
4  IEEE CIRCUITS AND SYSTEMS MAGAZINE  1531-636X/21©2021IEEE SECOND QUARTER 2021

Feature

Since their inception more than thirty years ago, field-programma-
ble gate arrays (FPGAs) have been widely used to implement 
a myriad of applications from different domains. As a result of 
their low-level hardware reconfigurability, FPGAs have much 
faster design cycles and lower development costs compared to 
custom-designed chips. The design of an FPGA architecture in-
volves many different design choices starting from the high-level 
architectural parameters down to the transistor-level implemen-
tation details, with the goal of making a highly programmable 
device while minimizing the area and performance cost of recon-
figurability. As the needs of applications and the capabilities of 
process technology are constantly evolving, FPGA architecture 
must also adapt. In this article, we review the evolution of the 
different key components of modern commercial FPGA archi-
tectures and shed the light on their main design principles and 
implementation challenges.

I. Introduction

F ield-programmable gate arrays (FPGAs) are recon-
figurable computer chips that can be programmed 
to implement any digital hardware circuit. As de-

picted in Fig. 1, FPGAs consist of an array of different 
types of programmable blocks (logic, IO, and others) that 
can be flexibly interconnected using pre-fabricated rout-
ing tracks with programmable switches between them. 
The functionality of all the FPGA blocks and the con-
figuration of the routing switches are controlled using 
millions of static random access memory (SRAM) cells 
that are programmed (i.e. written) at runtime to realize 
a specific function. The user describes the desired func-
tionality in a hardware description language (HDL) such 
as Verilog or VHDL, or possibly uses high-level synthesis 
to translate C or OpenCL to HDL. The HDL design is then 
compiled using a complex computer-aided design (CAD) 
flow into the bitstream file used to program all the FPGA’s 
configuration SRAM cells.

Compared to building a custom application-specific 
integrated circuit (ASIC), FPGAs have a much lower non-
recurring engineering cost and shorter time-to-market. 
A pre-fabricated off-the-shelf FPGA can be used to imple-
ment a complete system in a matter of weeks, skipping the 
physical design, layout, fabrication, and verification stag-
es that a custom ASIC would normally go through. They 
also allow continuous hardware upgrades to support new 
features or fix bugs by simply loading a new bitstream af-
ter deployment in-field, thus the name field-programmable. 

Abstract

FPGA Architecture: 
Principles and Progression

Andrew Boutros and Vaughn Betz

Digital Object Identifier 10.1109/MCAS.2021.3071607 

Date of current version: 24 May 2021

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 

 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 5

©SHUTTERSTOCK.COM/ULVUR

This makes FPGAs a compelling solution for medium and 
small volume designs, especially with the fast-paced prod-
uct cycles in today’s markets. The bit-level reconfigu-
rability of FPGAs enables implementation of the exact 
hardware needed for each application (e.g. datapath bit-
width, pipeline stages, number of parallel compute units, 
memory subsytem, etc.) instead of the fixed one-size-fits-
all architecture of general-purpose processors (CPUs) 
or graphics processing units (GPUs). Consequently, they 
can achieve higher efficiency than CPUs or GPUs by im-
plementing instruction-free streaming hardware [1] or a 
processor overlay with an application-customized pipe-
line and instruction set [2].

These advantages motivated the adoption of FPGAs in 
many application domains including wireless communi-
cations, embedded signal processing, networking, ASIC 
prototyping, high-frequency trading, and many more [3]–
[7]. They have also been recently deployed on a large 
scale in datacenters to accelerate search engines [8], 

packet processing [9], and machine learning [10] work-
loads, among others. However, the flexibility of FPGA 
hardware comes with an efficiency cost vs. ASICs. Kuon 
and Rose [11] show that circuits using only the FPGA’s 
programmable logic blocks average 35# larger and 4# 
slower than corresponding ASIC implementations. A 
more recent study [12] shows that for full-featured de-
signs which heavily utilize the other FPGA blocks (e.g. 
RAMs and DSPs), this area gap is reduced but is still 

.9#  FPGA architects seek to reduce this efficiency gap 
as much as possible while maintaining the program-
mability that makes FPGAs useful across a wide range 
of applications.

