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ABSTRACT

A variation of the differential steepest descent algorithm, here
called the dithered linear search (DLS), is examined and applied
to analog filter adaptation.  The DLS algorithm is a gradient
descent optimizer with a straightforward and robust hardware
implementation.  Gradient estimates are obtained by applying
independent additive dither to all of the filter’s parameters simul-
taneously and correlating the resulting changes in the output
squared error to the dither signals.  Unlike the popular LMS algo-
rithm, the DLS algorithm does not require access to the filter’s
internal states.  No additional analog hardware is required making
it ideal for adaptive analog filters in mixed-signal systems.  A the-
oretical analysis shows no gradient misalignment.  The algorithm
is verified on an integrated analog filter.  The effects of dc offsets
are also examined.

1.  INTRODUCTION

The LMS algorithm is currently the most popular technique
for digital filter adaptation.  Unfortunately, implementation of the
LMS algorithm in analog adaptive filters is challenging.  Dc off-
sets on the analog signals can prevent accurate convergence [1],
[2], and significant additional analog hardware may be required to
obtain the gradient signals [3].

In this paper, a general technique for analog filter adaptation
is discussed with a straightforward hardware implementation that
is robust with respect to dc offsets.  The dithered linear search
(DLS) technique does not require access to the filter’s internal
states and no additional analog hardware is required.  All filter
parameters may be adapted simultaneously and independently of
one another.

In Section 2 of this paper, some background theory is pre-
sented.  In Section 3, the DLS algorithm is introduced.  A theoret-
ical analysis showing that there is no gradient misalignment using
the DLS algorithm is performed in Section 4.  Behavioral simula-
tion results are then presented in Section 5.  Dc offset effects are
considered in Section 6 and experimental results from a continu-
ous-time integrated analog filter are presented in Section 7.

2.  BACKGROUND

Consider a completely general analog filter (continuous-time
or discrete-time) with N variable parameters

.  Let ε denote an error function used to
quantify the filter’s performance so that ε is smallest when the fil-
ter parameters are equal to their optimal values.  It is common to
use the mean squared error (MSE) in the filter output, , with
respect to some desired or reference signal, , as the error func-
tion:

(1)

Gradient descent optimizers proceed by updating the filter’s
parameters iteratively in a direction opposite the gradient

.  The iterative update
rule is,

, (2)

where µ is a parameter controlling the rate of adaptation.  The
only problem is, how to obtain the gradient .  Generally the
exact value of  can not be determined, so an unbiased esti-
mate of the gradient is used instead,

(3)

Different approaches to obtaining the gradient estimates define
different gradient descent algorithms.  Perhaps the most obvious
way to estimate the gradient is to make a direct measurement of
each component by perturbing the parameters one at a time sym-
metrically around their current values and measuring the resulting
change in the error function.  The derivative is approximated by a
finite difference expression,

(4)

In order to use (4) as a gradient estimate,  is estimated by setting
 and averaging  over  data

samples, then setting  and averaging
 over the following  data samples.

(5)

Using the gradient estimate in (5) together with the parameter
update rule in (2) results in the differential steepest descent (DSD)
algorithm.  An advantage of the DSD algorithm over LMS adap-
tation is that it does not require access to the filter’s internal
states.  It is simple and intuitive.  However, its hardware imple-
mentation is somewhat complicated by the fact that the gradient
components must be estimated one at a time.  During their discus-
sion of the DSD algorithm, the authors of [4] point out that, “All
weights can be simultaneously dithered at individual frequencies
and the gradient components obtained by cross correlation.”  That
idea is the basis of the “dithered linear search” algorithm
described below.

3.  THE DITHERED LINEAR SEARCH

The term “dither” refers to a signal with small amplitude and
zero mean that is intentionally injected into a system.  The dith-
ered linear search (DLS) algorithm, like all linear search algo-
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rithms, is a gradient descent optimizer.  The DLS proceeds by
simultaneously applying independent additive dither, , to all
of the filter parameters being adapted.

(6)

In (6),  is the algorithm’s current estimate of the optimal param-
eter values whereas  is the parameter vector including dither.
Each gradient component is then inferred by correlating changes
in the corresponding dither signal to changes in .

