p_{13}p_{32}+p_{42}p_{21}p_{13}p_{32}$

- (#1 0,0 $\binom{\#1}{0,0}$ (#1 0,0 #1 0,0 #2 0,1 (#2 0,1 (#2 0,1 #2 #2 0,1 #3 1,0 #3 1,0 #3 1,0 (#3 1,0 (#4 #4 1,1 #4 #4 #4 Steady-Stat 1st 4PAM 2nd 4PAM 4th 4PAM 3rd 4PAM I.C. k=1k=2 k=3 k=4
- Case 2: error at 2nd stage $Pr_n(1) =$

 $p_{11}p_{13}p_{32}p_{21}+p_{21}p_{13}p_{32}p_{21}+$ $p_{32}p_{23}p_{32}p_{21}+p_{42}p_{23}p_{32}p_{21}$

Case 4: error at 4th stage . $Pr_n(1) =$ $p_{11}p_{11}p_{11}p_{13}+p_{21}p_{11}p_{11}p_{13}+$

 $p_{32}p_{21}p_{11}p_{13}+p_{42}p_{21}p_{11}p_{13}$

January 28-30, 2020

Inefficiency of Exhaustive Computations

Case 1:	$Pr_{n}(1) = p_{13}p_{32}p_{21}p_{11} + p_{23}p_{32}p_{21}p_{11} + p_{34}p_{42}p_{21}p_{11} + p_{44}p_{42}p_{21}p_{11} + p_{44}p_{42}p_{42}p_{21}p_{11} + p_{44}p_{42}p_{42}p_{21}p_{11} + p_{44}p_{42}p_{42}p_{21}p_{11} + p_{44}p_{42}p_{42}p_{21}p_{11} + p_{44}p_{42}p$
Case 2:	$p_{11}p_{13}p_{32}p_{21}+p_{21}p_{13}p_{32}p_{21}+p_{32}p_{23}p_{32}p_{21}+p_{42}p_{23}p_{32}p_{21}+$
Case 3:	p ₁₁ p ₁₁ p ₁₃ p ₃₂ +p ₂₁ p ₁₁ p ₁₃ p ₃₂ +p ₃₂ p ₂₁ p ₁₃ p ₃₂ +p ₄₂ p ₂₁ p ₁₃ p ₃₂ +
Case 4:	<mark>₽₁₁₽₁₁₽₁₁₽₁₃+₽₂₁₽₁₁₽₁₃+₽₃₂₽₂₁₽₁₁₽₁₃+₽₄₂₽₂₁₽₁₁₽₁₃</mark>

- Computations required to repeat this for $Pr_4(2)$, $Pr_4(3)$, $Pr_4(4)$ errors
- Pre-FEC BER = $Pr_n(1) + 2 Pr_n(2) + 3 Pr_n(3) + 4 Pr_n(4)$
- Not practical to enumerate all error patterns for a long codeword
- Some multiplications are performed twice
- Trellis dynamic programming systematically stores these intermediate results so that the same multiplication is only performed once

- 1. Motivation
- 2. Statistical Model for BER Estimation
 - a. Modeling DFE Error Propagation in 2-PAM
 - b. 4-PAM Statistical Model
 - c. Post-FEC BER Estimation for Non-Binary Linear Block Codes
- 3. Common Coding Techniques in Wireline Links
 - a. Interleaved FEC Code
 - b. MOD4 Precoding
- 4. Modeling Other Type of Noise Sources
 - a. Residual ISI
 - b. Jitter
- 5. Experimental Verification
- 6. Conclusion

Finding Post-FEC BER of Long Block Codes

- We wish to find the BER at the output of a FEC decoder operating on GF(2^m), m > 1
 - e.g. many of the standard wireline codes are Reed Solomon codes of this type
- Brute force approach would catalog all possible error patterns which are correctable
- Find the probability of these error patterns

Example below corresponds to a 2-tap DFE; hence, 4-state PAM trellis

- Example: RS(544, 514, 15) KP4 FEC on GF(2¹⁰)
 - o Each block is 5440 bits long
 - o Can correct up to 15 FEC symbol errors
- Number of trellis paths to compute is intractable

January 28-30, 2020

The "FEC Trellis"

Example above: 1-tap DFE

- Construct a new trellis where each stage corresponds to an entire FEC symbol rather than a PAM symbol "Time aggregation" of a Markov model
 - ✓ Much shorter "FEC Trellis"
- Branch probabilities in the FEC Trellis can be found by analysis of the short length-m/2 trellis above

Finding Branch Probabilities in the FEC Trellis

Example above: 1-tap DFE, m = 6

Thus, each FEC symbol is 3 4-PAM symbols

25"ANNIVERSARY

- The FEC trellis has a higher radix if we need to keep track of the number of pre-FEC bit errors
 - Example:

$$a_{12}^1 = \Pr_{m/2}^1$$

 \equiv probability of going from state 1 (no error in DFE) to state 2 (error in DFE) traversing a FEC symbol (duration 3 PAM-4 symbols in this case) experiencing exactly one bit error

