
Efficient and Programmable Ethernet Switching with a
NoC-Enhanced FPGA

Andrew Bitar, Jeffrey Cassidy, Natalie Enright Jerger, Vaughn Betz
Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto, Toronto, Ontario, Canada
{andrew.bitar,jeffrey.cassidy}@mail.utoronto.ca,{enright,vaughn}@ece.utoronto.ca

ABSTRACT
Communications systems make heavy use of FPGAs; their
programmability allows system designers to keep up with
emerging protocols and their high-speed transceivers enable
high bandwidth designs. While FPGAs are extensively used
for packet parsing, inspection and classification, they have
seen less use as the switch fabric between network ports.
However, recent work has proposed embedding a network-
on-chip (NoC) as a new “hard” resource on FPGAs and we
show that by properly leveraging such a NoC one can create
a very efficient yet still highly programmable network switch.

We compare a NoC-based 16×16 network switch for 10-
Gigabit Ethernet traffic to a recent innovative FPGA-based
switch fabric design. The NoC-based switch not only con-
sumes 5.8× less logic area, but also reduces latency by 8.1×.
We also show that using the FPGA’s programmable inter-
connect to adjust the packet injection points into the NoC
leads to significant performance improvements. A routing
algorithm tailored to this application is shown to further im-
prove switch performance and scalability. Overall, we show
that an FPGA with a low-cost hard 64-node mesh NoC with
64-bit links can support a 16×16 switch with up to 948 Gbps
in aggregate bandwidth, roughly matching the transceiver
bandwidth on the latest FPGAs.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—packet-switching networks; C.2.6
[Computer-Communication Networks]: Internetwork-
ing—routers

General Terms
Design, Performance, Algorithms

Keywords
Switch architecture; Network-on-chip; FPGA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ANCS’14, October 20–21, 2014, Los Angeles, CA, USA.
Copyright 2014 ACM 978-1-4503-2839-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2658260.2658272.

0

500

1000

1500

2000

2500

3000

Virtex 2 Virtex 4 Virtex 5 Virtex 6 Virtex 7 Virtex
UltraScale

To
ta

l A
va

ila
b

le
 T

xr
 B

W
 (

G
b

/s
)

Figure 1: Growth of transceiver bandwidth in the
Xilinx Virtex family from Xilinx datasheets [28]

1. INTRODUCTION
Field-programmable gate arrays (FPGAs) have seen

widespread adoption in many industries thanks to their re-
duced engineering costs and faster time to market com-
pared to application-specific integrated circuits (ASICs).
The trade-offs that must be made when building designs
on an FPGA rather than an ASIC were studied extensively
in Kuon and Rose’s work, where they showed a programma-
bility overhead of 18×-35× in area and 3×-4× in critical
path delay [20]. Despite this, the FPGA market has grown
to approximately $5B / year in revenue, with the communi-
cations segment accounting for approximately 45% of that
revenue.1 While FPGA vendors continue to push the total
transceiver bandwidth on their devices (Figure 1), the ques-
tion remains whether designers can, in fact, saturate the
available bandwidth. The FPGA’s soft reconfigurable fab-
ric runs considerably slower than ASICs, forcing designers
to handle high bandwidth I/O with wide, slow buses. Not
only does this consume significant programmable intercon-
nect area, it also poses design challenges for timing closure.

Despite these challenges, FPGA’s have the key advantage
of reconfigurability. This characteristic lends itself well to
the recent advent of software-defined networking (SDN) [22].
Increasingly, computer networks need the ability to effi-
ciently adapt to new routing and forwarding protocols as
they become available. Some recent work has proposed aug-
menting ASIC designs with some programmability through
the use of match tables [9]; the resulting chip has moderately
higher hardware cost than a conventional ASIC but enables
flexible packet header processing and lookup table reconfig-

1Based on revenue reported by the major FPGA vendors.

uration. Should FPGA switch designs succeed in efficiently
supporting modern bandwidth demands, then they could
provide even greater programmability suitable for SDN.

Recent work by Dai and Zhu presented a new 16×16
FPGA-based switch fabric design that can support an ag-
gregate bandwidth of 160 Gbps [11]. It did so by leveraging
the FPGA’s hardened memory resources. Using this hard re-
source, rather than the general-purpose programmable logic
fabric, to perform much of the switching is key to success-
fully handling high bandwidth I/O. Prior to Dai and Zhu’s
work, there was little published material that showed how a
high-radix FPGA-based switch could be built that saturates
the available transceiver bandwidth.

Still, Dai and Zhu’s switch relies on the FPGA’s soft
(programmable) interconnect both to bring data from the
transceivers to the memory modules and to connect the
memory modules. These connections are wide, requiring
both a large amount of programmable routing to make all
the connections, and many pipeline registers to close timing.
Such designs generally require many time-consuming com-
pilations and iterative re-pipelining to close timing. This
added design effort is a growing problem in FPGA design,
especially with the ever-increasing I/O bandwidth being
brought on the chip [1]. As this trend continues, FPGA ar-
chitecture needs a new interconnect that raises the level of
abstraction and makes it simpler to achieve timing closure.

Thanks to the work done by Dally and Towles [13], many
chip multiprocessors (CMPs) have adopted Networks-on-
Chip (NoCs) to cope with high on-chip bandwidth. Re-
cent work by Abdelfattah and Betz has proposed augment-
ing FPGA architecture with an embedded NoC to cope with
the growing FPGA design challenges [1]. Their work makes
a strong case for a NoC that is hardened in the chip’s sil-
icon, as it achieves significantly better bandwidth per area
than “soft” programmable NoCs while consuming a small
fraction of the FPGA area. They show that such a NoC
more than pays for itself even if it only handles the dis-
tribution of data from a single high-speed DDR3 interface
throughout an FPGA design [1]. In this work, we seek to
determine if additional gains can be realized in a complete
application. Demonstrating such applications would encour-
age FPGA vendors to augment their chips with this new
form of interconnect.

We present a new implementation of a switch fabric cross-
bar using a NoC-enhanced FPGA. Rather than using the
hardened memory resources to perform the switching, the
design instead uses the hardened NoC proposed by Abdelfat-
tah and Betz. The NoC not only manages to replace the
switching logic, but also most of the soft interconnect needed
to bring data from the transceiver to the switch points. This
results in significant area and latency savings compared to
Dai and Zhu’s memory-based switch. The design also pro-
vides a high degree of programmability suitable for SDN.
Thus, we show that switch fabric design is an important
FPGA application that can benefit from an embedded NoC.
In doing so, we make the following contributions:

• Describe four different possible NoC-crossbar configu-
rations that can efficiently support a 16×16 160 Gbps
switch fabric;

• Develop a custom routing algorithm tailored specifi-
cally to this application and show it outperforms tra-
ditional routing algorithms;

N 16
Data Width 256 bits
Core Frequency 160 MHz
Latency 250 ns
Registers 36945 (12%)
LUTs 49537 (32%)
BRAMs 224 (27%)

Table 1: Memory-Based Switch Design on Virtex6-
240T

• Compute the NoC-crossbar’s hardware cost and com-
pare it to crossbar designs by Dai and Zhu [11] and
Goossens et al. [16];

• Perform detailed throughput and latency analysis
and simulation to quantify the NoC-crossbar’s perfor-
mance; and

• Demonstrate the switch’s potential to scale to higher
bandwidths.

