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  ABSTRACT

Analog adaptive filters with digitally programmable
coefficients can provide speed, power, and area
advantages over digital adaptive filters while overcoming
the dc offset problems associated with fully analog
implementations.  However, digital estimates of the filter
states and gradient signals must be generated from the
filter output in order to perform LMS adaptation.   State
observers studied in the control literature either require
access to the system input or require the system to be
minimum phase.  Here, approximate time-delayed state
estimates are obtained from the filter output by
truncating a Taylor series expansion of the inverted non-
minimum phase zeros.  Simulation results are presented
for a 5-tap FIR filter.  No steady-state error is introduced
by dc and gain offsets.

1.  INTRODUCTION

Adaptive filters can be implemented using either digital
or analog circuitry.  Digital filters are common in low- to
moderate- speed applications.  They are robust, flexible and
easily ported to new process technologies.  They do not suf-
fer from the nonlinearities introduced by component mis-
matches in analog designs.  However, at high speeds the
silicon area and power consumption of a digital implementa-
tion may be prohibitively high.  In these cases, analog adap-
tive filters are required.

Unfortunately, the design of analog adaptive filters is
not straightforward due to the challenge of performing the
adaptation to minimize some error criterion.  When using the
LMS algorithm, a significant residual error remains due to
the effects of dc offsets which are present on state and error
signals [1], [2].  Thus there is a need for finding an adapta-
tion approach which does not suffer in the presence of dc
offsets.

In many applications, the signal bandwidths and data
rates are increasing but the required adaptation rates are
remaining constant in time.  So it is natural to consider using
analog circuitry for the high-speed signal path while imple-
menting the slower adaptive algorithm using digital cir-
cuitry.  If a discrete version of the LMS adaptive algorithm is
employed, filter coefficients are updated according to (1)
where pi are the filter coefficients, e is the error in the filter

output with respect to some reference signal and µ is a vari-
able controlling the adaptation rate.

A potential problem with this approach is that a gradie
signal, φi, is required for each adapted coefficient.  If a sta
space model is used for the programmable filter, gradi
signals can be generated from a knowledge of the filte
internal states as in [1].  This suggests the architect
depicted in Figure 1a.  However, if A/D converters we
used to sample each of the filter’s internal states circuit s
and complexity may become prohibitive.  This work exam
ines a method for estimating the gradient signals of arbitr
state-space adaptive filters using only the digitized filter o
put, allowing for the modified system architecture depict
in Figure 1b.

Section 2 looks at established techniques for estimat
the internal states of a system.  Section 3 explores a met
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FIGURE 1. Digital Adaptation of an Analog Filter 
With (1a) and Without (1b) Sampling the Internal 
State Signals (dashed lines correspond to digitized 
signals)
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for generating approximate time-delayed state estimates of
non-minimum phase systems with unknown inputs.  Section
4 provides simulation results in the presence of analog dc
offsets.

2.  UNKNOWN INPUT OBSERVATION

The estimation of a system’s internal states, called state
observation, is well documented in control theory [3], [4],
[5].  A linear state observer can be designed of order equal to
that of the system under observation.  Furthermore, the
dynamics of a state observer can be designed to meet some
desired tracking performance specification.  Unfortunately,
in general access to both the system inputs and outputs is
required to generate these state estimates (Figure 2).

The situation in Figure 1b is somewhat different.  The
“system under observation” is the programmable filter (A, b,
c, d) and only its output is available.  Also, since the pro-
grammable filter coefficients can be adapted based upon gra-
dient information from some time in the past (as long as the
overall system’s adaptation rate is satisfactory) time-delayed
state estimates are sufficient.  A directly analogous problem
appears in the control literature and is called “time-delayed
and unknown input observation” (Figure 3).  It was shown in
[6] that this problem is equivalent to inversion of the
observed system.  This is intuitively satisfying because if the
observed system can be inverted then its input can be repro-
duced from its output and the problem of state observation
becomes trivial.

Unfortunately, it is difficult to ensure that an adaptive
filter will always be invertible, particularly if the zeros are
being adapted.  In this case the filter may become non-mini-
mum phase and the resulting inverted system would have
unstable poles.

