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Abstract—Two design techniques are proposed for high-
throughput low-density parity-check (LDPC) decoders. A broad-
casting technique mitigates routing congestion by reducing the
total global wirelength. An interlacing technique increases the
decoder throughput by processing two consecutive frames simul-
taneously. The brief discusses how these techniques can be used
for both fully parallel and partially parallel LDPC decoders. For
fully parallel decoders with code lengths in the range of a few
thousand bits, the half-broadcasting technique reduces the total
global wirelength by about 26% without any hardware overhead.
The block interlacing scheme is applied to the design of two fully
parallel decoders, increasing the throughput by 60% and 71% at
the cost of 5.5% and 9.5% gate count overhead, respectively.

Index Terms—10-GB Ethernet, channel coding, decoder ar-
chitectures, iterative message-passing, low-density parity-check
(LDPC) codes, very-large-scale integration (VLSI).

I. INTRODUCTION

THIS brief investigates VLSI architectures and design
methodologies for multi-Gbit/s low-density parity-check

(LDPC) decoders. LDPC codes were originally proposed by
Gallager [1]. They have recently attracted much attention due
to their high bit-error rate (BER) performance and unique
potential for very high-throughput and low-latency decoding.
As a result, they have been recently adopted for the 10GBase-T
[2], the DVB-S2 [3], and the Mobile WiMAX [4] standards.

Despite all their desirable properties, LDPC codes’ random
parity-check matrices impose serious implementation chal-
lenges for both parallel and partially parallel LDPC decoders
[5], [6]. In this brief, we describe two techniques to reduce the
interconnect complexity and increase the throughput of LDPC
decoders. These techniques are applicable to any LDPC code
and impose no degradation on error-correction performance.
The two techniques can be used individually or together. The
remainder of this brief is organized as follows. Section II gives
a brief introduction to LDPC codes and prior work on imple-
mentation of iterative LDPC decoders. Section III describes
half- and full-broadcasting and compares them in terms of
reducing the complexity of node-to-node communications and
hardware overhead. Section IV then explains block interlacing,
showing the results for two implemented block-interlaced
LDPC decoders.
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II. BACKGROUND

A binary LDPC code, , can be described as the null space
of a sparse –valued parity-check matrix, . It
can also be described by a bipartite graph, or Tanner graph, in
which check nodes represent the rows of
and variable nodes represent the columns. An
edge connects the check node to the variable node if and
only if is nonzero.

Suppose that a binary codeword
is transmitted over a communication channel and that

is received. Let and represent the
message sent from to and from to in the th it-
eration, respectively. Let and

. Let denote the maximum
number of iterations. The sum–product decoding algorithm [7]
consists of the following steps.

1) Initialize the iteration counter, , to 1.

2) Initialize to the a posteriori log–likelihood ratios
(LLR), for

, .

3) Update the check nodes, i.e., for , ,
compute

(1)

4) Update the variable nodes, i.e., for , ,
compute

(2)

5) Make a hard decision, i.e., compute ,
where element is calculated as

if

otherwise

for . If or output as the
decoder output and halt; otherwise set and go to
step 3.

In partially parallel LDPC decoders a limited number of
check and variable processing units are used multiple times per
iteration to compute extrinsic messages for a group of check
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and variable nodes. A common challenge in partially parallel
architectures is to manage the large number of memory accesses
and prevent memory collisions since multiple messages must
be accessed simultaneously by the check and variable nodes.
Examples of partially parallel decoders include [8] and [6].

In fully parallel decoders, each node in the code’s Tanner
graph is assigned a dedicated hardware processing unit and mes-
sages are communicated between nodes by wires. The draw-
backs of a fully parallel architecture are the large circuit area
required to accommodate all the processing units, as well as a
complex and congested global interconnect network. Routing
congestion leads to longer interconnect delays and can degrade
decoder timing performance and dynamic power dissipation.
Examples of fully parallel decoders include [5], [9] .

III. BROADCASTING

This section introduces a technique that reduces the node-to-
node communication complexity in LDPC decoding. We will
show how this technique can be applied to both fully parallel and
partially parallel decoder architectures. We start by re-writing
(1) and (2) as follows. Let

(3)

where

(4)

Let

(5)

where

(6)

Fig. 1 shows the block diagram of a check and variable pro-
cessing unit using (3)–(6). Symbols and denote the opera-
tions that are performed in (3) and (4), respectively. Similarly,
symbols and denote operations performed in (5) and (6),
respectively.