In Section 2, we give a brief overview of Dai and Zhu’s
memory-based switch, Abdelfattah and Betz’s work on a
NoC-enhanced FPGA and related work on ASIC NoC-based
switch fabrics. Our NoC-based crossbar design is described
in Section 3, along with various possible design configura-
tions and routing algorithms. We prove analytically that
the switch can support sixteen 10 GbE ports. The hard-
ware cost of our design compared to Dai and Zhu’s, as well
as another FPGA-based NoC-switch, is presented in Sec-
tion 4. Section 5 presents our performance evaluation of the
design, and Section 6 describes how the design can be scaled
to higher bandwidth traffic.

2. BACKGROUND

2.1 Memory-Based Switch
Dai and Zhu have proposed a new 16×16 switch fabric

design on an FPGA that is able to handle 10-Gigabit Eth-
ernet traffic (160 Gbps aggregate) [11]. The design is de-
scribed as a “memory-based switch” (MBS), as it uses the
FPGA’s hardened SRAM to perform some of the switching
function, with the remainder being handled by multiplexers
built from the FPGA logic fabric to cascade the memory-
based switches into a larger crossbar. Since the SRAMs are
hard resources, they can run at a much higher clock fre-
quency than the soft FPGA logic. In their design built on a
Xilinx Virtex6-240T, the memory modules are set to run at
four times the clock frequency of the soft fabric.

Table 1 summarizes the properties of the MBS design.
In comparison, a straightforward logic-based crossbar
implementation would have consumed significantly more
FPGA area, likely being unable to fit on the Virtex6-240T
device. The majority of the logic utilization in the MBS
comes from the pipeline registers needed for the wide, long
connections that bring data to and from the transceivers,
as well as the multiplexers and clock crossing logic. The
hardware cost and latency of the MBS are compared with
the NoC-based switch in Sections 4 and 5.

Hard/Mixed/Soft NoC Hard (Hard routers and links)
Number of Routers 64
Channel Width 64 bits
Core Frequency 925.9 MHz
Topology Mesh

Table 2: Properties of the embedded NoC used in
our switch design

2.2 NoC-Enhanced FPGA
Abdelfattah and Betz [1] propose the inclusion of a hard-

ened NoC as a new FPGA resource. Their baseline architec-
ture, as depicted in Figure 2, provides a mesh topology with
routers equally spaced across the chip. Since the routers
do not carry the overhead of programmability, the network
can run at a higher clock frequency, approximately 1 GHz
in a 65 nm process, while using significantly less area than
a comparable all-soft NoC such as that of Papamichael and
Hoe [25]. The NoC’s routers interface with the FPGA’s pro-
grammable logic through a fabric port that absorbs the clock
crossing logic needed to bring data from the slow FPGA fab-
ric to the faster NoC. The fabric port is capable of interfacing
with FPGA designs of any frequency.

The links between routers may be either dedicated (“hard
NoC”) or use the FPGA’s programmable interconnect fab-
ric (“mixed NoC”). The hard NoC provides a fixed mesh
topology and uses no programmable interconnect, thus eas-
ing the design and routing of the circuit logic and provid-
ing the fastest and most area- and power-efficient design [4].
The mixed NoC has the advantage of flexible, programmable
topologies. Due to additional capacitive loading from the in-
terconnection switches, the mixed NoC must run at a lower
clock rate and/or insert additional pipeline registers.

In building our NoC-based switch, we use the “hard NoC”
proposed by Abdelfattah and Betz, as it runs at a higher
clock frequency, thus supporting higher throughputs. Ta-
ble 2 summarizes the properties of the NoC used by our de-
sign. Details of the NoC’s router architecture are described
in Section 3.

2.3 NoC-Based Switch Fabric Design
NoCs have been used to design high-radix ASIC-based

switches targetting supercomputer networks [6, 26]. Ahn
et al. [6] improve the efficiency of their NoC-based switch
design by exploiting properties of the traffic pattern. They
focus on topological optimization to reduce area based on
how global traffic patterns manifest themselves as particular
local traffic patterns within a single switch. Underwood et
al. [26] also focus on topology modifications to realize a 4
TB/s switch based on a NoC for HPC applications.

Several recent proposals show that a NoC can produce
a more efficient switch design than a conventional cross-
bar [16, 19, 23]. There are several benefits to this approach:
faster clock speed due to short wires and simple, distributed
routers; improved load balancing and path diversity; and
improved scalability. Goossens et al. [16] propose a switch
design that features a mesh network, load balanced routing
and a unidirectional flow from inputs on one side of the mesh
to outputs on the other side. Follow-on work [23] improves
upon their architecture by placing I/O on all four sides of
the chip, reducing the size of the required network. They

Router

Compute
Module

Links
(Hard or Soft)

FPGA

D
D

R
x

C
o

n
tr

o
lle

r
P

C
Ie

 C
o

n
tr

o
lle

r

(Hard)

Fa
bric

Port

Figure 2: Depiction of the proposed hard NoC-
FPGA fabric interface from Abdelfattah and
Betz [1]

demonstrated a soft FPGA-based implementation of both of
these designs [19].

In this work, we show that a flexible hard NoC coupled
with the soft FPGA fabric greatly outperforms a logic-based
NoC-switch implemented in a traditional FPGA. We also
address the reality of FPGA transceivers being arranged
in columns, generally on the east and west side of the
chip, and the necessary overhead of bringing data from the
transceivers to the NoC-crossbar. Despite using a hard NoC,
we show that our design is flexible enough to implement dif-
ferent NoC-crossbar configurations and routing algorithms
that can improve performance.

3. PROPOSED DESIGN
The relative economy of Dai and Zhu’s memory-based

switch was due to their careful optimization of the design to
make maximal use of FPGA hard resources to avoid the pro-
grammability overhead. We propose to extend that concept
by exploring use of the novel hard resource (NoC routers and
links) that was proposed by Abdelfattah and Betz. Instead
of “memory is the switch”, we extend the concept of “the
NoC is the switch” [16]. Using the 64-node embedded NoC,
we design a crossbar that can support switching between 16
Ethernet ports each running at 10 Gbps. We call this design
a “hard-NoC switch” (HNS).

The NoC’s architecture is based on that presented by
Abdelfattah and Betz [3], who used a parametrized open-
source state-of-the-art virtual channel router [8]. The router
has five ports, two virtual channels (VCs) per port, and
an input buffer depth of ten flits per VC. The router has
three pipeline stages and supports speculation which reduces
the pipeline depth to two under low-load conditions. The
router interfaces with the FPGA’s soft logic through a pro-
grammable fabric port. Routers are connected with hard
(non-programmable) links that are 64 bits wide. The NoC
runs at a fixed clock frequency of 926 MHz [1]; thus, each
link can support up to 59.3 Gbps.