- 1. Motivation
- 2. Statistical Model for BER Estimation
 - a. Modeling DFE Error Propagation in 2-PAM
 - b. 4-PAM Statistical Model
 - c. Post-FEC BER Estimation for Non-Binary Linear Block Codes
- 3. Common Coding Techniques in Wireline Links
 - a. Interleaved FEC Code
 - b. MOD4 Precoding
- 4. Modeling Other Type of Noise Sources
 - a. Residual ISI
 - b. Jitter
- 5. Experimental Verification
- 6. Conclusion

Interleaved FEC Code

- Interleaving FEC code blocks is a simple way to spread bursts across multiple code blocks, and thereby improve burst-error-correction performance
- Cost is additional transceiver memory and latency

Interleaved FEC Code

- Interleaving FEC code blocks is a simple way to spread bursts across multiple code blocks, and thereby improve burst-error-correction performance
- Cost is additional transceiver memory and latency

Statistical Analysis of Time Interleaved Codes

- Analysis of a 3:1 interleaved code of length n requires analysis of a length 3n trellis
- Results confirm the improved burst-error tolerance offered by interleaving

Pre-FEC vs post-FEC BER plot for interleaved RS(1000,992,4) codes with $h = 0.5 + 0.25z^{-1} - 0.25z^{-2}$.

- 1. Motivation
- 2. Statistical Model for BER Estimation
 - a. Modeling DFE Error Propagation in 2-PAM
 - b. 4-PAM Statistical Model
 - c. Post-FEC BER Estimation for Non-Binary Linear Block Codes
- 3. Common Coding Techniques in Wireline Links
 - a. Interleaved FEC Code
 - b. MOD4 Precoding
- 4. Modeling Other Type of Noise Sources
 - a. Residual ISI
 - b. Jitter
- 5. Experimental Verification
- 6. Conclusion

Impact of MOD4 (1+D) Precoding

- (1+D) precoding converts error bursts into only 2 errors: one at the start and one at the end of the burst
- Very beneficial for long bursts
 - Bursts spanning 3 or more FEC symbols turn into 0 only 2 FEC symbol errors

Precoder Input t _k	0	2	3	1	1	0	2
Precoder Output b ⊧	0	2	1	0	1	3	3
DFE Output d k	0	3	0	1	0	3	3
Error Value d ĸ- b ĸ	0	1	-1	1	-1	0	0
Decoder Output y k	0	3	3	1	1	3	2

- Unfortunately, this also applies to very short bursts
- Bursts of length 1 become 2 bit errors
 - o Some isolated random errors (without DFE error propagation) may corrupt 2 FEC symbols

Precoder Input t k	0	2	3	1	1	0	2
Precoder Output b k	0	2	1	0	1	3	3
DFE Output d k	0	3	1	0	1	3	3
Error Value d k- b k	0	1	0	0	0	0	0
Decoder Output y k	0	3	0	1	1	0	2

31

Statistical Analysis of (1+D) Precoding

- Statistical analysis method allows us to identify probability of all error patterns
- (1+D) precoding maps each error pattern to a different error patterns

January 28-30, 2020

() informamarkets

32

Example Analysis Including (1+D) Precoding

- Note that for the same SNR the pre-FEC BER is worse with precoding than without precoding
- However, precoding eliminates the error floor imposed by long burst errors

Pre-FEC vs post-FEC BER plot for the RS(544,514,15) KP4 and RS(528,514,7) KR4 code with $h = 0.6 + 0.2z^1 - 0.2z^2$

- 1. Motivation
- 2. Statistical Model for BER Estimation
 - a. Modeling DFE Error Propagation in 2-PAM
 - b. 4-PAM Statistical Model
 - c. Post-FEC BER Estimation for Non-Binary Linear Block Codes
- 3. Common Coding Techniques in Wireline Links
 - a. Interleaved FEC Code
 - b. MOD4 Precoding
- 4. Modeling Other Type of Noise Sources
 - a. Residual ISI
 - b. Jitter
- 5. Experimental Verification
- 6. Conclusion

- The statistical model discussed thus far assume perfect ISI equalization
 - $\circ~$ Only AWGN noise and DFE feedback error are considered
- Allowing us to lump states having the same error values
- Certain conditions must be satisfied to perform state lumping [1], only true without residual ISI

- Residual ISI can be treated as an additive noise
 - $\circ r_k = b_k h_0 + n_k^{dfe} + n_k^{random} + n_k^{ISI}$
- State lumping is no longer possible in the presence of residual ISI
 - o Can only work with the original Markov model