In this article, we intro-
duce key principles of FPGA 
architecture, and highlight the 
progression of these devices 
over the past 30 years. Fig. 1 
shows how FPGAs evolved 
from simple arrays of pro-
grammable logic and IO blocks 
to complex heterogeneous 
multi-die systems with embed-
ded block RAMs, digital signal 
processing (DSP) blocks, pro-
cessor subsystems, diverse 
high-performance external 
interfaces, system-level inter-
connect, and more. First, we 
give a brief overview of the 
CAD flows and methodol-
ogy used to evaluate new 
FPGA architecture ideas. 
We then detail the architec-
ture challenges and design 
principles for each of the 
key components of an FPGA. 
We highlight key innovations 
in the design and implemen-
tation of each of these com-
ponents over the past three 
decades along with areas of 
ongoing research.

II. FPGA Architecture Evaluation
As shown in Fig. 2, the FPGA architecture evaluation flow 
consists of three main components: a suite of benchmark 
applications, an architecture model, and a CAD system. 
Unlike an ASIC built for a specific functionality, an FPGA 
is a general-purpose platform designed for many use 

Andrew Boutros and Vaughn Betz are with the Department of Electrical and Computer Engineering, University of Toronto and the Vector Institute for 
Artificial Intelligence. (email: andrew.boutros@mail.utoronto.ca, vaughn@eecg.utoronto.ca).

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



6  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

cases, some of which may not even exist when the FPGA 
is architected. Therefore, an FPGA architecture is evalu-
ated based on its efficiency when implementing a wide 
variety of benchmark designs that are representative of 
the key FPGA markets and application domains. Typically, 
each FPGA vendor has a carefully selected set of bench-
mark designs collected from proprietary system imple-
mentations and various customer applications. There are 
also several open-source benchmark suites such as the 
classic MCNC20 [13], the VTR [14], and the Titan23 [15] 

suites which are commonly used in academic FPGA archi-
tecture and CAD research. While early academic FPGA re-
search used the MCNC suite of designs, these circuits are 
now too small (thousands of logic primitives) and simple 
(only IOs and logic) to represent modern FPGA use cases. 
The VTR and particularly the Titan suite are larger and 
more complex, making them more representative, but as 
FPGA capacity and application complexity continues to 
grow new benchmark suites are regularly needed.

The second part of the evaluation flow is the FPGA ar-
chitecture model. The design of an FPGA involves many 
different decisions from architecture-level organization 
(e.g. number and type of blocks, distribution of wire seg-
ment lengths, size of logic clusters and logic elements) 
down to transistor-level circuit implementation (e.g. pro-
grammable switch type, routing buffer transistor sizing, 
register implementation). It also involves different imple-
mentation styles; the logic blocks and programmable 
routing are designed and laid out as full-custom circuits, 
while most hardened blocks (e.g. DSPs) mix standard-cell 
and full-custom design for the block core and peripher-
als, respectively. Some blocks (RAM, IO) even include sig-
nificant analog circuitry. All these different components 
need to be carefully modeled to evaluate the FPGA archi-
tecture in its entirety. This is typically captured using an 
architecture description file that specifies the organiza-
tion and types of the different FPGA blocks and the rout-
ing architecture, in addition to area, timing and power 
models obtained from circuit-level implementations for 
each of these components.

Finally, a re-targetable CAD system such as VTR [14] is 
used to map the selected benchmark applications on the 
specified FPGA architecture. Such a CAD system consists 
of a sequence of complex optimization algorithms that 
synthesizes a benchmark written in an HDL into a circuit 
netlist, maps it to the different FPGA blocks, places the 
mapped blocks at specific locations on the FPGA, and 
routes the connections between them using the specified 
programmable routing architecture. The implementation 
produced by the CAD system is then used to evaluate 
several key metrics. Total area is the sum of the areas 
of the FPGA blocks used by the application, along with 
the programmable routing included with them. A timing 
analyzer finds the critical path(s) through the blocks and 
routing to determine the maximum frequencies of the 
application’s clock(s). Power consumption is estimated 
based on resources used and signal toggle rates. FPGAs 
are never designed for only one application, so these 
metrics are averaged across all the benchmarks. Finally, 
the overall evaluation blends these average area, delay, 
and power metrics appropriately depending on the archi-
tecture goal (e.g. high performance or low power). Other 
metrics such as CAD tool runtime and whether or not the 