Data arriving at the FPGA must go through some pro-
cessing before being brought to the NoC to be switched to
the appropriate output (Figure 3). The FPGA’s transceiver
performs clock recovery and determines the incoming serial
data. The data is then converted from serial to parallel,
with the exact parallel width chosen by the designer. For
example, for 10G Ethernet, a conversion to 64-bit wide data
at 160 MHz is reasonable. Once the data is brought onto the

64-Node Mesh
NoC

N
o

C
 P

acket
P

rep
aratio

n

N
o

C
 P

acket
P

rep
aratio

n

Tran
sceivers

Tran
sceivers

FPGA
8

x
1

0
 G

b
E

Fu
ll

D
u

p
le

x 8
x 1

0
 G

b
E

Fu
ll D

u
p

lex

Figure 3: Conceptual overview: the NoC is the
switch

Figure 4: Stratix V floorplan showing transceiver
columns at east and west sides with overlaid hard
links and routers for NoC

FPGA fabric, the designer has the flexibility to do various
amounts of processing before handing the data to the NoC.
For example, packet header inspection and buffering can oc-
cur in the soft FPGA logic at 160 MHz. This logic examines
the destination port of the Ethernet packet and inserts a
NoC packet header indicating the appropriate destination
router. The data is inserted into the NoC via the fabric
port of the on-chip routers. Hardened clock conversion logic
within the fabric port up-converts the data rate to the NoC
clock rate of 926 MHz [1]; the data is then injected into
the NoC. The NoC steers the data across the chip through
multiple routers until it reaches the appropriate destination
router, whose fabric port down-converts the data back to
160 MHz. More programmable logic can then buffer up flits
until the entire Ethernet packet is ready to be sent out to
the output transceiver. Note that by simply modifying the
soft logic, the radix and communication protocol (e.g. 40G
Ethernet or SONET) of the switch can be changed; this re-
programmability is key to the success of FPGAs, making it
especially suitable for SDN. In the evaluation of our design,
we focus on the crossbar fabric functionality, as other aspects
of a full-featured switch, such as packet processing and error
checking, are included at the discretion of the designer.

The NoC has the additional flexibility of being able to im-
plement various routing algorithms and flow control mech-
anisms. We describe four different possible routing algo-
rithms in Section 3.2, and evaluate their performance in
Section 5. A virtual channel (flit-buffered), credit-based flow
control mechanism is used in our NoC, as it is supported by
the router architecture [8] and takes advantage of the avail-

able VCs. In contrast, Goossens et al.’s NoC-based switch
design uses store-and-forward (packet-buffered) flow control
in its NoC in order to be amenable to mathematical analy-
sis [16]. They also focus on 53B ATM cells as the unit of data
transfer in their network; our proposed design can support
Ethernet frames up to 1518B; supporting large packets with
store and forward flow control would lead to infeasibly large
buffer sizes. Virtual channel flow control outperforms store-
and-forward in NoCs, as it better utilizes buffer space [14]
and reduces latency [12].

3.1 NoC Injection Point Placement
As shown in Figure 4, the Altera Stratix V FPGA (28nm)

has transceivers in the east and west columns of the chip, as
is typical in commercial FPGAs for layout reasons. By as-
signing one router node per transceiver, we can connect any
receiver to any transmitter and implement crossbar func-
tionality. The FPGA’s programmable interconnect allows
designers to configure these connections to best suit the
switch’s application. Selecting the optimal transceiver injec-
tion points in the NoC is analogous to the memory controller
placement problem studied by Abts et al. [5].

The simplest placement of injection points connects each
transceiver to its nearest router, attaching only the 8
east- and west-most routers to a transceiver (Figure 5(a)).
Routers in the middle of the chip do not inject or eject traffic,
merely serving to connect the outer columns. We shall refer
to this switch layout as“two-sided”. Although the short con-
nections have the benefit of no additional pipeline registers
being consumed, the layout can result in poor utilization of
the network – under certain traffic conditions, some links
may be very heavily used while others carry no traffic at all,
a situation explored in Section 5.

To better spread incoming traffic throughout the network,
injection points can be distributed around the perimeter of
the mesh, as in Figure 5(b), which we call the “four-sided”
switch layout. Pipeline registers will be needed for the longer
soft connections in order to close timing. One could also
use the soft interconnect to set injection points in a “dia-
mond” configuration, as in Figure 5(c). This injection point
placement was inspired by the “diamond” configuration that
proved to be efficient for memory controller placement [5];
however, the traffic patterns in the memory controller design
and the switch design are quite distinct requiring further
analysis and exploration.

Lastly, further extending the soft connections allows the
16 injection points to be configured in a conventional 4×4
mesh topology at the center of the 64-node network (Fig-
ure 5(d)). Such a switch configuration minimizes the av-
erage hop count between source-destination pairs, and thus
has the most potential for latency savings. However, this
comes at the cost of additional pipeline registers needed for
the soft connections and reduced bisection bandwidth com-
pared to the other configurations. We consider each of these
four possible switch configurations in our evaluation.

3.2 Routing Algorithms
The NoC’s routing algorithm determines the path taken

by a packet from its source to its destination. An obliv-
ious routing algorithm selects a path without considering
the network’s current state, such as contention along the
chosen path. Algorithms that do consider the network’s cur-

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) Two–sided

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(b) Four–sided

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(c) Diamond

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(d) Dense

Figure 5: Switch configurations – dashed blue lines represent soft connections that use the FPGA’s pro-
grammable interconnect. Solid black lines represent the hard (non-programmable) NoC inter-router links.

rent state, known as adaptive routing algorithms, attempt
to steer away from paths with high contention.

The simplest routing algorithm for a mesh topology is
dimension-order routing (DOR). Packets are routed to their
destination along one dimension, then along the second di-
mension. Such an algorithm is both oblivious and determin-
istic; it does not consider path contention nor does it take
advantage of path diversity. However, it has the benefit of
being very simple, requiring very little overhead in the pack-
ets and in the routers. It also does not need VCs to break
deadlock, as the algorithm is inherently deadlock free. For
each of the four switch configurations described above, a YX
DOR algorithm is tested, where all packets are sent to their
destination first along the Y dimension (North/South), then
along the X dimension (East/West).2

An oblivious routing algorithm such as DOR fails to adapt
to stressful traffic patterns that result in high contention.

2YX routing was chosen over XY because it has a lower
maximum channel load when injection points are arranged
in columns.

Thus, a minimal adaptive routing algorithm is also tested.
Using local queue length as a metric for link contention,
the minimal adaptive algorithm chooses the minimum route
with the least contention at every hop. Choosing only among
minimum routes ensures that packets travel from source to
destination using the least amount of hops. However, this al-
gorithm is not inherently deadlock free; two VCs are needed
to break deadlock. One VC supports minimal adaptive rout-
ing while the other acts as an “escape” VC routing using
DOR in case deadlock should occur [15].