(7)

In (8), σ2 is the variance of the dither signal.  Again, instanta-
neous estimates can be substituted for  in which case (7)
becomes,

(8)

The gradient estimate is given by,

(9)

Multiple filter parameters can be adapted simultaneously using
independent (i.e. uncorrelated) dither signals.  The adaptation of
any one parameter, , will not be effected by the dither on the
others since, over time, only those changes in ε which are corre-
lated with  will influence the parameter .

The DLS algorithm has a straightforward hardware imple-
mentation.  A block diagram is shown in Fig. 1 for one parameter.
The algorithm is easily scaled to adapt more parameters using
more copies of the same hardware.  If the dither signals are
binary, the hardware is even simpler.  The correlator becomes
trivial and the dither signal can be directly connected to the LSB
of the parameter control word.  Uncorrelated binary dither signals
are also very easy to generate in hardware.

4.  THEORETICAL ANALYSIS

In this section, it will be shown that the gradient estimates in
(9) are unbiased and, hence, the DLS algorithm is guaranteed to
converge as long as the rate of adaptation, , is taken small
enough.  In order to simplify the theoretical analysis only adaptive
linear combiners and binary dither signals are analyzed in detail.

An adaptive linear combiner with  parameters and state sig-
nals  has a state correlation matrix ,

(10)

Mathematically, the requirement of unbiased gradient esti-
mates can be written as follows:

(11)

(12)

For a binary dither signal, it is known that,
(13)

Hence,

(14)

Taking the expectation of both sides of (9),

(15)

Since a dither signal has zero mean,
(16)

(17)

Combining (17) with (15) yields,

(18)

In the two-parameter case ( ), when  the filter
operates one-half of the time at each of the two points

.  Therefore,

(19)

Substituting the quadratic performance surface of a general
adaptive linear combiner into (19) results in,

(20)

This result is easily generalized to the ith gradient estimate in an
N-parameter case,

(21)

Figure 1.  Block diagram of the DLS algorithm.  Notice that no 
knowledge of the filter’s internal states is required.

Dither
Source

∫

−µ/σ2

Adaptive
Filter

d

(·)2eyu

δ

pp’ e2

δi k( )

pi' k( ) pi k( ) δi k( )+=

p
p'

ε p'( )

pi k 1+( ) pi k( ) µ

σ2
------ δi k( ) ε pi'( )⋅ ⋅–=

ε pi( )

pi k 1+( ) pi k( ) µ

σ2
------ δi k( ) e2 k( )⋅ ⋅–=

ε∂
pi∂

-------
ˆ 1

σ2
------ δi k( ) e2 k( )⋅ ⋅=

pi

δi pi

µ

N
xi 1 i N≤ ≤, R

R E
x1x1 x1x2 …

x2x1 x2x2 …

⋅ ⋅

r11 r12 …

r21 r22 …

⋅ ⋅

= =

E ∇pεˆ[ ] ∇pε=

E ε∂
pi∂

-------
ˆ ε∂

pi∂
-------= ,  for all i⇔

δi k( ) ∆±=

σ2 E δi
2 k( )[ ]≡ ∆2=

E ε∂
pi∂

-------
ˆ

E 1

σ2
------ δi k( ) e2 k( )⋅ ⋅=

1
∆2
------ E δi k( ) e2 k( )⋅[ ]⋅=

E δi k( )[ ] 0=

δi k( ) +∆,  one-half of the time=

δi k( ) ∆– ,  one-half of the time=



⇒

E ε∂
pi∂

-------
ˆ 1

∆2
------ 1

2
--- E δi e2⋅[ ] δi +∆=⋅ 

  1
2
--- E δi e2⋅[ ] δi ∆–=⋅ 

 + 
 =

1
∆2
------ ∆

2
---E e2[ ]

δi +∆= 
  ∆–

2
------E e2[ ]

δi ∆–= 
 + 

 =

1
2∆
------- E e2[ ]

δi +∆=
E e2[ ]

δi ∆–=
– 

 =

N 2= δ1 ∆–=

p' p1 ∆– p2 ∆±
T=

E e2[ ]
δ1 ∆–=

1
2
--- E e2[ ]

p' p1 ∆–

p2 ∆+
=

E e2[ ]
p' p1 ∆–

p2 ∆–
=

+

 
 
 
 
 