Benchmark 
Applications

Architecture 
Model

Architecture 
Description File

Area and  Timing 
Models

Area, Timing and 
Power Metrics

CAD System 

Synthesis

Placement

Routing

Figure 2. FPGA architecture evaluation flow.

Processor
Subsystem P

C
Ie

 C
on

tr
ol

le
r

Memory 
Controller

Block
RAMs

DSPs

Prog.
IOs

Logic 
Blocks

Figure 1. Early FPGA architecture with programmable logic 
and IOs vs. modern heterogeneous FPGA architecture with 
RAMs, DSPs, and other hard blocks. All blocks are intercon-
nected using bit-level programmable routing.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 7

CAD tools fail to route some benchmarks on an architec-
ture are also often considered.

As an example, a key set of questions in FPGA archi-
tecture is: What functionality should be hardened (i.e. 
implemented as a new ASIC-style block) in the FPGA ar-
chitecture? How flexible should this block be? How much 
of the FPGA die area should be dedicated to it? Ideally, 
an FPGA architect would like the hardened functional-
ity to be usable by as many applications as possible at 
the least possible silicon cost. An application that can 
make use of the hard block will benefit by being smaller, 
faster and more power-efficient than when implemented 
solely in the programmable fabric. This motivates having 
more programmability in the hard block to capture more 
use cases; however, higher flexibility generally comes at 
the cost of larger area and reduced efficiency of the hard 
block. On the other hand, if a hard block is not usable 
by an application circuit, its silicon area is wasted; the 
FPGA user would rather have more of the usable general-
purpose logic blocks in the area of the unused hard block. 
The impact of this new hard block on the programmable 
routing must also be considered—does it need more inter-
connect or lead to slow routing paths to and from the block? 
To evaluate whether a specific functionality should be hard-
ened or not, both the cost and gain 
of hardening it have to be quantified 
empirically using the flow described 
in this section. FPGA architects may 
try many ideas before landing on the 
right combination of design choices 
that adds just the right amount of 
programmability in the right spots to 
make this new hard block a net win.

In the following section, we detail 
many different components of FP-
GAs and key architecture questions 
for each. While we describe the key 
results without detailing the experi-
mental methodology used to find 
them, in general they came from a 
holistic architecture evaluation flow 
similar to that in Fig. 2.

III. FPGA Architecture Evolution

A. Programmable Logic
The earliest reconfigurable com-
puting devices were programmable 
array logic (PAL) architectures. PALs 
consisted of an array of and gates 
feeding another array of or gates, 
as shown in Fig. 3, and could imple-
ment any Boolean logic expression 

as a two-level sum-of-products function. PALs achieve 
configurability through programmable switches that se-
lect the inputs to each of the and/or gates to implement 
different Boolean expressions. The design tools for PALs 
were very simple since the delay through the device is 
constant no matter what logic function is implemented. 
However, PALs do not scale well; as device logic capacity 
increased, the wires forming the and/or arrays became 
increasingly longer and slower and the number of pro-
grammable switches required grew quadratically.