As described by Dally and Towles [14], minimal adaptive
routing only uses link contention data local to a router, so
it can effectively balance local link loads, but not global link
loads. We do not consider more complex globally adaptive
algorithms because the nature of our traffic patterns can
lead to much simpler traffic spreading algorithms. Since the
location of the injection points in the network is known,
a custom oblivious routing algorithm can be designed that
spreads traffic globally across the network. A 64-node mesh
with only 16 injection points can greatly reduce contention
by keeping paths between source-destination pairs as disjoint

int row , c o l ; // row and column of
// intermediate node

row = src row ;

i f (s r c and dest are on same s i d e) {

i f (s r c and dest are <4 hops apart) {
c o l = s r c c o l ;

}
else {

c o l = rand {0 ,1} away from s r c c o l ;
}

}
else {

co l = rand {1 ,2 , 3 , 4 , 5 , 6} ;
}

Figure 6: Algorithm for selecting intermediate node
in the Column-Select routing algorithm

as possible. We describe here two custom routing algorithms
developed for the two-sided and the four-sided switch con-
figurations. As both algorithms use two-phase routing, two
VCs are sufficient to break deadlock [24]. On the other hand,
a basic DOR algorithm already does a good job in keeping
distinct source-destination paths separated in the diamond
and dense configurations. We do not present a custom algo-
rithm for those two configurations, since it was found that a
custom oblivious routing algorithm does not improve latency
much over DOR.

Two-Sided Custom Routing Algorithm: “Column-
Select”
The two-sided switch layout with a DOR algorithm will re-
sult in all traffic using only the east- and west-most columns
for routing in the Y dimension. Our custom routing algo-
rithm focuses on better utilizing the middle six columns in
the mesh. Similar to Valiant’s algorithm [27], this is done
by selecting an intermediate router in the mesh, routing all
packets first to this intermediate node before routing to the
destination. Routes to and from the intermediate node still
follow YX routing. The algorithm for selecting the interme-
diate node is described in Figure 6. It aims to minimize the
contention that occurs in the east- and west-most columns of
the mesh, while still keeping most packets in minimal routes.
To reduce contention caused by routing between nodes on
the same side of the mesh, some packets are permitted to be
routed one column away from the minimal route. Allowing
these packets to deviate any further from the minimal route
negates the latency savings from the reduction in contention.
We call this algorithm “Column-Select”, as it spreads traffic
by selecting different columns for different routes. Unlike
the other routing algorithms that we assess, Column-Select
can theoretically cause packets to arrive out-of-order. Our
simulations reveal that the frequency of out-of-order arrival
is <0.2% for stressful permutation traffic.

Although Column-Select’s non-determinism makes it
more difficult to guarantee a low maximum channel load
(as the same column may get picked in several consecutive
instances), it does allow source-destination pairs to take ad-
vantage of path diversity. We show in Section 5 that the
maximum channel load still remains low with both uniform
random and permutations of stressful traffic.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 7: Illustration of the Smart DOR algorithm
when routing node 5 to node 8, and node 3 to node
0. The paths between these two routes, which would
have overlapped under YX routing, are separated
by the algorithm. The black router represents the
selected intermediate router.

Four-Sided Custom Routing Algorithm: “Smart DOR”
As with the two-sided custom algorithm, an intermediate
router is analytically selected before sending the packet from
the source. Since injection points are spread evenly across
the perimeter of the mesh, the intermediate node selected is
either the one on a XY or YX route. Of these two possible
intermediate nodes, if there is one that is not on the perime-
ter of the mesh, then that is the one that is chosen. Other-
wise, basic YX routing is used. We refer to this algorithm as
“Smart DOR”, as it is a deterministic algorithm that min-
imizes overlap of routes of distinct source-destination pairs
by analytically selecting between an XY or YX route. Fig-
ure 7 illustrates how the algorithm prevents path overlap.
Note that Smart DOR guarantees packets will arrive in or-
der.

3.3 Crossbar Throughput Guarantees
To provide a crossbar functionality for the switch, the

NoC must support the injection rate of the switch inputs. In
other words, the NoC’s maximum channel load at worst-case
traffic must not exceed its link capacity. Maximum channel
load is defined as the throughput of the channel carrying
the highest throughput of all channels in the network for
a given traffic pattern. Should the maximum channel load
exceed the link capacity, the NoC would no longer be able to
handle the injected data, resulting in packets being dropped.
Of the four switch configurations described above, the two-
sided configuration with YX routing is the least effective at
spreading traffic across the network. Thus, by showing here
that this configuration can support 16×16 switching of 10
Gbps traffic, then it can be concluded that the rest of the
switch configurations and routing algorithms can support it
as well. This is verified by simulation in Section 5.

A switch fabric crossbar must be able to switch traffic at
the injection rate as long as every destination is only being
driven by a single source at a given time. Since an out-
put port can only sink traffic at up to the injection rate,
a switch’s ability to handle multiple sources sending traffic
to a single destination is enabled not by its crossbar, but
by its buffering and allocation mechanism. Efficient switch

Switch Implementation LUT Register BRAM Tot. Equiv.
count count count LAB Area

Memory-Based Switch [11] 49537 (11.7%) 36945 (5.8%) 224 (9.7%) 5850

NoC-Based Switch

MDN [19] 75604 (17.8%) 52131 (8.1%) 0 (0%) 7561
HNS Two-Sided 8960 (2.1%) 0 (0%) - 896
HNS Four-Sided 8960 (2.1%) 1024 (0.2%) - 999
HNS Diamond 8960 (2.1%) 1024 (0.2%) - 999
HNS Dense 8960 (2.1%) 2048 (0.3%) - 1101

Table 3: Hardware cost of switch implementations. LUT count for HNS designs refers to equivalent LUT
area of the hard NoC. Percentages refer to Stratix V-5SGTC5 resource budget (28 nm).

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

4R

R

Figure 8: Worst-case maximum channel load for the
two-sided crossbar configuration with YX DOR is
4R (R: injection rate)

buffering has been extensively studied in previous work, in-
cluding Dai and Zhu’s Combined Input and Grouped Cross-
point Queued architecture (GCQ) [11]. This paper focuses
on the efficacy of using the NoC as the switch fabric’s cross-
bar. Any necessary input or output buffering can be added
to the crossbar by using the FPGA’s memory resources.

Worst-case traffic for the two-sided crossbar can be de-
rived as follows. Under YX routing, which does not allow
180◦ turns, the traffic across any horizontal cut (i.e. cutting
vertical links) may only come from the east- and west-most
columns of the mesh. Taking a horizontal cut across the
middle of the mesh, the worst-case traffic occurs when all
eight nodes from the bottom-half of the mesh are sending
to the eight nodes at the top-half, and/or vice-versa (Fig-
ure 8). With YX routing, this results in traffic equivalent
to four times the injection rate being sent across each of the
east- and west-most links that are cut. Under this worst-
case scenario, the maximum channel load is therefore four
times the injection rate. For 10-Gigabit Ethernet traffic, the
NoC’s links must support 40 Gbps in order to maintain this
throughput. The proposed 64-node, 64-bit wide NoC runs
at 925.9 MHz [1], giving it a link capacity of 59.26 Gbps. We
conclude that the 16×16 hard-NoC switch can guarantee 10
GbE throughput.