Half-broadcasting is a repartitioning of the computations
in Fig. 1. In this new partitioning, shown in Fig. 2(a), the
functions are moved to the variable nodes without affecting the
message-passing algorithm. This is because extrinsic messages,

, are reconstructed in the variable nodes from the received
and the ’s from iteration . So, unlike the

schemes in [5], [10], and [11] in which each degree- check
node generates separate messages, one for each neighboring
variable node, in this scheme each check node broadcasts a
single message (i.e., ) to all of its neighbors. This approach
reduces the amount of information that needs to be conveyed
from check nodes to variable nodes. In a fully parallel decoder,

Fig. 1. Conventional fully parallel message-passing LDPC decoder with
generic functions for check and variable nodes.

Fig. 2. (a) Half-broadcast architecture. The check node c broadcasts a single
message, P , to all neighboring variable nodes. (b) Full-broadcast architecture.
The check node c broadcasts P to the neighboring variable nodes. The vari-
able node v broadcasts S .

this translates into a reduction in global interconnect. In a par-
tially parallel decoder it translates into fewer memory accesses.

Although the broadcasting technique above was described
using sum–product algorithm, the same technique can be ap-
plied to other variations of message-passing decoding such as
min-sum decoding and bit-flipping. For example, in the case
of min-sum decoding the variable nodes would be designed to
broadcast the total value, , to their neighbors.
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Fig. 3. Routed nets for one check node output highlighted in a fully parallel
LDPC decoder layout: (a) without broadcasting and (b) with broadcasting.

TABLE I
WIRELENGTH REDUCTION FOR GLOBAL NETS IN

FULLY PARALLEL LDPC DECODERS

Fig. 3 shows the effect of the broadcasting technique on a
fully parallel decoder layout. These are real layouts obtained by
automated P&R tools from Cadence using a floorplan similar
to [5] where the check nodes are instantiated in the center and
the variable nodes are instantiated on the sides of the decoder
layout. One check node and its neighboring 11 variable nodes
and the nets for conveying check-to-variable intrinsic messages
between them are highlighted in the figure for clarity. Fig. 3(a)
shows the case where no broadcasting is applied. Fig. 3(b)
shows that by using the broadcasting scheme of Fig. 2(a)
significant amount of interconnect wiring can be shared, hence
mitigating the complexity of interconnections. As an example,
in the 2048-bit decoder design presented in this brief the broad-
casting scheme reduces the average node-to-node wirelength
by 26% from 1.88 to 1.40 mm.

Table I lists the percentage wirelength reduction obtained
from half-broadcasting compared with the conventional case
where no broadcasting is applied. The technique is applied
to LDPC codes with various lengths. The values in the first
column are obtained from automated P&R tools. The values
in the second column are obtained from a prediction algorithm
which approximates a Steiner tree [12] solution to predict the
wirelength savings by using the actual floorplan of the fully par-
allel decoder and the silicon area dedicated to each variable and
check-update unit in the floorplan. Table I shows that for code
lengths of few thousand bits half-broadcasting yields similar
savings in global wirelength. For fully parallel decoders there
is no hardware overhead associated with half-broadcasting; we
are simply shifting some logic from one node to the other.

For partially parallel LDPC decoders, broadcasting reduces
the number of shared memory write accesses. This is because in
a conventional partially parallel decoder, each check-processing
unit (CPU) reads the extrinsic messages, , generated in the
previous iteration from the memory and writes the resulting
messages to another shared memory to be read by variable-pro-
cessing units (VPUs), and so on. Thus, the CPU for a check

node with degree , needs to perform reads and writes.
By using a broadcast scheme for the check nodes, the CPU still
needs to read input values, but since the CPU generates only
one output value, just one write operation is required. In total,
the number of read/write memory accesses per CPU per itera-
tion is reduced from to . Unlike fully parallel decoders,
there is some hardware overhead for half-broadcasting in par-
tially parallel decoders since the ’s need to be also stored
locally in the VPU for use in the next iteration. This additional
local storage, however, does not add to the global node-to-node
communication complexity.

We call the architecture of Fig. 2(a) half-broadcasting be-
cause we applied the broadcasting technique only to check-to-
variable messages while the variable-to-check messages were
kept unchanged. The same idea can be extended to a full-broad-
casting scheme in which both check-to-variable and variable-to-
check messages are broadcast. Fig. 2(b) shows the variable and
check node architecture capable of full-broadcasting. In this
figure, the inverse-check and inverse-variable operations and

, are duplicated in order to be able to reconstruct the individual
messages from the interim variable and check totals. Memory-
based versions of full-broadcasting are proposed in [13] and
[14]. As one can expect, full-broadcasting results in further sim-
plification in interconnect complexity; however, this comes with
a relatively large logic overhead. The exact amount of this over-
head depends on the exact type of variable and check update
functions, but since most of the calculations are duplicated the
overhead can be as much as 2x [13].