3.  APPROXIMATE TIME-DELAYED 
STATE OBSERVATION

This section describes a method for providing tim
delayed state estimates of an arbitrary state-space sys
The approach taken is to approximate the inverse tran
function of the system under observation by introducin
delay.  Once a delayed estimate of the system input
obtained, standard linear state observers can be used to
duce time-delayed state estimates, as in Figure 4.

Consider a stable, real, rational, discrete time trans
function H(z) with zeros zi and poles pk.

This could be the transfer function of any real stable d
crete state space system, or the equivalent transfer func
of a continuous time state space system sampled at or ab
the Nyquist rate.  The (possibly unstable) inverse trans
function is:

This can be factored into two parts: a stable part, HS(z),
including all zeroes and stable poles, and an unstable p
HU(z), including only unstable terms:
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FIGURE 2. Standard Linear State Observation
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FIGURE 3. Time-Delayed and Unknown Input State 
Observation
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û n D–( )

y(n-D)

x̂ n D–( )

FIGURE 4. Generation of an Approximate Time-
Delayed State Estimate
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If we define ai = 1/zi, each binomial factor of HU(z) can
be approximated by the following truncated Taylor Series
expansion about z = 0:

Note that in (5) the series was truncated after d terms.
This allows the unstable pole to be approximated by an FIR
filter with d taps.  The zd+1 term indicates that a delay of (d +
1) is introduced by the approximation.  The choice of d
depends upon several factors: the required adaptation rate,
the number of coefficients which can be reasonably com-
puted and stored, and the amount of approximation error
which can be tolerated.

Expanding each binomial term in HU(z) this way pro-
vides the following stable FIR approximation for H-1(z):

Since any complex zeros of H(z) will appear in conju-
gate pairs, their corresponding series expansions will have
imaginary terms which cancel when combined leaving
purely real coefficients on the right side of (6).  This transfer
function can then be used in conjunction with the system
depicted in Figure 4 to generate time-delayed state estimates
of a non-minimum phase system.

4.  SIMULATION RESULTS

The ideas described above were simulated in MATLAB
[7].  An adaptive 5-tap FIR filter was chosen since analog
realizations of digitally programmable FIR filters have
proven to be practical in real-world applications (for
instance, [8]).  The gradient signals for FIR filters are simply
time-shifted versions of the filter input, so the linear
observer and gradient filter can be replaced by a tapped
delay line.  The simulated system is shown in Figure .

The input u(n) was driven by a zero-mean Gaussian
white noise source with unit power.  Finite dc offsets, mx,
and gain errors, g, were introduced at each tap of the pro-
grammable filter to simulate the effects of component mis-
matches.  A constant tap element was used for dc offset-
cancellation.  No quantization noise was included in order to
isolate the effect of dc offsets.  The impulse response of sta-
ble IIR terms in (6) were truncated; this allowed H-1(z) to be
completely approximated by a simple FIR filter of length N
= 50.  Simulations were performed with several sets of fixed

filter tap weights, c, to ensure accurate adaptation with tran
fer function zeros both inside and outside of the unit circle

The filter coefficients and error signal, e(n), are plotted
over time in Figure 6 and Figure 7 for one simulation ru
The dc offsets, gain errors, and  fixed filter coefficients us
are:

Similar experiments modeled for a fully-analog LMS
adaptive system in [2] indicated finite steady-state erro
approximately 10 to 20 dB below the input signal leve
Zero steady-state error is present using the techniq
described in this paper.  Presumably, this is because the s
signals used for adaptation are being generated from the
offset-free output, y(n), rather than using the values x(n)
directly with their associated offsets.

5.  CONCLUSIONS

Techniques for state observation which have been st
ied in the control literature either require access to both 
system inputs and outputs, or require the system un
observation to be minimum phase.  An approximate tim
delayed state estimator was proposed which can be app
to any state space system with unknown inputs.  The strat
was applied in simulations to the adaptation of a 5-tap F
filter with success.  Simulations indicated that the techniq
is immune to the dc offset effects.
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