4. HARDWARE COST
Abdelfattah and Betz synthesize routers and hard links

in a TSMC 65nm process [3]. Based on data provided by
their web-based tool [2], the 64-node, 64-bit wide NoC con-

sumes an equivalent area of 896 Logic Array Blocks (LABs)
for both its routers and links. This accounts for the area
consumed by the NoC crossbar, but not for the soft links
between the NoC and the transceivers. Knowing that the
NoC’s routers are equally spaced across the FPGA, three to
four adjacent routers cover a distance of approximately 1/3
to 1/2 of the chip. Since soft links run at 160 MHz (Sec-
tion 3), those that bypass three to four routers will therefore
require one stage of pipeline registers to close timing. Since
the soft links are bi-directional (64 bits in each direction),
every soft link requiring pipelining will need 128 pipeline
registers. The four-sided and diamond configurations have
8 soft links needing pipelining, while the dense configura-
tion has 16, resulting in 1024 and 2048 pipeline registers
consumed, respectively.

Dai and Zhu provided a working Verilog design targeting
a Xilinx Virtex-6 FPGA (40nm), and list synthesis results
by FPGA resource type (shown in Table 3). Goossens et
al.’s NoC-based switch, originally designed for ASICs [16],
was also implemented as a soft design in an FPGA by Ka-
radeniz et al. [19]. Their design, called the Multidirectional
NoC (MDN), was synthesized on a Xilinx Virtex-5 FPGA
(65 nm). The resource consumption results from their syn-
thesis include the resources consumed by their design’s Net-
work Interface (NI) blocks. One NI is placed at each of their
switch’s I/O ports to perform buffering and partitioning of
packets prior to sending them into the NoC-based crossbar.
As we wish to only compare the hardware cost of the cross-
bar, the cost of the NI is removed in the MDN results shown
in Table 3.

The most advanced process for an FPGA in production is
28 nm, which is offered by both Altera (Stratix V) and Xil-
inx (Virtex 7). We therefore convert the memory-based and
NoC-based switch designs to a 28 nm equivalent for compar-
ison purposes. Assuming the resource consumption of each
design remains approximately the same when synthesized
on Altera’s 28 nm device, we compute the hardware cost
as a percentage of a Stratix V-5SGTC5 device (Table 3).3

In order to compare the area cost of each switch configura-
tion, the resource count of each resource type (look-up table
(LUT), register, BRAM) is converted to a total equivalent
LAB count. Block RAM (BRAM) area cost is equivalent to
four times the LAB area cost on Stratix V devices [21]. To be
conservative, we assume that registers used in Dai and Zhu’s
and Goossens et al.’s designs do not consume any additional
resources by using the registers in the Logic Elements (LEs)

3Xilinx and Altera devices have very similar LUT and reg-
ister architectures. Virtex devices use 18Kb BRAMs, which
are nearly equivalent in size to Stratix’s 20Kb BRAMs.

Flit size 64 bits
Packet Size 64-1504 bytes (mean: 580)
Injection Rate 10 Gbps
Injection Process Bernoulli
Router Delay 3 cycles (2 w/ speculation)
Router Buffer Depth 10 flits
Flow Control Virtual Channel
Num. VCs 2
Sim Warmup Period 30,000 cycles
Sim Data Collection Period 100,000 cycles

Table 4: Simulation Settings

that have already been consumed by the design’s LUTs. On
the other hand, we assume the registers used in the HNS
designs consume their own LEs. Since 10 6-LUTs fit into
Stratix LABs, we also assume that there are always exactly
10 LUTs per LAB.4

Our HNS switch configurations consume only 2.1% of the
LUT area available, and little to no registers. When com-
pared to the FPGA implementation of the MDN switch [19],
the HNS consumes 6.9×-8.4× less area. The area savings is
in large part due to the hardening of the NoC in the FPGA’s
silicon, as Abdelfattah and Betz showed that a hard NoC is
26× more area-efficient than an equivalent all-soft NoC [1].

Comparing to the memory-based crossbar, the HNS de-
sign consumes 5.5× less LUT area and 18× less registers.
Moreover, the HNS does not use any BRAMs in the cross-
bar, unlike the MBS which relies on memory to perform
much of the switching. Although use of the hardened SRAM
resources allows the MBS to achieve better area-efficiency
compared to the MDN switch, it still suffers from high
amounts of pipelining for its soft connections. Addition-
ally, while the MBS implements clock crossing logic in the
FPGA’s logic fabric, Abdelfattah and Betz’s NoC includes a
fabric port that subsumes this logic [1], leading to additional
area savings. Overall, the HNS crossbar is 5.3×-6.5× more
area-efficient than the MBS crossbar.

5. PERFORMANCE EVALUATION
Two key performance metrics must be evaluated for a

switch: throughput and latency. The throughput supported
by the NoC is dependent on its maximum channel load. This
can be analytically determined based on the injection points
placement and the routing algorithm used. Latency, on the
other hand, is highly dependent on the applied traffic.

5.1 Evaluation Setup
In order to measure the average latency of the different

proposed configurations of the HNS, the design was simu-
lated in Booksim, a comprehensive interconnection network
simulator [18]. Along with providing standard traffic gen-
erators and network topologies, the simulator also provides
the ability to create custom traffic patterns and routing al-
gorithms, which was necessary in the evaluation of the HNS.
Booksim was also used by Dai and Zhu to evaluate the per-
formance of the memory-based switch, enabling a fair com-
parison for the two designs.

4Note that it is possible to fit more than 10 LUTs in a single
LAB if (n<6)-LUTs are used.

0

0.05

0.1

0.15

0.2

0.25

0.3

64 128 256 384 512 640 768 896 1024 1504

P
ro

b
ab

ili
ty

Packet Size (Bytes)

Figure 9: Distribution of packet sizes

Table 4 summarizes the simulation settings used in the
evaluation of latency. The flit size was set to match the
channel width of the NoC. Dai and Zhu tested their memory-
based switch only at two possible packet sizes, 32 bytes and
512 bytes. Since Ethernet frames range in size from 64 to
1,518 bytes [17], we instead test our switch with a distribu-
tion of packet sizes spanning this range, as this is both a
more realistic and more difficult test scenario. Every time
a source wished to inject a packet into the network, it ran-
domly selected between ten different packet sizes based on
the probability distribution shown in Figure 9. This dis-
tribution was not based on a specific application; although
different applications that use Ethernet traffic have charac-
teristic packet size distributions, we use a normal-like distri-
bution to test our design in the most general scenario.

10-Gigabit Ethernet traffic can support data rates up to
10 Gbps. This implies that the average Ethernet data rate
is below 10 Gbps. However, in order to demonstrate that
the HNS can fully support 10 GbE, a Bernoulli injection
process was used with an average injection rate of 10 Gbps.
Although Ethernet traffic typically has bursty behaviour,
the data rates of the bursts can never exceed the capacity of
the Ethernet channel. Our latency measurements represent
a more aggressive scenario as the injection rate may exceed
10 Gbps at certain intervals of the simulation.

The simulated router architecture is similar to the one
proposed by Abdelfattah and Betz for their embedded NoC.
The router operates with a 3-stage pipeline, with the possi-
bility of being reduced to two stages given successful spec-
ulation. With 2 VCs and a buffer depth of 10 flits, the
router’s buffer size is far below the average size of Ethernet
packets being routed. Although it is usually recommended
that router buffer size be equal to a packet size for on-chip
networks, that is unrealistic given the large packets in this
application. The most critical factor in buffer sizing is be-
ing able to cover credit turnaround time, and our ten-flit
buffers are more than sufficient for this purpose. Goossens
et al. proposed splitting large packets into several smaller
portions that are routed independently by the NoC and re-
assembled at the output [16]. However, since an Ethernet
frame must be sent with no intra-packet gaps, the latency
of a packet becomes at least the latency of the portion that
takes the longest to reach the output.

