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ABSTRACT

X
t n
Analog adaptive filters with digitally programmable  U(t) _|Programmable Filter&)/ ————— - )1)—’
coefficients can provide speed, power, and area A b,cd x> - |
advantages over digital adaptive filters while overcoming | |
the dc offset problems associated with fully analog F—- - - - — — = o
implementations. However, digital estimates of the filter | A L
states and gradient signals must be generated from the L| Coefficient Update, @ | Digital
filter output in order to perform LMS adaptation. State Blocks Gradient Filter
observers studied in the control literature either require «*
access to the system input or require the system to be ,
minimum phase. Here, approximate time-delayed state y(t) y(n)
estimates are obtained from the filter output by Y Programmable Filter—/— - - — =
truncating a Taylor series expansion of the inverted non- A, b c, d |
minimum phase zeros. Simulation results are presented |
for a 5-tap FIR filter. No steady-state error is introduced c— - - — — — — =
by dc and gain offsets. | A
__| Coefficient Update<_<ﬁ i Digital
1. INTRODUCTION Blocks Gradient Filter
Adaptive filters can be implemented using either digite b

or analog circuitry. Digital filters are common in low- to
moderate- speed applications. They are robust, flexible ¢
easily ported to new process technologies. They do not s
fer from the nonlinearities introduced by component mit
matches in analog designs. However, at high speeds

silicon area and power consumption of a digital implementa- . . . :
tput with respect to some reference signaljaimia vari-

tion may be prohibitively high. In these cases, analog ad&g—l trolling the adaptati ‘
tive filters are required. able controfiing the adaptation rate.

Unfortunately, the design of analog adaptive filters is

not straightforward due to the challenge of performing the pi(n+1) = pi(n) + 2pe(n @ (n) 1)

adaptation to minimize some error criterion. When using the A potential problem with this approach is that a aradient
LMS algorithm, a significant residual error remains due to P P bp g

. ignal,@, is required for h t fficient. If -
the effects of dc offsets which are present on state and e?r pan@, 1S requ ed for each adapted coefficient. If a state

signals [1], [2]. Thus there is a need for finding an adap?zf—ace model is used for the programmabile filter, gradient

: . . Sé nals can be generated from a knowledge of the filter’s
tion approach which does not suffer in the presence of. | . hi h hi
offsets. internal states as in [1]. This suggests the architecture

ac%gpicted in Figure 1la. However, if A/D converters were
. . . used to sample each of the filter’s internal states circuit size
rates are increasing but the required adaptation rates ar

FIGURE 1. Digital Adaptation of an Analog Filter
With (1a) and Without (1b) Sampling the Internal
State Signals (dashed lines correspond to digitized
signals)

analog circuitry for the high-speed signal path while Implgfate-space adaptive filters using only the digitized filter out-

menting thg slower ac!apnve algorithm using d'g't.al CIFut, allowing for the modified system architecture depicted
cuitry. If a discrete version of the LMS adaptive algorithm s Figure 1b

employed, filter goefﬂmen_ts. are l_deated acqordmg.to (%B Section 2 looks at established technigues for estimating
wherep; are the filter coefficients is the error in the filter . )
the internal states of a system. Section 3 explores a method
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FIGURE 3. Time-Delayed and Unknown Input State
Observation

3. APPROXIMATE TIME-DELAYED
STATE OBSERVATION

for generating approximate time-delayed state estimates of This section describes a method for providing time-

non-minimum phase systems with unknown inputs. Sectidelayed state estimates of an arbitrary state-space system.

4 provides simulation results in the presence of analog ™ee approach taken is to approximate the inverse transfer

offsets. function of the system under observation by introducing

delay. Once a delayed estimate of the system input is

2. UNKNOWN INPUT OBSERVATION obtained, standard linear state observers can be used to pro-
The estimation of a system’s internal states, called stétéce time-delayed state estimates, as in Figure 4.

observation, is well documented in control theory [3], [4], Consider a stable, real, rational, discrete time transfer

[5]. A linear state observer can be designed of order equaiuaction H(z) with zerosz and polegy.

that of the system under observation. Furthermore, the

dynamics of a state observer can be designed to meet some |‘| (1—zkz_1)

desired tracking performance specification. Unfortunately, H@) = ADK )
in general access to both the system inputs and outputs is (1-p Z_1)
required to generate these state estimates (Figure 2). |T| !