Depending on the type of update functions, the designer may
need to assign a larger word length for the broadcast values [e.g.,

in (4) and in (6) in the case of sum–product mes-
sage-passing] compared with the word length needed for the
actual extrinsic values [e.g., ’s and ’s in (3) and (5)].
In these cases, the effect of increased word length for broadcast
messages must be taken into account. As an example, if and

’s in (6) are quantized with bits, then
bits would be required to represent . However, since the word
length of ’s in (5) is generally limited to only bits by clip-
ping as in [15], can be represented with only bits
without loss of accuracy. So, the variable-to-check messages
will have additional wiring due to the in-
creased word length in .1 For , the overhead becomes
8%. A similar analysis can also be made for the check-to-vari-
able broadcasting of Fig. 2(a) since the multiplications and di-
visions in (3) and (4) are usually transformed into summations
and subtractions in the logarithm domain. One particular case is
the hard-decision message passing decoding [16] in which the

’s and ’s in Fig. 1 are 1-bit messages, and and
symbols both indicate exclusive-OR operations. As a result, the
broadcast message, , in Fig. 2 is also a 1-bit value, hence no
word length increase is required.

To compare the effectiveness of different broadcasting
schemes in a partially parallel LDPC decoder, we define the
node-to-node communication complexity as the number of
unique LLR messages being read/written from/to the shared
memory per iteration. For an LDPC code with edges in
the graph, global read operations are involved in each
iteration: reads in the check-update phase and reads in

1The 0.5 coefficient is because half-broadcasting in this case only affects the
variable-to-check messages and keeps check-to-variable messages unchanged.
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the variable-update phase, independent of the type of broad-
casting. The number of write operations, however, varies with
the choice of broadcasting. In a conventional decoder, each
variable node generates unique messages, so
write operations are needed in variable-update phase. Sim-
ilarly, write operations are needed for the check-update
phase. In a half-broadcasting scheme in which the check nodes
broadcast a single LLR message, the number of variable-up-
date phase memory writes continues to be , however, the
number of check-update phase write operations is reduced to

. Finally, in a full-broadcast the number of required write
operations for variable and check-update phase is reduced
to and , respectively. To summarize, one decoding it-
eration in a no-broadcast scheme requires
read/write operations. With half-broadcasting this is reduced
to . With full-broadcasting this
is further reduced to .
For moderately large values of and , half-broadcasting
and full-broadcasting result in close to 25% and 50% memory
access reduction, respectively, compared to a no broadcasting
scheme. As an example, for a (6–32)-regular (2048,1723)
LDPC code in 10GBase-T standard ( ) the number
of global memory accesses per iteration is reduced by 24%
and 45% using half-broadcasting and full-broadcasting, respec-
tively.

The above comparisons suggest that in fully parallel decoders
half-broadcasting provides a better trade-off between relaxing
node-to-node communication complexity and logic overhead.
Meanwhile, the full-broadcasting can be the preferred choice in
low-parallelism decoders where logic area constitutes a small
portion of the total decoder area and hence the logic overhead
due to full-broadcasting can be tolerated.

IV. BLOCK INTERLACING

As explained in Section III, each iteration of message-passing
decoding consists of updating check and variable node outputs
based on (3) and (5). Due to the data dependency, computation
of in (5) cannot be started until all the , are
calculated from (3). Similarly, the check-update phase cannot
be started before completion of the variable update phase of
the previous iteration. In [17] an overlapped message-passing
scheduling is proposed for quasi-cyclic LDPC codes decoded in
a memory-based architecture. The idea is to perform the check
(variable) node update phase in an order such that the vari-
able (check) node update phase can be started for some vari-
able (check) nodes before all the check (variable) node updates
are complete. A modified scheduling algorithm for overlapped
message passing is proposed in [13] which can be applied to
any LDPC code. Fig. 4(a) and (b) shows how overlapped mes-
sage passing reduces the iteration delay compared with conven-
tional scheduling with no overlapped message passing. The al-
gorithm in [13] is based on permuting rows and columns of
so that the sub-matrices in the lower left and upper right corners
of the are all zeros. The problem with this algorithm is that as
the number of parallel variable and check processing units in-
creases, the potential increase in throughput is decreased. (In the
case of a fully parallel architecture, the saving becomes zero).