The switch’s general use case was modelled with uni-
form random traffic, a traffic pattern that models every
transceiver being equally likely to send packets to any of
the others. The same traffic pattern was used by Dai and

Zhu to test the memory-based switch, therefore providing
a fair comparison point. The random nature of this traf-
fic pattern permits cases where multiple sources are send-
ing packets to a single destination at the same time – a
case that does not need to be supported by a switch fabric’s
crossbar. Since our NoC-based crossbar has built-in buffer-
ing at the crosspoints (i.e. routers), it is able to support
such traffic scenarios, unlike a conventional fully-connected
crossbar. However, more strenuous traffic patterns with
higher frequencies of multiple-sources-to-single-destination
(MSSD) would need input and/or crosspoint/output buffer-
ing [11]. As mentioned previously, this can be added using
the FPGA’s memory resources.

Permutation traffic is typically used to stress a net-
work [14]. To stress our crossbar, we run permutations of
distinct source-destination pairs, where a single source drives
a single destination for the entirety of the simulation. We use
a script that searches for a traffic permutation that leads to
the worst-case latency for each crossbar configuration under
a single-source-to-single-destination (SSSD) traffic pattern.
This traffic pattern also verifies that the HNS can support
the rated aggregate bandwidth of the switch.

5.2 Throughput Results
The maximum channel load achieved by each routing al-

gorithm for each HNS configuration can be seen in Table 5.
The worst-case maximum channel load was analytically de-
termined (Section 3.3), then verified using stressful SSSD
traffic permutations in simulation. Maximum channel load
under uniform random traffic (UR) was also measured in or-
der to measure the throughput supported by the switch in
the general case.

Having the injection points lined up in only two of the pos-
sible eight columns in the two-sided configuration leads to
the worst maximum channel load. As shown in Section 3.3,
a maximum channel load of four times the injection rate
still allows the embedded 64-node NoC to handle 10-Gigabit
Ethernet traffic, as the maximum supported link bandwidth
is approximately six times the injection rate (∼59 Gbps).
By using our custom two-sided routing algorithm, Column-
Select, the maximum channel load under stressful permu-
tation traffic is reduced to twice the injection rate. The
two-sided switch configuration can thus support the same
throughput as the other configurations, and at the least
area cost since it does not need additional pipeline regis-
ters for its soft transceiver-to-NoC connections. The Smart
DOR custom four-sided routing algorithm achieves the same
maximum channel load reduction.

If a designer wishes to keep the routing algorithm simple,
then the results show that changing to a Diamond or Dense
configuration can also reduce the maximum channel load to
twice the injection rate, while keeping the routing algorithm
as a simple YX DOR scheme. This flexibility highlights
one of the benefits of using a FPGA; the switch designer
can choose whether to use an improved routing algorithm
or change the switch injection points in the NoC in order to
achieve their desired throughput.

Overall, through routing algorithm and/or configuration
changes, the worst-case maximum channel load of the NoC-
based crossbar can be brought down to as low as twice the
injection rate (Table 5). Since the maximum link capacity
that can be supported by the 64-node, 64-bit wide NoC is
59.3 Gbps, the maximum injection rate that can be fully

Switch Routing Max. Channel Load
Configuration Algorithm (R: injection rate)

UR Permutation

Two-sided
YX 2R 4R

Min Adapt 2R 4R
Column-Select 1R 2R

Four-sided
YX 1R 4R

Min Adapt 1R 4R
Smart DOR 1R 2R

Diamond
YX 1R 2R

Min Adapt 1R 2R

Dense
YX 1R 2R

Min Adapt 1R 2R

Table 5: Maximum channel load of different switch
configurations and routing algorithms

supported is 29.6 Gbps. Thus, the HNS crossbar can fully
support a 16×16 switch with an aggregate bandwidth of 474
Gbps (29.6 Gbps per port). In the general case of uniform
random traffic, maximum channel load can be reduced to the
injection rate. Under such traffic, the crossbar can support
an aggregate injection bandwidth of up to 948 Gbps (59.25
Gbps per port).

5.3 Latency Results
Packet and flit latency results for each HNS configuration

are shown in Figure 10. The flit latencies are compared
with the zero-load latency of each configuration. The zero-
load latency is defined as the average flit latency over all
source-destination pairs when there is no routing contention.
This acts as the lower bound flit latency for each crossbar
configuration.

When comparing the four different HNS configurations
with basic YX routing, the two-sided configuration has the
lowest area consumption, but worst latency. Because it con-
nects each transceiver to its nearest router, it does not need
any long connections that require pipeline registers. How-
ever, this is also its downfall; the six innermost columns
of routers add unnecessary latency to the network. Using
YX routing creates severe contention, as multiple source-
destination pairs are routed along shared paths. Interest-
ingly, the ability of minimal adaptive routing to adapt to
network contention does not reduce latency in the two-sided
configuration. This is likely because the majority of con-
tention in the network happens when routing within the
east-most or west-most columns of the mesh. Since the path
choices available to minimal adaptive routing must be min-
imum paths, the algorithm cannot escape contention when
routing within those two columns. A fully adaptive routing
algorithm could better steer away from this contention, but
would require a more complex router to support it [14].

In Section 3, we showed that a custom oblivious routing
algorithm can be designed to make better use of the network
resources, thereby reducing network contention. This is ver-
ified by Figure 10, as the Column-Select and Smart DOR
algorithms lead to a packet latency reduction of 15.8% and
15.1%, respectively, under stressful permutation traffic.

The four-sided, diamond, and dense crossbar configura-
tions take advantage of better injection point placement to

50

70

90

110

130

150

170

190

210

230

250

Two-sided Four-sided Diamond Dense

Pa
ck

et
 L

at
en

cy
 (

n
s)

YX Min Adapt Custom DOR

(a) Packet latency under UR traffic

50

70

90

110

130

150

170

190

210

230

250

Two-sided Four-sided Diamond Dense

Pa
ck

et
 L

at
en

cy
 (

n
s)

YX Min Adapt Custom DOR

(b) Packet latency under permutation traffic

0

10

20

30

40

50

60

70

80

Two-sided Four-sided Diamond Dense

FL
it

 L
at

en
cy

 (
n

s)

YX Min Adapt Cusom DOR Zero Load

(c) Flit latency under UR traffic

0

10

20

30

40

50

60

70

80

Two-sided Four-sided Diamond Dense
Fl

it
 L

at
en

cy
 (

n
s)

YX Min Adapt Custom DOR Zero Load

(d) Flit latency under permutation traffic

Figure 10: Packet and flit latency under uniform random (UR) and stress permutation traffic. “Custom DOR”
refers to Column-Select for the two-sided configuration, and Smart DOR for the four-sided configuration.

reduce network contention. Under uniform random traf-
fic, the dense configuration has the lowest latency results
thanks, in part, to its reduced zero-load latency. However,
the diamond configuration succeeds the most at spread-
ing traffic throughout the 64-node mesh, thus achieving the
best performance under stressful permutation traffic. With
simple YX DOR, changing the crossbar configuration from
two-sided to a diamond results in a latency reduction of
48.7%. In fact, permutations of SSSD traffic lead to better
diamond performance compared to uniform random traf-
fic where MSSD traffic is possible. This is because a dia-
mond’s injection point placement keeps most distinct source-
destination routes separated, allowing it to handle SSSD
traffic with minimal congestion. The fact that the diamond’s
flit latency approaches the zero-load latency of the config-
uration verifies that congestion is very low. The diamond
configuration therefore performs best for the crossbar func-
tionality of the switch fabric.

