Gain and Equalization Adaptation to Optimize the Vertical Eye Opening in a Wireline Receiver

D. Dunwell and A. Chan Carusone University of Toronto

Analog Front End Adaptation

Control signals should be generated automatically and should be able to adapt to a variety of channel conditions

Jet 📘

Outline

- Adaptation: existing and proposed technique
- Theory and implementation
- Simulated and measured results demonstrate validity

3 of 21

Analog Adaptation of EQ

BER-Based Adaptation of EQ

[6] Chen, JSSC, 2008

Jef

Proposed Architecture Test Setup

Variable Gain Preamplifier

Analog Split-Path Equalizer

EQ and VGA Simulation Results

8 dB gain control

Flat BW from 0 to 10 GHz

Equalizer:

8 dB low freq gain control

high freq peaking

Gain and Equalization Adaptation to Optimize the Vertical Eye Opening in a Wireline RX

Jef [

Outline

- Adaptation: existing and proposed technique
- Theory and implementation
- Simulated and measured results demonstrate validity

PDF Indicates Vertical Eye Quality

'x' is a random variable created by sampling the PRBS data at the midpoint of each bit

11 of 21

]ef]

Threshold Sweep to Obtain PDF

Outline

- Adaptation: existing and proposed technique
- Theory and implementation
- Simulated and measured results demonstrate validity

Simulation Results – 10 m Cable

14 of 21

Simulation Results – Gain Setting

15 of 21

Jη

Prototype in 65-nm CMOS

Vdd = 1.2 V Adaptation performed off-chip with minimal additional hardware

Jef

16 of 21

1010 Pattern vs PRBS Data (2 Gb/s)

Gain and Equalization Adaptation to Optimize the Vertical Eye Opening in a Wireline RX

Measured Results – 2Gb PRBS

Step 1: Sweep V_{eq} to find peak PDF

Jef

Varying Channel Conditions

Coax Cable:

PCB Traces:

10 Gb/s (5 Gb/s for 30 m cable)

4 Gb/s for all lengths

Eye Diagrams – 10 Gb/s

10 m coaxial cable channel output

Receiver output after adaptation

Vertical: 100 mV/div

Horizontal: 50 ps/div

Gain and Equalization Adaptation to Optimize the Vertical Eye Opening in a Wireline RX

Conclusions

- Proposed adaptation technique :
 - Quickly optimizes vertical eye opening over a variety of channel types and lengths.
 - Optimizes equalizer peaking and preamplifier gain with a single set of data.
 - Can run continuously on parallel data line or at start up with minimal added circuitry.

Thank You

Gain and Equalization Adaptation to Optimize the Vertical Eye Opening in a Wireline RX

Gain and Equalization Adaptation to Optimize the Vertical Eye Opening in a Wireline RX

