
A Flexible Hardware Encoder for Systematic
Low-Density Parity-Check Codes

Hemesh Yasotharan, Anthony Chan Carusone
University of Toronto

10 Kings College Road

Toronto, Ontario M5S 3G4

Canada

Abstract—This paper proposes a flexible low density parity
check encoder. This encoder simplifies the calculations found in
other flexible encoders by increasing memory usage, allowing
for parallelization and faster encoding. The flexibility of this
encoder allows it to be used in emerging multi code applications
and standards. To evaluate the encoder, a Verilog description
was developed and synthesized on an Altera Stratix platform
for the IEEE 802.16e WiMAX standard. The implementation
used 11,430 logic elements and operated at a maximum clock
frequency of 60 MHz. The throughput ranged from 119 Mbps
for rate- 1

2
codes to 357 Mbps for rate- 5

6
codes. A speedup of

2.5–6 times is demonstrated compared to the prior art.

I. INTRODUCTION

Low Density Parity Check (LDPC) [1] codes have been

shown to perform extremely close to the Shannon limit of

channel capacity [2], [3]. The high performance, freedom from

patent restrictions, and inherent parallelism of LDPC codes has

resulted in the inclusion of these codes in various standards

such as IEEE 802.16e [4] and CDMA [5]. In many of these

applications, several codes are specified allowing codes of

different rate and complexity to be chosen depending on the

quality of the channel. A flexible encoder architecture must

accommodate various code rates and block lengths. Ideally,

the system should be able to change its encoding parameters

based on user input. This would allow one encoder to be used

for all of the codes in a given standard, or for a wide range

of applications [4], [5].

Although many architectures have been reported for flexible

high speed LDPC decoders [6], [7], [8], [9], there has been

much less work on flexible LDPC encoders. A flexible archi-

tecture that uses recursion to calculate parity bits was proposed

in [10]. The design methodology is flexible in regards to code

rate and length. The architecture itself however is not flexible.

In other words, the design needs to be re-synthesized for each

different block length and code rate.

The Richardson Urbanke (RU) method of encoding LDPC

codes [11] relies on preprocessing the parity matrix before

running the encoder. An implementation is presented in [12]

that is optimized for code rates of 1
2 . The architecture can be

parallelized by instantiating multiple encoders that access the

same memory banks in order to encode several codewords in

parallel. The RU method involves several arithmetic operations

which when implemented on an FPGA need complex con-

trollers to coordinate [12]. A similar architecture is presented

in [13], implemented on a DSP platform.

Under the RU method, the parity portion of each message,

p, is split into two sub components, p1 and p2. Calculation

of the first parity portion, p1, involves two matrix vector

multiplication operations [12]. Calculation of p2 requires that

p1 be known plus an additional matrix multiplication. Since the

calculation of p2 requires p1, parity bits cannot be generated

independently of each other. These multiple matrix calcula-

tions constitute a significant impediment to creating a fast

flexible encoder.

In this paper, we propose an alternative scheme to encoding

LDPC codes that does not rely on the Richardson Urbanke

method. The complexity of the RU method is O(n+g2), where

n is the block length and g the ’gap’ which can be shown to

be on the order of
√

n [11]. Thus the overall complexity of the

RU method is linear. The architecture proposed only uses one

vector multiplication. An FPGA implementation takes O(2) to

calculate one parity bit and thus has a complexity of O(p),
where p is the length of the parity bits. This operation is

described in detail in later sections. Our architecture requires

less matrix multiplications than the RU method but with

increased memory usage. The main features of this architecture

are its high throughput and flexibility. Like the RU method,

this architecture can be parallelized with many instances thus

increasing throughput.

Back substitution is another possible method of encoding

[11]. This method relies on a parity matrix in lower triangular

form and uses recursion to form the other parity bits as given

by

Pl =
n−k∑
j=1

Hl,jSj +
l−1∑
j=1

Hl,j+n−kPj (1)

This method was used in [10], where they achieved high

throughput. However, the disadvantage is that this architecture

will take more memory than that proposed. The amount of

memory needed for back substitution is (n − k)k + k2

2
bits, which is more than the (n − k)k bits needed for the

proposed architecture. In addition, modifying this architecture

to support dynamic flexibility would result in a complicated

system with more logic elements. Finally, like the RU method,

parity bits can not be generated independently from one

another, which makes it difficult to parallelize the system.