6. DISCUSSION

6.1 Area and Performance Wins
In proposing the HNS, we sought to present an impor-

tant FPGA application that could benefit from an embed-
ded NoC. The HNS yielded advantages over previous ef-
ficient FPGA-based switch designs, such as the memory-
based switch, confirming that a NoC-enhanced FPGA would
be a useful architecture for this application. In Section 4, we
showed the hard-NoC switch was 5.3×-6.6× more area effi-

cient than the memory-based switch. In order to compare
latency, we consider the fact that the crossbar traversal la-
tency of Dai and Zhu’s MBS is 250 ns (Table 1). The average
crossbar traversal latency of the HNS is measured by the flit
latency in Figure 10. The diamond configuration has an av-
erage flit latency of 31 ns under both uniform random and
stressful permutation traffic – more than 8× better than the
memory-based switch. This performance advantage can be
largely attributed to the NoC’s higher clock frequency (926
MHz vs. 160 MHz).

Freeing the FPGA’s programmable logic in the HNS de-
sign leaves potential for other system components to run in
parallel. Packet processing is a possible application, as it
could perform packet manipulations necessary for a given
protocol. Attig and Brebner showed that packet parsing
logic that can handle up to 343 Gbps of Ethernet traffic
consumes 9.2% of a Virtex-7 device [7], which can easily fit
alongside the HNS.

One key feature of the embedded NoC is its ability to
easily interface with all of the different FPGA I/Os. This
includes the ability to communicate with DDR memory [1].
Should a certain output port on the FPGA be overloaded
by a burst of traffic, packets destined for that port could
be steered to the FPGA DDR controller through the NoC
and temporarily buffered in DDR until the traffic burst
subsides. Thus, packets could be preserved, rather than
dropped, while network issues are handled elsewhere. Traf-
fic management logic to handle such a scenario could be
implemented in the FPGA’s programmable logic fabric.

6.2 Preserving the FPGA’s Generality
Direct network topologies, such as a mesh or torus, are

not designed for high-radix switching applications. Instead,
indirect networks, where a node can only act as either a ter-
minal (injects/accepts packets) or a router (routes packets),
provide better suited topologies. For example, Ahn et al.
investigated indirect Clos and butterfly topologies for their
ASIC-based NoC-switch [6]. However, the NoC-enhanced
FPGA used in our design was not built specifically for a
switch application; Abdelfattah and Betz sought to intro-
duce a new communication architecture that would benefit
many different FPGA applications [1]. A mesh is a low-cost
topology that efficiently services the entire FPGA.

Despite using a mesh topology, the HNS design can
still support high throughputs at low latencies, and scale
to even higher throughputs in an area-efficient way (Sec-
tion 6.3). The coupling of the FPGA programmable fab-
ric with the hard NoC makes this possible; customizing the
NoC injection points via the programmable interconnect led
to 48.7% reduction in latency. Implementing application-
specific routing algorithms also led to significant latency im-
provements. All of this was done without sacrificing the gen-
erality of the FPGA; an entirely distinct application could
efficiently use the same NoC by setting up its own injec-
tion points and routing algorithm. In contrast, Karadeniz
et al. also used the FPGA to build a NoC-based switch
without sacrificing the FPGA’s generality [19], but the cost
of building the entire design from the FPGA fabric resulted
in 6.9×-8.4× worse area consumption.

6.3 Scalability
With high bandwidth applications such as server virtu-

alization and cloud computing becoming increasingly com-
mon, switch fabrics must be able to scale efficiently to serve
growing bandwidth demands. This includes being able to
support the next generation of Ethernet. Chanda of Cisco
Systems described 40-Gigabit Ethernet as “the next logical
step in the evolution of the data network,” predicting that 40
GbE switching will completely replace 10 GbE by 2018 [10].
By using a NoC-enhanced FPGA for our switch fabric, we
present a flexible design capable of being reconfigured to
support new generations of traffic protocols.

We now propose scaling the HNS design to support 40-
Gigabit Ethernet. If the aggregate bandwidth that needs to
be supported by the switch remains 160 Gbps, then the radix
of the switch reduces from 16×16 to 4×4. In this scenario,
the architecture of the NoC-based crossbar does not need
to change. The programmable logic bringing the data from
the transceivers to the NoC can be reconfigured to split all
40-Gigabit traffic entering the chip into four different injec-
tion points into the NoC, which are independently switched
to the output, then re-assembled by more programmable
logic before being brought to the output transceiver. The
NoC-based crossbar effectively remains 16×16, but is now
supporting a 4×4 switch of higher port bandwidth through
channel bonding. The FPGA’s logic would need to be wide
and fast enough to handle 40 Gbps, which can be done by
running 128-bit wide buses at 312.5 MHz, or 256-bit wide
buses at 156.25 MHz. Both of these can be supported by
the latest FPGA devices.

It is more likely that the aggregate bandwidth demand
on the switch will also increase with future generations of
Ethernet. Let us consider a 16×16 switch fabric that must

0

50

100

150

200

250

300

0

500

1000

1500

2000

2500

3000

16 48 80 112 144 176 208 240 272

M
ax

 L
in

k
C

ap
ac

it
y

(G
b

/s
)

A
re

a
(L

A
B

s)

Channel Width (bits)

Area Max Link Capacity

Figure 11: Hardware cost and max link capacity of
varying the 64-node NoC’s channel width [2]

support 40-Gigabit Ethernet at each of its ports – an ag-
gregate bandwidth of 640 Gbps. As is shown in Section 5,
the 64-node, 64-bit wide NoC-crossbar can fully support an
aggregate bandwidth of 474 Gbps, while offering up to 948
Gbps in the uniform random case. To fully support a 640
Gbps switch, architectural changes to the NoC are needed.

We propose widening the NoC channel width from 64-bit
to 128-bit as an efficient and feasible method of scaling the
crossbar. Widening the NoC’s channels increases its link
capacity from 59.26 to 117.4 Gbps, at an area increase of
1.7× (Figure 11). The total logic area of the 64-node, 128-bit
wide NoC still only consumes 3.6% of a Stratix V-5SGTC5
FPGA. Thus, this widened NoC can efficiently implement a
16×16 crossbar capable of fully supporting up to 939 Gbps
in aggregate bandwidth (58.7 Gbps at each port).

Future generations of Ethernet will undoubtedly support
bandwidths that go beyond 40 Gbps. 100-Gigabit Ethernet
is already on the horizon, with talk of 1-Terabit Ethernet
soon becoming a possibility. As illustrated in Figure 11,
widening channel width beyond 128 bits can continue to pro-
vide even higher throughput, at the cost of more transistor
consumption. We predict that as the number of transistors
on a chip continues to grow in future generations of FPGAs,
having an embedded NoC with wider channels will remain
a small fraction of the device’s area budget. Thus, widen-
ing the NoC’s channel width provides a means to efficiently
scale the HNS design to future generations of Ethernet.