Subsequently, complex programmable logic devices 
(CPLDs) kept the and/or arrays as the basic logic ele-
ments, but attempted to solve the scalability challenge 
by integrating multiple PALs on the same die with a 
crossbar interconnect between them at the cost of more 
complicated design tools. Shortly after, Xilinx pioneered 
the first lookup-table-based (LUT-based) FPGA in 1984, 
which consisted of an array of SRAM-based LUTs with 
programmable interconnect between them. This style 
of reconfigurable devices was shown to scale very well, 
with LUTs achieving much higher area efficiency com-
pared to the and/or logic in PALs and CPLDs. Conse-
quently, LUT-based architectures became increasingly 
dominant and today LUTs form the fundamental logic 

I0

O0

AND Array

OR Array

Inputs

Outputs

I1 I2 I3 I4

O1 O2 O3

Figure 3. Programmable array logic (PAL) architecture with an and array feeding an or 
array. The crosses are reconfigurable switches that are used to program any Boolean 
expression as a two-level sum-of-products function.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



8  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

element in all commercial FPGAs. Several research at-
tempts [16]–[18] investigated replacing LUTs with a dif-
ferent form of configurable and gates: a full binary tree 
of and gates with programmable output/input inversion 
known as an and-inverter cone (AIC). However, when 
thoroughly evaluated in [19], AIC-based FPGA architec-
tures had significantly larger area than LUT-based ones, 

with delay gains only on small benchmarks that have 
short critical paths.

A K-LUT can implement any K-input Boolean function 
by storing its truth table in configuration SRAM cells. 
K input signals are used as multiplexer select lines to 
choose an output from the 2K  values of the truth table. 
Fig. 4(a) shows the transistor-level circuit implementation 

(a) (c)

(d)

(b)

Vdd

Vdd

Vdd

Vdd

Vdd

A B C D

SRAMs Input
Buffers

Internal Buffers

Output
Buffer

Vdd

…I00 I01 I0N

…I10 I12 I1N

IM0 IM1 IMN
…

…

First Level

Second Level

Output
Buffer

SRAMs

K
-L

U
T…

Basic Logic Element (BLE)

Ofeedback

OroutingK
 In

pu
ts

Logic Block (LB)

BLE 1

BLE 2

BLE N

…

…

…

…

…
…

…

…
…

…

…
…

…

…

…

Horizontal
Routing

Vertical
Routing

Local Crossbar Switch Block
Multiplexer

Connection Block
Multiplexers

Ofeedback

Orouting

I Inputs

… …

…
…

…
…

…
…

…

…

…

Figure 4. (a) Transistor-level implementation of a 4-LUT with internal buffers between the second and third LUT stages,  
(b) Two-level multiplexer circuitry, (c) Basic logic element (BLE), and (d) Logic block (LB) internal architecture.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 9

of a 4-LUT using pass-transistor logic. In addition to the 
output buffer, an internal buffering stage (shown between 
the second and third stages of the LUT in Fig. 4(a)) is typi-
cally implemented to mitigate the quadratic increase in 
delay when passing through a chain of pass-transistors. 
The sizing of the LUT’s pass-transistors and the internal/
output buffers is carefully tuned to achieve the best area-
delay product. Classic FPGA literature [20] defines the 
basic logic element (BLE) as a K-LUT coupled with an out-
put register and bypassing 2:1 multiplexers as shown in 
Fig. 4(c). Thus, a BLE can either implement just a flip-flop 
(FF) or a K-LUT with registered or unregistered output. 
As illustrated in Fig. 4(d), BLEs are typically clustered 
in logic blocks (LBs), such that an LB contains N BLEs 
along with local interconnect. The local interconnect in 
the logic block consists of multiplexers between signal 
sources (BLE outputs and logic block inputs) and des-
tinations (BLE inputs). These multiplexers are often ar-
ranged to form a local full [21] or partial [22] crossbar. 
At the circuit level, these multiplexers are usually built 
as two levels of pass transistors, followed by a two-stage 
buffer as shown in Fig. 4(b); this is the most efficient cir-
cuit design for FPGA multiplexers in most cases [23]. 
Fig. 4(d) also shows the switch and connection block 
multiplexers forming the programmable routing that al-
lows logic blocks to connect to each other; this routing is 
discussed in detail in Section III-B.