The rest of paper is organized as follows. Section II

briefly introduces LDPC codes and covers some properties

of systematic LDPC codes that are used in the WiMAX

standard. Section III proposes an encoder architecture which

takes advantage of these properties and explains the benefits

and tradeoffs of the design. Section IV presents the synthesis

results and provides comparison with other architectures.

Finally, the paper is concluded in Section V.

II. SYSTEMATIC LOW-DENSITY PARITY-CHECK CODES

LDPC codes are block codes defined as the null space of a

sparse parity matrix H. The generator matrix, G, is related to

the parity matrix as follows:

HGT = 0

GT = null(H)

G = [null(H)]T
(2)

Since all valid codewords, x, satisfy

Hx = 0 (3)

where x is a column vector. A codeword can be formed from

a message, s, by the following formula:

x = GT s (4)

For code words of length n, encoding k information bits

requires a Generator matrix, G, of size k by n. The code rate,

r, of the LDPC code is defined as the ratio of the number of

message bits, k, to the total length of the encoded codeword,

n:

r =
k

n
(5)

In general, the generator matrix G is dense and the calculation

of the final code word requires considerable resources. How-

ever, systematic LDPC codes have a G matrix with a unique

form as described further down. In [3], it was stated that

all regular LDPC parity matrices can be transformed to give

systematic codes through Gaussian elimination and reordering

of columns in the parity check matrix. Furthermore, all LDPC

codewords specified in the IEEE 802.16e WiMAX standards

are systematic [4]. This means that all codewords, x, comprise

the message bits, s, and the parity bits p: xT = [sT pT].
Correspondingly, the generator matrix is of the form:

GT =
[

Ik

PT

]
(6)

Where Ik denotes a k×k identity matrix and PT , a submatrix

of size n− k by k. An example of such a generator matrix is

depicted graphically in Figure 1, based on the IEEE 802.16e

standard. Thus to encode a systematic LDPC code, only the

parity bits need to be calculated as follows:

p = PT s (7)

The final codeword is a combination of the original message

and the calculated parity portion.

Fig. 1. Generator GT matrix based on an IEEE 802.16e specified parity
matrix obtained by the procedure described in [3]. Non-zero entries of the
matrix are identified by dark areas in the plot.

Fig. 2. A schematic of the proposed encoder architecture

III. PROPOSED ENCODER ARCHITECTURE

In this section, we describe the proposed flexible encoder

architecture. The contents of the parity sub-matrix, PT , code

rate and block size of the LDPC code are stored in memory.

The parity sub-matrix, code length, and rate can be changed

by simply re-writing the contents of the memory.

A. Controller

Controllers are used to coordinate the retrieval of message

and parity check bits from memory, parity calculations, and

codeword storage. They are governed by two inputs: the rate

and the block size of the codeword. The block size indicates

the number of bits in the codeword. The code rate, r, of the

LDPC code informs the controller on the number of parity bits,

p, that are present and need to be calculated in a codeword of

length n.

p = n(1 − r) (8)

The overall encoder architecture is shown in Figure 2. The

parity sub-matrix, PT , is stored in memory. Upon the entry of

a new message into the system, controllers fetch the memory

contents and pass them to parity calculators. Every clock cycle

Fig. 3. A diagram of the encoder core which performs vector multiplication.
Its inputs are the input message vector and a row of the parity submatrix. The
output is a parity bit of the codeword.

results in a new row from the parity sub-matrix being read

and the associated parity bit calculated. The results of each

parity calculation are then returned to memory. This process is

repeated until all parity bits are computed. The final codeword

is a combination of the input message and the calculated parity

portion.

B. Encoder Core

Each parity bit is the result of binary vector multiplication

of the message and one row of the parity submatrix, PT . As

can be seen in Figure 3, this requires binary multiplication

(bit wise AND) between the input vector and a row vector

i of the parity submatrix. The results of this AND operation

are then reduced to one bit through binary summation (XOR).

This bit is parity bit i of the parity portion of the codeword.