7. CONCLUSION
As FPGAs continue to support increasingly high I/O

bandwidth, there is a growing need for a new FPGA in-
terconnect architecture that can better support such data
rates. Abdelfattah and Betz propose embedding a network-
on-chip in the FPGA silicon, thereby providing designers
a new interconnect that raises the level of abstraction and
makes it simpler to close timing for high throughput designs.

In this work, we present an important FPGA application
that can benefit from an embedded NoC. A network switch
fabric designed using the NoC to perform the crossbar func-
tion is shown to support 16×16 switching at 10-Gigabit Eth-
ernet rates. Additionally, we show how a designer can use
the FPGA’s reconfigurable fabric to customize the switch
to support different traffic protocols and different NoC in-
jection points. Four different injection point placements are
proposed. Arranging the traffic injection points in a “dia-

mond” configuration leads to the best latency results, offer-
ing a 48.7% improvement over a “two-sided” configuration.

Customizing the NoC’s routing algorithm also proved to
be an effective way to improve its performance. By devel-
oping a Column-Select algorithm for the two-sided configu-
ration, and a Smart DOR algorithm for the four-sided con-
figuration, we achieve 15.8% and 15.1% latency reduction,
respectively. Additionally, the algorithms allow the con-
figurations to improve their maximum supported aggregate
bandwidth from 237 Gbps to 474 Gbps, matching the band-
width’s of the “diamond” and “dense” configurations. Each
of the configurations also managed to support up to 948
Gbps in aggregate bandwidth given uniform random traffic.

The NoC-based design is compared to another implemen-
tation of a switch done by Dai and Zhu using the traditional
FPGA resources. Dai and Zhu’s switch design takes advan-
tage of the FPGA’s hardened SRAM resources to saturate
the transceiver bandwidth. The diamond HNS design con-
sumes 5.8× less area and achieves an 8.1× latency reduction.

Finally, we show that widening the channels of the embed-
ded NoC is an effective way to scale the switch to support fu-
ture generations of Ethernet traffic, such as 40 and 100 GbE.
The “hard-NoC switch” can support the high bandwidth of
modern switch fabric design while preserving significant flex-
ibility through the use of the FPGA’s programmable logic.
We conclude that network switch fabric designs clearly ben-
efit from a NoC-enhanced FPGA, providing support for the
inclusion of an embedded NoC in future FPGA devices.

8. ACKNOWLEDGEMENTS
The authors would like to thank Mohamed Abdelfattah

and Mario Badr for their insightful discussions and opinions,
David Lewis and Tim Vanderhoek for providing Stratix V
relative block areas, and the anonymous reviewers for their
valuable feedback. This work was supported by NSERC,
Altera, and a QEII-GSST scholarship.

9. REFERENCES
[1] M. Abdelfattah and V. Betz. The case for embedded

networks-on-chip on FPGAs. IEEE Micro, pages
80–89, 2013.

[2] M. S. Abdelfattah. NoC Designer. http://www.eecg.
utoronto.ca/~mohamed/noc_designer.html, 2013.
Accesed: 2014-05-07.

[3] M. S. Abdelfattah and V. Betz. Design tradeoffs for
hard and soft FPGA-based Networks-on-Chip. In
FPT, pages 95–103, 2012.

[4] M. S. Abdelfattah and V. Betz. The power of
communication: Energy-efficient NOCS for FPGAS.
In FPL, pages 1–8. IEEE, 2013.

[5] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and
M. H. Lipasti. Achieving predictable performance
through better memory controller placement in
many-core CMPs. In SIGARCH, volume 37, pages
451–461. ACM, 2009.

[6] J. H. Ahn, S. Choo, and J. Kim. Network within a
network approach to create a scalable high-radix
router microarchitecture. In HPCA, pages 1–12. IEEE,
2012.

[7] M. Attig and G. Brebner. 400 Gb/s programmable
packet parsing on a single FPGA. In ANCS, pages
12–23. IEEE, 2011.

[8] D. U. Becker. Efficient microarchitecture for
network-on-chip routers. PhD thesis, Stanford
University, 2012.

[9] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN. In
SIGCOMM, pages 99–110. ACM, 2013.

[10] G. Chanda. The market need for 40 gigabit ethernet.
Technical report, Cisco Systems, 2012.

[11] Z. Dai and J. Zhu. Saturating the transceiver
bandwidth : Switch fabric design on FPGAs. In
FPGA, pages 67–75, 2012.

[12] W. J. Dally. Virtual-channel flow control. IEEE
TPDS, 3(2):194–205, 1992.

[13] W. J. Dally and B. Towles. Route packets, not wires:
On-chip interconnection networks. In DAC, pages
684–689. IEEE, 2001.

[14] W. J. Dally and B. P. Towles. Principles and practices
of interconnection networks. Elsevier, 2004.

[15] J. Duato. A new theory of deadlock-free adaptive
routing in wormhole networks. TPDS,
4(12):1320–1331, 1993.

[16] K. Goossens, L. Mhamdi, and I. V. Senin.
Internet-router buffered crossbars based on networks
on chip. In DSD, pages 365–374, 2009.

[17] IEEE Standard 802.3 for Ethernet. Technical report,
IEEE, 2012.

[18] N. Jiang, D. U. Becker, G. Michelogiannakis,
J. Balfour, B. Towles, D. Shaw, J. Kim, and W. Dally.
A detailed and flexible cycle-accurate network-on-chip
simulator. In ISPASS, pages 86–96. IEEE, 2013.

[19] T. Karadeniz, L. Mhamdi, K. Goossens, and J. J.
Garcia-Luna-Aceves. Hardware design and
implementation of a network-on-chip based load
balancing switch fabric. In ReConFig, pages 1–7, 2012.

[20] I. Kuon and J. Rose. Measuring the gap between
FPGAs and ASICs. TCAD, 26(2):203–215, 2007.

[21] D. Lewis. Altera, personal communication, April 2014.

[22] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: enabling innovation in campus
networks. SIGCOMM, 38(2):69–74, 2008.

[23] L. Mhamdi, K. Goossens, and I. V. Senin. Buffered
crossbar fabrics based on networks on chip. In CNSR,
pages 74–79, 2010.

[24] T. Nesson and S. L. Johnsson. ROMM routing on
mesh and torus networks. In SPAA, pages 275–287.
ACM, 1995.

[25] M. K. Papamichael and J. C. Hoe. Connect:
Re-examining conventional wisdom for designing NoCs
in the context of FPGAs. In FPGA, pages 37–46.
ACM, 2012.

[26] K. Underwood, E. Borch, J. Sizer, T. Stremcha, and
M. Strom. Evaluating on-die interconnects for a
4TB/s router. In ICS, pages 203–212, 2013.

[27] L. G. Valiant and G. J. Brebner. Universal schemes
for parallel communication. In Theory of computing,
pages 263–277. ACM, 1981.

[28] Xilinx Inc. Xilinx Virtex Family Datasheets.