The situation in Figure 1b is somewhat different. The
“system under observation” is the programmable filéery,
¢, d and only its output is available. Also, since the pro- This could be the transfer function of any real stable dis-
grammable filter coefficients can be adapted based upon gr@te state space system, or the equivalent transfer function
dient information from some time in the past (as long as tbka continuous time state space system sampled at or above
overall system’s adaptation rate is satisfactory) time-delayis¢ Nyquist rate. The (possibly unstable) inverse transfer
state estimates are sufficient. A directly analogous probl&amction is:
appears in the control literature and is called “time-delayed
and unknown input observation” (Figure 3). It was shown in |'| (1—p|2_1)

[6] that this problem is _qui_valent tp inversion of .the H_l(z) -1l 3)
observed system. This is intuitively satisfying because if the (1-27h
observed system can be inverted then its input can be repro- |_| K

duced from its output and the problem of state observation s

becomes trivial. This can be factored into two parts: a stable péutz),
Unfortunately, it is difficult to ensure that an adaptivéicluding all zeroes and stable poles, and an unstable part,
filter will always be invertible, particularly if the zeros ardly(2), including only unstable terms:
being adapted. In this case the filter may become non-mini-
mum phase and the resulting inverted system would have Hy@ = S S 4)
unstable poles. |‘| (1-g 2_1)
I



If we defineg; = 1/, each binomial factor dfly(2) can

be approximated by the following truncated Taylor Seri kProg X Tapped
i =0: u(n . n | -1 | in- x(n—
expansion about = 0: (n) e y(n) i U0 -D)| Delay X(n— D)
N H(2) Line

1/(1-z7Z") = (-a2)/(1-372) (5) \ \ v

= (—a2)(1+az+ aizz2 +...) ULpl\ggte

_ d+1 —d _2.-d+1 d+1

=z (—az -az —.-y ) y

= H(2) Ly| Fixed |ref. Y en) Delay | &n-D)

! FIR D) > D

Note that in (5) the series was truncated aftéerms.
This allows the unstable pole to be approximated by an | FIGURE 5. Model-Matching Configuration for
filter with d taps. The*! term indicates that a delay af ¢ Adaptive FIR Filter Simulation
1) is introduced by the approximation. The choicedof

depends upon several factors: the required adaptation rgigr tap weightse, to ensure accurate adaptation with trans-
the number of coefficients which can be reasonably cofg; function zeros both inside and outside of the unit circle.
puted and stored, and the amount of approximation error The fijter coefficients and error signa{n), are plotted
which can be tolerated. . over time in Figure 6 and Figure 7 for one simulation run.
Expanding each binomial term Hi(2) this way pro- The qc offsets, gain errors, and fixed filter coefficients used

vides the following stable FIR approximation far(2): are:
- ~_ T
H(@) = Hg? THy@ = Hg@ TH@ = A7 () (6) m, = [0.01 0.03- 0.08-0.020.04 %
i T
' 9=[1.04 0.98 0.92 1.03 0.95 ®)
. . . . T
Since any complex zeros &f(2) will appear in conju- c= [0.9 —0.9-04-02 O.ﬂ )

gate pairs, their corresponding series expansions will have
imaginary terms which cancel when combined leaving
purely real coefficients on the right side of (6). This transfer Similar experiments modeled for a fully-analog LMS
function can then be used in conjunction with the systesdaptive system in [2] indicated finite steady-state errors
depicted in Figure 4 to generate time-delayed state estimaiggroximately 10 to 20 dB below the input signal level.
of a non-minimum phase system. Zero steady-state error is present using the techniques
described in this paper. Presumably, this is because the state
4. SIMULATION RESULTS signals used for adaptation are being generated from the dc
The ideas described above were simulated in MATLA®fset-free outputy(n), rather than using the valuegn)
[7]. An adaptive 5-tap FIR filter was chosen since anal@iectly with their associated offsets.
realizations of d|g|tglly p.rogrammable FIR .flltgrs have 5. CONCLUSIONS
proven to be practical in real-world applications (for
instance, [8]). The gradient signals for FIR filters are simply Techniques for state observation which have been stud-
time-shifted versions of the filter input, so the lineded in the control literature either require access to both the
observer and gradient filter can be replaced by a tapgs@dtem inputs and outputs, or require the system under
delay line. The simulated system is shown in Figure . observation to be minimum phase. An approximate time-
The inputu(n) was driven by a zero-mean Gaussiagelayed state estimator was proposed which can be applied
white noise source with unit power. Finite dc offsetg, to any state space system with unknown inputs. The strategy
and gain errorsg, were introduced at each tap of the prawas applied in simulations to the adaptation of a 5-tap FIR
grammable filter to simulate the effects of component mifer with success. Simulations indicated that the technique
matches. A constant tap element was used for dc off§ettimmune to the dc offset effects.
cancellation. No quantization noise was included in order to
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