Crosstalk-Aware Transmitter Pulse-Shaping for Parallel Chip-to-Chip Links

Mike Bichan, Anthony Chan Carusone

Department of Electrical and Computer Engineering
University of Toronto

ISCAS 2007
Board-to-Board Channel

- Chips
- Daughtercards
- Connectors
- Board
Characterize the Channel

Chip1

\[Z_0 = 50 \, \Omega \]

Chip2

Through crosstalk 1

Through crosstalk 2

Voltage (V)

Time (ns)

Mike Bichan, Anthony Chan Carusone
Crosstalk-Aware Equalization Over Chip-to-Chip Links
System Model

Crosstalk-Aware Equalization Over Chip-to-Chip Links

Mike Bichan, Anthony Chan Carusone

5 / 20
Conventional Solutions

- **slew-rate limiting**
 - pro: simple
 - con: not good when ISI is severe

- **crosstalk cancellation** in addition to transmit filter G
 - pro: good performance
 - con: hardware cost

Chip-to-Chip Channel

- Transmit Filter

(many links in parallel)
Example: Different Pulse Shapes

- **Square Pulse**: 1 UI, 1 total tap, 1 tap per UI
- **Pre-emphasis Pulse**: 1 UI, 2 total taps, 1 tap per UI
- **Fractionally-spaced**: 1 UI, 6 total taps, 3 taps per UI
Example: Different Pulse Shapes

- **Square Pulse**
 - 1 UI
 - 1 total tap
 - 1 tap per UI

- **Pre-emphasis Pulse**
 - 1 UI
 - 2 total taps
 - 1 tap per UI

- **Fractionally-Spaced Pulse**
 - 1 UI
 - 6 total taps
 - 3 taps per UI
Example: Different Pulse Shapes

- Square pulse:
 - 1 total tap
 - 1 tap per UI

- Pre-emphasis pulse:
 - 2 total taps
 - 1 tap per UI

- Fractionally-spaced pulse:
 - 6 total taps
 - 3 taps per UI
Definition

\[E2C = \frac{\text{crosstalk-free eye opening}}{\text{maximum possible crosstalk}} \]
Find E2C for each Pulse Shape

PRBS7

\[E2C = \frac{485 \text{ mV}}{2 \times 157 \text{ mV}} = 1.54 \]

Repeat calculation for all candidate pulse shapes
Maximum E2C for Various Filter Types at 2.7 Gb/s

Increasing E2C

Taps per UI

Total Taps

E2C

Tap Delay (in UI)

1/6

1/5

1/4

1/3

1/2

1
Increasing Total Taps

Taps per UI vs. Total Taps

E2C

Tap Delay (in UI)

Mike Bichan, Anthony Chan Carusone
Crosstalk-Aware Equalization Over Chip-to-Chip Links
Increasing Granularity

Graph:
- **Y-axis:** Taps per UI
- **X-axis:** Total Taps
- **Legend:** E2C
- **Annotations:**
 - 1/6, 1/5, 1/4, 1/3, 1/2, 5.5, 5, 4.5
- **Highlights:**
 - Green arrow indicating increasing granularity
 - Red dots at Taps per UI: 2, 3, 4, 5, 6

Equation:
- **Total Taps:** \(T \)
- **Taps per UI:** \(T_{\text{per UI}} \)

Equation Details:
- **Tap Delay:** \(\text{Tap Delay (in UI)} \)

Author:
- Mike Bichan, Anthony Chan Carusone

Title:
- Crosstalk-Aware Equalization Over Chip-to-Chip Links
Increasing Taps per UI

Crosstalk-Aware Equalization Over Chip-to-Chip Links
Hardware Proof-of-Concept

ParBERT

Power Combiner

Power Combiner

Power Combiner

Chip-to-Chip Channel

Oscilloscope
Channel Introduces ISI and Crosstalk

- 2.7 Gb/s
- PRBS: $2^{31} - 1$

- input to channel
- square pulse

- output from channel
- no aggressors

- output from channel
- two aggressors
Filter Opens the Eye

- output from channel
- two aggressors
- square pulse input
- $jitter_{RMS} = 53 \text{ ps}$

- pulse shape chosen to maximize E2C
- 3 total taps
- 2 taps per UI
- $jitter_{RMS} = 33 \text{ ps}$
Filter Improves Bit Error Rate

- **square pulse:**
 \[BER = 10^{-5} \]

- **crosstalk-aware pulse:**
 \[BER < 10^{-12} \]

- **pre-emphasis pulse:**
 \[BER = 10^{-7} \]

- **crosstalk-aware pulse:**
 \[BER = 10^{-5} \]
Crosstalk is significant in board-to-board channels.

Received eye opening can be increased by taking crosstalk into account when equalizing.

Crosstalk-aware pulse shape decreased BER by 10^2 at 2.7 Gb/s.