Over the years, the size of both LUTs (K) and LBs 
(N) have gradually increased as device logic capacity 
has grown. As K increases, more functionality can be 
packed into a single LUT, reducing not only the number 
of LUTs needed but also the number of logic levels on 
the critical path, which increases performance. In addi-
tion, the demand for inter-LB routing decreases as more 
connections are captured into the fast local intercon-
nect by increasing N. On the other hand, the area of 
the LUT increases exponentially with K (due to the 2K  
SRAM cells) and its speed degrades linearly (as the mul-
tiplexer constitutes a chain of K pass transistors with 
periodic buffering). If the LB local interconnect is imple-
mented as a crossbar, its size increases quadratically 
and its speed degrades linearly with the number of BLEs 
in the LB, N. Ahmed and Rose [24] empirically evaluated 
these trade-offs and concluded that LUTs of size 4–6 and 
LBs of size 3–10 BLEs offer the best area-delay product 
for an FPGA architecture, with 4-LUTs leading to a bet-
ter area but 6-LUTs yielding a higher speed. Historically, 
the first LUT-based FPGA from Xilinx, the XC2000 series 
in 1984, had an LB that contained only two 3-LUTs (i.e. 

, ).N K2 3= =  LB size gradually increased over time 
and by 1999, Xilinx’s Virtex family included four 4-LUTs 
and Altera’s Apex 20K family included ten 4-LUTs in 
each LB.

The next major change in architecture came in 2003 
from Altera, with the introduction of fracturable LUTs 
in their Stratix II architecture [25]. Ahmed and Rose in 
[24] showed that an LB with ten 6-LUTs achieved 14% 
higher performance than a LB with ten 4-LUTs, but at a 
17% higher area. Fracturable LUTs seek to combine the 
best of both worlds, achieving the performance of a larg-
er LUT with the area-efficiency of smaller LUTs. A major 
factor in the area increase with traditional 6-LUTs is un-
der-utilization: Lewis et al. found that 64% of the LUTs in 
benchmark applications used fewer than 6 inputs, wast-
ing some of a 6-LUT’s functionality [26]. A fracturable {K, 
M}-LUT can be configured as a single LUT of size K or can 
be fractured into two LUTs of size up to K – 1 that col-
lectively use no more than K + M distinct inputs. Fig. 5(a) 
shows that a 6-LUT is internally composed of two 5-LUTs 
plus a 2:1 multiplexer. Consequently, almost no circuitry 
(only the red added output) is necessary to allow a 6-LUT 
to instead operate as two 5-LUTs that share the same in-
puts. However, requiring the two 5-LUTs to share all their 

(a)

(b)

A
B
C
D
E

F

5-
LU

T
5-

LU
T

6-LUT

O1

O2

1

0

5-
LU

T
5-

LU
T

A
B
C
D
E

F
6-LUT

G
H

O1

O2

1

1

0

Figure 5. 6-LUT fracturable into two 5-LUTs with (a) no ad-
ditional input ports, leading to 5 shared inputs (A-E) or (b) two 
additional input ports and steering multiplexers, leading to 
only 2 shared inputs (C, D).

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



10  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

inputs will limit how often both can be simultaneously 
used. Adding extra routing ports as shown in Fig. 5(b) 
increases the area of the fracturable 6-LUT, but makes 
it easier to find two logic functions that can be packed 
together into it. The adaptive logic module (ALM) in the 
Stratix II architecture implemented a {6, 2}-LUT that had 
8 input and 2 output ports. Thus, an ALM can implement 
a 6-LUT or two 5-LUTs sharing 2 inputs (and therefore 
a total of 8 distinct inputs). Pairs of smaller LUTs could 
also be implemented without any shared inputs, such 
as two 4-LUTs or one 5-LUT and one 3-LUT. With a frac-
turable 6-LUT, larger logic functions are implemented in 
6-LUTs reducing the logic levels on the critical path and 
achieving performance improvement. On the other hand, 
smaller logic functions can be packed together (each us-
ing only half an ALM), improving area-efficiency. The LB 
in Stratix II not only increased the performance by 15%, 
but also reduced the logic and routing area by 2.6% com-
pared to a baseline 4-LUT-based LB [26].