⋅=

1
2
--- ε p1 ∆– p2 ∆+( ) ε p1 ∆– p2 ∆–( )+ 

 =

E e2[ ]
δ1 ∆–=

ε p1 ∆– p2( , ) ∆2r22+=

E e2[ ]
δi ∆±=

ε p1 p2 … pi ∆± …
T( ) ∆+

2
tr R( ) rii–( )=



Substituting (21) into (18) gives,

(22)

In order to complete the proof of (12), it is required that,

(23)

Equation (23) is true by definition of the gradient in the limit
, and is also true for any value of  when the error func-

tion  is a quadratic function of , as in adaptive linear combin-
ers.  Therefore, the DLS algorithm provides unbiased gradient
estimates under those circumstances.

Since the gradient estimates are unbiased, when averaged
over a long time they approach the true value of the gradient
resulting in a perfect gradient descent optimizer.  This limit is
approached by taking  very small.  So, the DLS is guaranteed
stable as long as  is taken “small enough”.  In general, the range
of stable values for  will depend upon the filter structure, the
type of dither signal, and the statistics of the input data (which
may not be precisely known a priori).  Therefore, stability of the
adaptive process should always be verified via simulation.

Note that (22) is a finite difference gradient estimate, just like
the one used for the DSD algorithm in (4).  The similarity is not
surprising since the DSD algorithm can be considered a special
case of the DLS algorithm where the parameters are dithered one
at a time.

5.  BEHAVIORAL SIMULATIONS

Behavioral simulations were performed using a 3rd order con-
tinuous-time orthonormal ladder filter in a “system identification”
or “model matching” application.  The structure of the adapted fil-
ter is shown in Fig. 2 [5].  With the feedback parameters  fixed
and the feedin terms  adapted, the filter is an adaptive linear
combiner.  However, the state signals are not available at any
internal nodes in the structure of Fig. 2, so the gradient signals
required for LMS adaptation would be difficult to obtain.  Specif-
ically, it would be necessary to operate a second 3rd order contin-
uous-time filter in parallel just to generate the gradient signals [3].
Therefore, the DLS algorithm is particularly desirable for this
structure.

A finite steady-state error was introduced by including an
additive independent noise source in the simulations at the filter
output with a power of .  The input signal was white
with a power of 0.1.  The reference filter is a 3rd order elliptic
lowpass transfer function with 0.5 dB ripple in the passband
extending to a frequency of 10 (normalized with respect to the
sampling frequency) and 40 dB of stopband attenuation.  In the
adapted filter, the feedback parameters, , were chosen to pro-
vide the same pole placement as the reference filter and the feedin
parameters, , were adapted.  The values of  and  are design
parameters.  In these simulations, they were chosen to yield a total

excess MSE 1% of   in steady-state.  The dither signals were
Hadamard sequences of length 4 [6].  Results from an ensemble
of 25 simulation runs are plotted in Fig. 3.  All 25 simulation runs
converged.

6.  DC OFFSET EFFECTS

It is well known that dc offsets can limit the performance of
the LMS algorithm for analog filters [1], [2], [3].  Offsets on the
state and error signals cause excess MSE in steady-state.  There-
fore, dc offsets represent a significant performance limitation for
analog adaptive filters and much research has been done to reduce
the effect of dc offsets on LMS adaptation.  Offsets on the error
signal,  are usually eliminated using an adaptive dc tap at the
filter output.  Furthermore, since the DLS and DSD algorithms
estimate the gradient from observations of only the squared error,

, they are not susceptible to dc offsets on the state signals.
In order to highlight the effect of dc offsets, behavioral simu-

lations were performed for the same model matching system
described in Section 5, this time with dc offsets introduced on
each of the filter’s internal states and on the error signal.  The dc
offsets have a mean squared value 1/10th that of the state and
error signals respectively.   No steady-state error is introduced at

 (i.e. ).  Using LMS adaptation (Fig. 4A) a residual
error of approximately -15 dB relative to the reference signal per-
sists due to the dc offsets.  Using the same dc offsets and the DLS
algorithm with an adaptive dc tap at the filter output, the only
residual steady-state error is due to the perturbation caused by the
dither itself, in this case approximately -45 dB relative to the ref-
erence signal (Fig. 4B).
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Figure 2.  A 3rd-order orthonormal ladder filter using 
multiple feedins of the input signal.