The pipelined scheme in Fig. 4(c) doubles the decoder
throughput compared with the throughput in Fig. 4(a). Instead
of overlapping the variable-update phase and check-update
phases of the same frame, we interlace the decoding of two

Fig. 4. Timing diagram for the message-passing algorithm. (a) Conventional.
(b) Overlapped message passing [17]. (c) Block interlacing.

consecutive frames such that when variable (check) node up-
date phase is being applied to one frame, another frame is in
the check (variable) node update phase and vice versa.

From Fig. 4, it can be seen that from to the conventional
scheme in Fig. 4(a) has finished three iterations and the over-
lapped message passing has completed 4 iterations (or it is ready
to start fifth iteration) whereas in the same time period the block
interlaced scheme in Fig. 4(c) has finished 3 iterations for frame
1 and 3 iterations for frame 2, i.e., 6 iterations in total. This im-
provement in decoder throughput results from eliminating the
idle times in the timing diagram, or equivalently, increasing the
hardware utilization of the decoder.

The block-interlacing is similar to the fully pipelined archi-
tecture in [10] where logic utilization is increased by having
one set of VPUs and CPUs for each iteration. Here, a single set
of VPUs and CPUs exchange information back and forth while
performing the iterations. As a result the memory size does not
increase with number of iterations. The block interlacing tech-
nique can be used both in fully parallel and partially parallel de-
coders and, unlike the overlapped message-passing technique
of [13], the throughput improvement is independent of the
matrix. For fully parallel decoders, the only additional require-
ment are the pipeline registers at the node outputs. In these de-
coders, the gate-count overhead due to the pipeline registers is
relatively small compared with the large logic gate count. As an
example, for the two decoders presented below, the hardware
overhead is less than 10%. This overhead is easily justified by
the throughput improvement.

For partially parallel decoders, block interlacing keeps the
CPU and VPU logic unchanged but requires doubling the size
of the LLR memories so that the CPUs and VPUs can switch be-
tween two memory banks as they switch between the two dif-
ferent frames. In decoders with a small number of CPUs and
VPUs (i.e., low parallelism) memory is the dominant portion of
the decoder, so block interlacing will nearly double the power
and area but, in high-parallelism decoders, the logic size be-
comes dominant and overhead is reduced.
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Fig. 5. Top level block diagram for the fully parallel (2048, 1723) LDPC de-
coder with half broadcasting. (N = 2048,M = 384).

TABLE II
SUMMARY OF LDPC DECODER CHARACTERISTICS

To demonstrate block interlacing, we compare the character-
istics of two implemented fully parallel LDPC decoders. Each
of these two decoders was implemented twice: once without
block interlacing and once with interlacing. The first decoder is a
rate-0.84 (2048, 1723) RS-based (6,32)-regular LDPC decoder
in a 0.18- m CMOS-6M technology. The decoder performs 32
iterations of hard-decision message-passing decoding [16]. The
top-level block diagram of this decoder is shown in Fig. 5. The
second decoder uses a similar top-level diagram as in Fig. 5
but is based on a (660,480) (4,15)-regular LDPC code gener-
ated using the progressive edge growth algorithm [18] and per-
forms 16 iterations of min-sum decoding per frame. Although
the second code is shorter and has lower average node degree,
the gate count in the second decoder is higher than the first de-
coder because of the need for computing and storing the 4-bit
quantized LLR values. Table II summarizes post-layout simu-
lation results for all decoders. For the 2048-bit decoder, block
interlacing increases the total throughput by 60% at the cost of
just 5.5% more gates. For the 660-bit decoder, throughput is in-
creased by 71%, with a 9.5% gate count overhead. Notice that
block interlacing has not exactly doubled the throughput as one
would ideally expect from Fig. 4. The reason is that the pipeline
registers do not exactly break the critical path into two identical
paths. So, the maximum clock frequency is limited by the delay
in the longer path.

V. CONCLUSION

We have presented two techniques for improving the
throughput and hardware efficiency of LDPC decoders.
We have described half- and full-broadcasting and shown
that half-broadcasting provides a better trade-off between
node-to-node communication complexity and logic overhead
in fully parallel decoders. Half-broadcasting resulted in 26%
global wirelength reduction in fully parallel decoders and 24%
memory access reduction in partially parallel decoders. We
have also described a block interlacing scheme that maximizes
logic utilization and increases the decoder throughput compared
with conventional schemes. This method requires no change in
the structure of the code or the decoding algorithm. We have
demonstrated this technique in two fully parallel LDPC decoder
designs. Post-layout simulations show that the throughput was
improved by 60% and 71% at the cost of only 5.5% and 9.5%
more gates, respectively.
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