Xilinx later adopted a related fracturable LUT ap-
proach in their Virtex-5 architecture. Like Stratix II, a 
Virtex-5 6-LUT can be decomposed into two 5-LUTs. How-
ever, Xilinx chose to minimize the extra circuitry added 
for fracturability as shown in Fig. 5(a)—no extra input 
routing ports or steering multiplexers are added. This 
results in a lower area per fracturable LUT, but makes it 
more difficult to pack two smaller LUTs together as they 
must use no more than 5 distinct inputs [27]. While sub-
sequent architectures from both Altera/Intel and Xilinx 
have also been based on fracturable 6-LUTs, a recent Mi-
crosemi study [28] revisited the 4-LUT vs. 6-LUT efficien-
cy trade-off for newer process technologies, CAD tools 
and designs than those used in [24]. It shows that a LUT 
structure with two tightly coupled 4-LUTs, one feeding 

the other, can achieve performance close to plain 6-LUTs 
along with the area and power advantages of 4-LUTs. In 
terms of LB size, FPGA architectures from Altera/Intel 
and Xilinx converged on the use of relatively large LBs 
with ten and eight BLEs respectively, for several genera-
tions. However, the recently announced Versal architec-
ture from Xilinx further increases the number of BLEs per 
LB to thirty two [29]. The reasons for this large increase 
are two-fold. First, inter-LB wire delay is scaling poorly 
with process shrinks, so capturing more connections 
within an LB’s local routing is increasingly beneficial. 
Second, ever-larger FPGA designs tend to increase CAD 
tool runtime, but larger LBs can help mitigate this trend 
by simplifying placement and inter-LB routing.

Another important architecture choice is the number 
of FFs per BLE. Early FPGAs coupled a (non-fracturable) 
LUT with a single FF as shown in Fig. 4(c). When they 
moved to fracturable LUTs, both Altera/Intel and Xilinx 
architectures added a second FF to each BLE so that 
both outputs of the fractured LUT could be registered as 
shown in Fig. 5(a) and 5(b). In the Stratix V architecture, 
the number of FFs was further increased from two to four 
per BLE in order to accommodate increased demand for 
FFs as designs became more deeply pipelined to achieve 
higher performance [30]. Low-cost multiplexing circuitry 
allows sharing the existing inputs between the LUTs and 
FFs to avoid adding more costly routing ports. Stratix V 
also implements FFs as pulse latches instead of edge-
triggered FFs. As shown in Fig. 6(b), this removes one of 
the two latches that would be present in a master-slave 
FF (Fig. 6(a)), reducing the register delay and area. A 
pulse latch acts as a cheaper FF with worse hold time as 
it latches the data input during a very short pulse instead 
of a clock edge as in conventional FFs. If a pulse genera-
tor was built for each FF, the overall area per FF would 
increase rather than decrease. Instead, Stratix V contains 
only two configurable pulse generators per LB; each of 
the 40 pulse latches in an LB selects which generator 
provides its pulse input. The FPGA CAD tools can also 
program the pulse width in these generators, allowing a 
limited amount of time borrowing between source and 
destination registers. Longer pulses further degrade hold 
time, but generally any hold violations can be solved by 
the FPGA routing algorithm using longer wiring paths to 
delay signals. Xilinx also uses pulse latches as its FFs in 
its Ultrascale+ architecture [31].

Arithmetic operations (add and subtract) are very 
common in FPGA designs: Murray et al. found that 22% 
of the logic elements in a suite of FPGA designs were 
implementing arithmetic [32]. While these operations 
can be implemented with LUTs, each bit of arithmetic in 
a ripple carry adder requires two LUTs (one for the sum 
output and one for the carry). This leads to both high 

cpulse

cpulse

Q

Pulse Latch

D

(a)