Figure 3.  Behavioral simulation results of the DLS algorithm 
over an ensemble of 25 simulation runs.
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7.  EXPERIMENTAL RESULTS

Model matching experiments were performed using the DLS
algorithm and a continuous-time analog integrated filter.  A die
photo of the test chip is shown in Fig. 5 [7].  Only the digitally
programmable analog signal path was integrated.  The adaptation
algorithm was implemented in software to provide greater flexi-
bility.  The filter is a 5th order orthonormal ladder filter with vari-
able feedins, so the state signals are completely unavailable.  The
shape of the frequency response was fixed, but the cutoff fre-
quency was programmable up to around 70 MHz by scaling the
feedback gains.  The dc gain was also programmable by scaling
the feedin parameters.  These two scaling factors were used as the
adapted parameters.

In the model matching experiment, the same integrated filter
was used alternately as both the adapted filter and the reference
filter in order to avoid mismatches between the two paths in the
experimental setup.  Again, Hadamard sequences were used for
the dither.  The filter parameters and the relative MSE are plotted
over time in Fig. 6.  The non-zero MSE observed in steady-state is
due to measurement noise.

8.  CONCLUSION

A generalization of the differential steepest descent (DSD)
algorithm, here called the dithered linear search (DLS), was
described and analyzed.  It’s performance is the same as the DSD
algorithm, however its hardware implementation can be some-
what simpler since only the parameters’ LSB must be dithered
during adaptation.  When compared with the popular LMS algo-
rithm, the DLS algorithm is much slower because it does not
make use of the filter’s internal state signals.  However, the LMS
algorithm has a number of serious drawbacks, particularly for
analog continuous-time integrated filters.  If implemented digi-
tally, the state signals required for LMS adaptation are difficult to
obtain or completely unavailable.  If implemented with analog
circuits, the LMS algorithm is susceptible to dc offsets.  The DLS
algorithm does not require access to any internal state signals and,
by introducing an adaptive dc tap, the DLS algorithm is robust
with respect to dc offsets.  Furthermore, the rate of convergence is
not a limiting factor in many digital communications applications
where analog adaptive filters are often used.  The adaptive algo-
rithm was tested using both simulations and in hardware.  In the
hardware tests, the DLS algorithm successfully adapted a continu-
ous-time 5th order analog filter.

9.  REFERENCES

[1] C.-P.J. Tzeng, “An Adaptive Offset Cancellation 
Technique for Adaptive Filters,” IEEE Trans. on Acoust., Speech, 
Signal Proc., pp. 799-803, May 1990.
[2] D.A. Johns, W.M .Snelgrove, and A.S. Sedra, 
“Continuous-Time LMS Adaptive Recursive Filters,” IEEE 
Trans. Circuits Syst., pp. 769-778, July 1991.
[3] K.A. Kozma, D.A. Johns, A.S. Sedra, “Automatic Tuning 
of Continuous-Time Integrated Filters Using an Adaptive Filter 
Technique,” IEEE Trans. Circuits Syst., pp. 1241-8, Nov. 1991.
[4] B. Widrow, J.M. McCool, “A Comparison of Adaptive 
Algorithms Based on the Methods of Steepest Descent and Ran-
dom Search,” IEEE Trans. Ant. & Prop., pp. 615-637, Sept. 1976.
[5] D.A. Johns, W.M. Snelgrove, A.S. Sedra, “Orthonormal 
Ladder Filters,” IEEE Trans. Circuits Syst., pp. 337-343, March 
1989.
[6] J.H. van Lint, R.M. Wilson, A Course in Combinatorics, 
New York, NY: Cambridge University Press, 1992.
[7] A. Chan Carusone and D. A. Johns, “A 5th Order Gm-C 
Filter in 0.25 µm CMOS with Digitally Programmable Poles & 
Zeroes,” 2002 IEEE Int. Symp. Circuits and Syst., May 2002.

Figure 4.  Mean squared error simulated with dc offsets on 
the state and error signals using (A) the LMS algorithm; 
(B) the DLS algorithm with an adaptive dc tap.
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Figure 5.  Die photo of the 5th order orthonormal ladder 
analog filter test chip.

Figure 6.  Experimental results from the adaptation of a 5th 
order analog integrated filter using the DLS algorithm.
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