A 3-Tap Digitally Programmable Transversal Filter in 90-nm CMOS for Equalization up to 30 Gb/s

Jonathan Sewter & Tony Chan Carusone University of Toronto <u>tcc@eecg.utoronto.ca</u>

June 17, 2005

Outline

- Background on lumped-LC traveling wave filters
- "Crossover" traveling wave filter topology
- Prototype design in 90-nm CMOS
- Measurements
- Conclusions

Applications

- Chip-to-chip communication
 - –losses and reflections

Optical fibre
 dispersion

Equalization

 This work focuses on the programmable filter required for linear equalization at a receiver

Transversal Filter

- Challenges:
 - Routing the outputs together
 - Bandwidth of the output summing node

Traveling Wave Filter

Challenge: Implementation of the delays

Delay Implementation

Active:

 Buffer or active filter with constant gain & group delay

Passive:

• Transmission line or lumped-LC

× Power consumption

- × Area
- × Losses

Passive Delays

Transmission lines

- Several mm needed to achieve the required delays
- × Large area
- × Series losses

Lumped-LC

- Forms a lowpass network
- x Limited bandwidth

Tap spacing : $\tau = 2\sqrt{LC}$ Delay Line Bandwidth : $f_{3dB} = \frac{1}{\pi\sqrt{LC}} = \frac{2}{\pi\tau}$

Maximum gain per tap $\propto C$

• Example: Simulated 3-section lumped-LC delay line designed for 25-ps tap spacing

Delay Line Bandwidth: $f_{3dB} = \frac{2}{\pi\sqrt{LC}} = \frac{2}{\pi\tau}$

Maximum gain per tap $\propto C/2$

• Example: Simulated 6-section lumped-LC delay line designed for the same total delay

Delay Line Bandwidth: $f_{3dB} = \frac{2}{\pi\sqrt{LC}} = \frac{4}{\pi\tau}$

Maximum gain per tap $\propto C$

Summary

	Tap spacing	Delay line bandwidth	Max. gain per tap
3-tap TWF	$2\sqrt{LC}$	$\frac{1}{\pi\sqrt{LC}}$	$\propto C$
6-tap TWF	\sqrt{LC}	$\frac{2}{\pi\sqrt{LC}}$	$\propto C/2$
3-tap CTWF	$2\sqrt{LC}$	$\frac{2}{\pi\sqrt{LC}}$	$\propto C$

Prototype Implementation

- 90-nm CMOS process
- 24 mW from 1-V supply

Die Photo

600 μm

Die Photo

600 μm

Pre-amplifier

- Resistive termination for input matching
- Open-drain 2nd stage
- Common mode rejection facilitates single-ended testing

Passive delay line

- Differential spiral inductor, $L/2 \approx 300 \text{ pH}$ (per side)
- Capacitance, $C/2 \approx 125$ fF (per side)
 - Tap amplifier input/output capacitance & parasitics (approx. 2/3^{rds} of total capacitance)
 - Digitally-controlled (5-bits) switched MiM capacitors (approx. 1/3rd of total capacitance)
- Nominal tap spacing of 25 ps
- > Differential characteristic impedance, $Z_0 \approx 100$ Ohms
- > Terminated by two 50-Ohm resistors to V_{DD}

Tap amplifiers

- Each tap amplifier is comprised of two amplifiers with opposing polarity to provide sign control for each tap gain
- The tail currents are digitally controlled (6 bits)

On-wafer test setup

Note: 6 dB loss introduced due to single-ended testing

Input and Output Matching

Tap Frequency Response

- Single ended measurements made with a 2-port network analyzer
- Differential
 measurements
 would be
 +6 dB greater

 Taps can be combined to provide a variety of frequency responses

Tap Frequency Response

 The slope of the phase response corresponds to a tap spacing of approx. 35 ps

Individual tap responses at 10 GHz

Confirms a tap spacing of approx.
 35 ps

Input and output eye diagrams at 20 Gb/s over 4 m of SMA coax

Input and output eye diagrams at 25 Gb/s over 4 m of SMA coax

Input and output eye diagrams at 30 Gb/s over 4 m of SMA coax

Conclusions

- A crossover traveling wave filter topology was introduced to alleviate the delay-bandwidth tradeoffs in traditional traveling wave filters
- Differential lumped-LC delay lines are used to reduce the area and series losses
- The topology was demonstrated in a 3-tap 90-nm CMOS filter capable of equalization up to 30 Gb/s (the fastest known CMOS FIR filter to date)

Acknowledgements

- Test support:
 - Timothy Dickson
 - Quake Technologies
- CAD tools:
 - Canadian
 Microelectronics
 Corporation

- Technology support:
 - Dr. M.T. Yang at TSMC
- Funding:
 - NSERC
 - Micronet
 - Intel Corp.
 - Gennum Corp.