- 1. Motivation
- 2. Statistical Model for BER Estimation
 - a. Modeling DFE Error Propagation in 2-PAM
 - b. 4-PAM Statistical Model
 - c. Post-FEC BER Estimation for Non-Binary Linear Block Codes
- 3. Common Coding Techniques in Wireline Links
 - a. Interleaved FEC Code
 - b. MOD4 Precoding
- 4. Modeling Other Type of Noise Sources
 - a. Residual ISI
 - b. Jitter
- 5. Experimental Verification
- 6. Conclusion

Jitter

- Without TX jitter, total ISI distribution can be obtained by convolving the ISI pdf of each UI
 - ✓ ISI pdf of each UI is independent of others, convolution allowed
- TX jitter modulates the rising/falling edge of each data transition
 - ISI distribution of each UI is dependent with the neighboring UI
 - o Cannot use convolution to obtain total ISI

Jitter

Adapting segment-based analysis [3]

 Segments are defined as a jittery transition from the right half-UI of a symbol to the left half-UI of the subsequent symbol

 Every data transition occurs in the middle of a segment

- ISI distribution of each segment now is independent with other segments
- ✓ Convolution allowed

- 1. Motivation
- 2. Statistical Model for BER Estimation
 - a. Modeling DFE Error Propagation in 2-PAM
 - b. 4-PAM Statistical Model
 - c. Post-FEC BER Estimation for Non-Binary Linear Block Codes
- 3. Common Coding Techniques in Wireline Links
 - a. Interleaved FEC Code
 - b. MOD4 Precoding
- 4. Modeling Other Type of Noise Sources
 - a. Residual ISI
 - b. Jitter
- 5. Experimental Verification
- 6. Conclusion

Test Bench Setup

- A 4-PAM 60 Gb/s full transceiver fabricated in 7 nm FinFET [3]
- Two test cases:
 - o Case A: 29 dB insertion loss
 - o Case B: 24 dB
- Inject Gaussian-like crosstalk
- CDR phase locked after adaptive equalization to minimize random jitter

January 28–30, 2020

Measured Results

- Measured results for both the RS(544, 514, 15) KP4 and RS(528, 514, 7) KR4 code are reported
- Different data points are generated by varying the amount of Gaussian-like crosstalk injected to the channel
- A measurable floor is expected in the post-FEC BER where burst errors due to error propagation in the DFE dominate

Measured and theoretical pre-FEC vs post-FEC BER plot for RS(528, 514, 7) and RS(544, 514, 15) code

- 1. Motivation
- 2. Statistical Model for BER Estimation
 - a. Modeling DFE Error Propagation in 2-PAM
 - b. 4-PAM Statistical Model
 - c. Post-FEC BER Estimation for Non-Binary Linear Block Codes
- 3. Common Coding Techniques in Wireline Links
 - a. Interleaved FEC Code
 - b. MOD4 Precoding
- 4. Modeling Other Type of Noise Sources
 - a. Residual ISI
 - b. Jitter
- 5. Experimental Verification
- 6. Conclusion

Conclusion

- We presented a statistical approach that accurately estimates post-FEC BER for high speed wireline links subject to DFE burst errors and other important noise sources
- Using this approach we can accurately predict post-FEC BER and observe:
 - o The "error floor" imposed by burst errors
 - The positive impact of time interleaving and (1+D) precoding on the burst-error-performance of codes
- The method was validated using a prototype 60 Gb/s 4-PAM link with KP4 and KR4 standard Reed-Solomon codes

References

- 1. M. Yang, S. Shahramian, H. Shakiba, H. Wong, P. Krotnev and A. Chan Carusone, "Statistical BER Analysis of Wireline Links With Non-Binary Linear Block Codes Subject to DFE Error Propagation," in *IEEE Transactions on Circuits and Systems I: Regular Papers*.
- 2. B. Casper *et al.*, "Future Microprocessor Interfaces: Analysis, Design and Optimization," 2007 IEEE Custom Integrated Circuits Conference, San Jose, CA, 2007, pp. 479-486.
- 3. M-A. Lacroix *et al.*, "A 60Gb/s PAM-4 ADC-DSP transceiver in 7nm CMOS with SNR-based adaptive power scaling achieving 6.9pJ/b at 32dB loss," *2019 IEEE International Solid State Circuits Conference (ISSCC)*, San Francisco, CA, 2019.
- 4. A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering. Prentice Hall, 2007.
- 5. R. Kennedy and B. Anderson, "Recovery Times of Decision Feedback Equalizers on Noiseless Channels," in *IEEE Transactions on Communications*, vol. 35, no. 10, pp. 1012-1021, October 1987.
- 6. C. D. Meyer, "Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems," *SIAM Rev.*, vol. 31, no. 2, pp. 240–272, 1989.
- 7. X.-R. Cao, Z. Y. Ren, S. Bhatnagar, M. Fu, and S. Marcus, "A time aggregation approach to Markov decision processes," *Automatica*, vol. 38, pp. 929–943, 2002.

January 28-30, 2020

Thank you!

QUESTIONS?

