Gain and Equalization Adaptation to Optimize the Vertical Eye Opening in a Wireline Receiver

D. Dunwell and A. Chan Carusone
University of Toronto
Analog Front End Adaptation

Control signals should be generated automatically and should be able to adapt to a variety of channel conditions.
Outline

• Adaptation: existing and proposed technique

• Theory and implementation

• Simulated and measured results demonstrate validity
Analog Adaptation of EQ

- Filters consume large area
- Minimizing difference in high frequency content does not guarantee best equalization

BER-Based Adaptation of EQ

Ensures optimal eye opening but very complex and slow to converge

Proposed Architecture Test Setup

Adaptation can run continuously or in start-up calibration.
Variable Gain Preamplifier

- Gain controlled by analog signal V_{gain}

- Increased V_{gain} results in decreased preamplifier gain

Analog Split-Path Equalizer

- High frequency peaking controlled by analog signal V_{eq}

- Increased V_{eq} results in decreased low frequency gain and increased high frequency peaking

[10] Zhang, JSSC, 2005
EQ and VGA Simulation Results

Variable gain amplifier:
- 8 dB gain control
- Flat BW from 0 to 10 GHz

Equalizer:
- 8 dB low freq gain control
- high freq peaking

Gain and Equalization Adaptation to Optimize the Vertical Eye Opening in a Wireline RX
Outline

• Adaptation: existing and proposed technique

• Theory and implementation

• Simulated and measured results demonstrate validity
PDF Indicates Vertical Eye Quality

Transmitted Signal

\[\text{X} \]

\[V_{TH} \]

\[V_{TL} \]

PDF

\[t \]

Received Signal

\[\text{X} \]

\[V_{RH} \]

\[V_{RL} \]

PDF

\[t \]

‘x’ is a random variable created by sampling the PRBS data at the midpoint of each bit.
Threshold Sweep to Obtain PDF

PDF peak indicates equalization

Threshold at peak = V_{RH}
Outline

- Adaptation: existing and proposed technique

- Theory and implementation

- Simulated and measured results demonstrate validity
Simulation Results – 10 m Cable

125 mV

30 mV
Simulation Results – Gain Setting

Eye Diagram - AFE Output

Amplitude

Time

Simulated Receiver PDF

Threshold Voltage (V)
Prototype in 65-nm CMOS

Vdd = 1.2 V

Adaptation performed off-chip with minimal additional hardware
1010 Pattern vs PRBS Data (2 Gb/s)

High peak = narrow PDF

Threshold at peak = eye amplitude
Measured Results – 2Gb PRBS

Step 1: Sweep V_{eq} to find peak PDF

Step 2: Sweep V_{gain} to set amplitude
Varying Channel Conditions

Coax Cable:
10 Gb/s (5 Gb/s for 30 m cable)

PCB Traces:
4 Gb/s for all lengths
Eye Diagrams – 10 Gb/s

10 m coaxial cable channel output

Receiver output after adaptation

Vertical: 100 mV/div

Horizontal: 50 ps/div
Conclusions

• Proposed adaptation technique:
 – Quickly optimizes vertical eye opening over a variety of channel types and lengths.
 – Optimizes equalizer peaking and preamplifier gain with a single set of data.
 – Can run continuously on parallel data line or at start up with minimal added circuitry.
Thank You
Channel Loss

S21 vs. Frequency

Gain and Equalization Adaptation to Optimize the Vertical Eye Opening in a Wireline RX