Therefore one parity bit is generated per clock cycle, provided

that the clock period is longer than the logic delay of the AND

and XOR operations. This can be viewed as a constant time

operation to generate one parity bit. Therefore, in order to

generate all parity bits the complexity would be O(p), where p
is the length of the parity portion. Thus, the overall complexity

is linear in time.

Flexibility is supported by a variable counter in the con-

troller. The number of parity bits are related to the code rate

and block length. Upon the arrival of a new message, the

number of parity bits needed to be processed are computed by

the controller. Thus, if there is a change in coding schemes be-

tween two messages, the controller will be able to respond and

encode correctly. The encoder is designed for the maximum

expected block length, nmax. Codewords which are smaller

than nmax bits are padded at the front with 0’s. This padding

doesn’t affect the calculation of the parity bit.

Since one parity bit is generated per clock cycle, the

predicted throughput (TP) is the block length (n) divided by

the number of parity bits and the clock period.

TP =
length

time

=
n

n(1 − r)(1
f)

=
nf

n(1 − r)

=
f

(1 − r)

(9)

IV. RESULTS

In order to evaluate the proposed architecture, a Verilog

description was synthesized and tested on an Altera Stratix

EP1S80F1508C6. The code specified in the IEEE 802.16e

WiMAX standard [4] was used. It has a maximum block

length of 2304 bits. Upon testing, the highest clock frequency

that would support encoding of data at all code rates was

60 MHz. The critical path delay was dominated by the

1920-input XOR required for parity calculation, shown in

Figure 3. The total encoder, including all control logic

occupies 11,430 logic elements and 3,911,680 memory bits.

This truly flexible implementation requires no change to the

encoder size or structure when switching to different code

rates and/or block lengths.

The memory requirements are steep due to the need to

keep the system flexible and accommodate all the various

block lengths and rates in the WiMAX standards. The amount

of memory bits can be reduced by optimizing the encoder

for a particular code rate and block size. However, doing so

would violate the flexibility requirement.

The Gaussian elimination required to put G into systematic

form (5) was performed just once offline in Matlab for each

code in the WiMAX standard. The parity sub-matrices and

random input vectors were then loaded into the encoder

memory. The encoder output was compared with that

produced by a software encoder implemented in Matlab.

Thousands of vectors were tested over various block lengths

and code rates. All tests demonstrated correct encoding

functionality and the ability to reconfigure the encoder for

different codes dynamically by only rewriting the memory

contents.

In Table I, a comparison between this encoder architecture

and previously reported LDPC hardware encoders

implemented on FPGA or DSP platforms, is presented.

As can be seen in the table, our encoder shows excellent

performance compared to similar FPGA implementations.

It should be noted that not all of the previous works

cited provided sufficient information to perform a thorough

comparison. A speedup of 2.5–6 times is provided compared

to the implementation of the RU encoding method for

comparable codes on a Xilinx Virtex-II XCV4000-6 FPGA

TABLE I
COMPARISON OF LDPC ENCODERS

Technology Frequency (MHz) Data Length (bits) Code Rate Logic Elements Memory bits Throughput (bps)

[14] FPGA 30.72 Fixed (1800) Fixed (1
2

) - - 15M

[15] FPGA 64 Fixed (1536) Fixed (1
2

) - - 31M

[10] FPGA 140 - 195 Fixed (2304) Fixed (1
2

) 10,339 - 3.35G

Fixed (2304) Fixed (3
4

) 12,727 5.17G

Fixed (576) Fixed (5
6

) 4,295 6.28G

[13] DSP - Variable Variable - - 2.6M @ Rate 1
2

, length 2304

[12] FPGA Various (80-170) Variable Variable - 19 block RAMs 30M - 50M

44M @ Rate 1
2

, length 2000

33M @ Rate 2
3

, length 2000

This work FPGA 60 Variable Variable 11,430 3,911,680 115M -360M

119.7M @ Rate 1
2

, length 2304

179.3M @ Rate 2
3

, length 2304

238.8M @ Rate 3
4

, length 2304

357.2M @ Rate 5
6

, length 2304

[12]. The cost of the speed up is an increase in the amount

of memory needed. With more bits stored in memory, less

calculations need to be performed. In comparison, the RU

method requires more matrix calculations but relies on less

memory. Similarly, the work of [10] uses back substitution.

This method requires more memory than the design presented,

but it achieves higher throughput. However, the design in

[10] is not flexible in regards to code rate or block size.

One thing of note is that the throughput of the encoders

in [12] and [13] vary with block length. In contrast all codes

in our design have the same throughput for a fixed code

rate regardless of data length. The only factors that affect

throughput are the clock frequency and the code rate.

V. CONCLUSION

An architecture for a flexible LDPC encoder has been

presented. Instead of the Richardson-Urbanke encoding meth-

ods employed in previous works [12], [13], a direct method

is employed where the generator matrix is represented in

systematic form [3]. This reduces the computations required

for encoding and permits a high-speed flexible hardware

encoder to be designed. To verify our design, a flexible encoder

was implemented for the IEEE 802.16e WiMAX standard.

The FPGA encoder had a throughput between 115Mbps and

360Mbps depending on the block length. The result is the

fastest flexible FPGA encoder to date, showing an increase in

throughput of 2.5–6 times that of prior art.

REFERENCES

[1] R. Gallagher. “Low-Density Parity-Check Codes”. M.I.T. Press,
Cambridge, MA, 1963.

[2] S-Y. Chung and G.D.F. Forney. “On the Design of Low-Density
Parity-Check Codes within 0.0045 db of the Shannon Limit”. IEEE
Communications Letters, 5(2), February 2001.

[3] D.J.C. MacKay. “Good Error-Correcting Codes Based on Very Sparse
Matrices”. IEEE Transactions on Information Theory, 45(2), March
1999.

[4] IEEE. “IEEE Std. 802.16e-2005 and IEEE Std.802.16-2004/Cor1-
2005”, 2006.

[5] V. Sorokine, F. R. Kschischang, and S. Pasupathy “Gallager Codes
for CDMA Applications-Part I: Generalizations, Constructions, and
Performance Bounds”. IEEE Transactions on Communications, 48(10),
pages 1660–1668, Oct. 2000.

[6] Moussa, Baghdadi, Jezequel “Binary de Bruijn Interconnection Network
for a Flexible LDPC/Turbo Decoder”. IEEE International Symposium
on Circuits and Systems, pages 97–100, May 2008.

[7] Masera, G., Quaglio, F., Vacca, F. “Implementation of a Flexible LDPC
Decoder”. IEEE Transactions on Circuits and Systems II: Express Briefs,
pages 542–546, June 2007.

[8] J.-Y. Lee and H.-J. Ryu “A 1-Gb/s Flexible LDPC Decoder Supporting
Multiple Code Rates and Block Lengths”. IEEE Transactions on
Consumer Electronics, pages 417–424, May 2008.

[9] D. Hocevar. “LDPC Code Construction with Flexible Hardware Imple-
mentation”. IEEE International Conference on Communications, vol 4,
pages 2708–2712, May 2003.

[10] S. Kopparthi and D. Bruenbacher. “Implementation of a Flexible
Encoder for Structured Low-Density Parity-Check Codes”. In IEEE
Pacific Rim Conference on Communications, Computers and Signal
Processing, 2007.

[11] Thomas Richardson and Rudiger Urbanke. “Efficient Encoding of Low-
Density Parity-Check Codes”. IEEE Transactions of Information Theory,
47(2), February 2001.

[12] D.U. Lee and W. Luk. “A Flexible Hardware Encoder for Low Density
Parity Check Codes”. In 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 101–111, April
2004.

[13] T. Arslan Z. Khan and S. Macdougall. “A Real Time Programmable
Encoder for Low Density Parity Check Code as specified in the IEEE
p802.16e/d7 Standard and its Efficient Implementation on a DSP Proces-
sor”. In IEEE International SOC Conference, pages 17–20, September
2006.

[14] Su-Chang Chae and Yun-Ok Park. “Low Complexity Encoding of
Regular Low Density Parity Check Codes”. In Vehicular Technology
Conference, pages 1822–1826, Oct. 2003.

[15] Jia-ning Su, Zhou Jiang, Ke Liu, Xiao-yang Zeng, Hao Min. “An
Efficient Low Complexity LDPC Encoder Based on LU Factorization
with Pivoting”. In 6th International Conference on ASIC, pages 107–
110, Oct. 2005.