(b)

clk

clk

clk

clk

D
Q

QLatch

Master Latch Slave Latch

Figure 6. Circuitry for (a) Master-slave positive-edge-trig-
gered flip-flop, and (b) Pulse latch.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 11

logic  utilization and a slow critical path due to connecting 
many LUTs in series to compute carries for multi-bit addi-
tions. Consequently, all modern FPGA architectures in-
clude hardened arithmetic circuitry in their logic blocks. 
There are many variants, but all have several common 
points. First, to avoid adding expensive routing ports, the 
arithmetic circuits re-use the LUT routing ports or are 
fed by the LUT outputs. Second, the carry bits are propa-
gated on special, dedicated interconnect with little or 
no programmability so that the crucial carry path is 
fast. The lowest cost arithmetic circuitry hardens ripple 
carry structures and achieves a large speed gain over 
LUTs ( .3 4# for a 32-bit adder in [32]). Hardening more 
sophisticated structures like carry skip adders further 
improves speed (an additional 20% speed-up at 32-bits in 
[33]). The latest Versal architecture from Xilinx hardens 
the carry logic for 8-bit carry look-ahead adders (i.e. the 
addition can only start on every eighth BLE), while the 
sum, propagate and generate logic is all implemented in 
the fracturable 6-LUTs feeding the carry logic as shown 
in Fig. 7(a) [29]. This organization allows implementing 
1-bit of arithmetic per logic element. On the other hand, 
the latest Intel Agilex architecture can implement 2-bits 
of arithmetic per logic element, with dedicated intercon-
nect for the carry between logic elements as shown in 
Fig. 7(b). It achieves that by hardening 2-bit carry-skip 
adders that are fed by the four 4-LUTs contained within 
a 6-LUT [34]. The study by Murray et al. [32] shows that 
the combination of fracturable LUTs and 2 bits of arith-
metic (similar to that adopted in Altera/Intel FPGAs) 
is particularly efficient compared to architectures with 
non-fracturable LUTs or 1 bit of arithmetic per logic ele-
ment. It also concludes that having dedicated arithmetic 
circuits (i.e. hardening adders and carry chains) inside 
the FPGA logic elements increases average performance 
by 75% and 15% for arithmetic microbenchmarks and 
general benchmark circuits, respectively.

Recently, deep learning (DL) has become a key work-
load in many end-user applications, with its core opera-
tion being multiply-accumulate (MAC). Generally, MACs 
can be implemented in DSP blocks as will be described 
in Section III-E; however low-precision MACs with 8-bit 
or narrower operands (which are becoming increasingly 
popular in DL workloads) can also be implemented ef-
ficiently in the programmable logic [9]. LUTs are used 
to generate the partial products of a multiplier array fol-
lowed by an adder tree to reduce the partial products 
and perform the accumulation. Consequently, multiple 
recent studies [35]–[37] have investigated increasing the 
density of hardened adders in the FPGA’s logic fabric to 
enhance its performance when implementing arithmetic-
heavy applications such as DL acceleration. The work in 
[36] and [37] proposed multiple different logic block ar-

chitectures that incorporate 4 bits of arithmetic per logic 
element arranged in one or two carry chains with different 
configurations, instead of just 2 bits of arithmetic in an Intel 
Stratix-like ALM. These proposals do not require increas-
ing the number of the (relatively expensive) routing ports 
in the logic clusters when implementing multiplications 
due to the high degree of input sharing in a multiplier ar-
ray (i.e. for an N-bit multiplier, only 2 N inputs are needed 
to generate N2 partial products). The most promising of 
these proposals increases the density of MAC operations 
by .1 7# while simultaneously improving their speed. It 
also reduces the required logic and routing area by 8% 
for general benchmarks, highlighting that more arithmetic 
density is beneficial for applications beyond DL.

A[i ]

Sum[i ]

B [i ]

Cout[i –1]

Cout[i ]

prop

gen

4-LUT

4-LUT

4-LUT

4-LUT

(a)

(b)

B [i ]

A[i ]

B [i+1]

A[i+1]

Sum[i ]

Sum[i+1]

Cout[i+1]

Cout[i–1]

C
ou

t[i
]

4-LUT

4-LUT

4-LUT

4-LUT

Figure 7. Overview of the hard arithmetic circuitry (in red) in 
the logic elements of (a) Xilinx and (b) Altera/Intel FPGAs. 
A[i] and B[i] are the ith bits of the two addition operands A 
and B. The Xilinx LEs compute carry propagate and gener-
ate in the LUTs, while the Altera/Intel ones use LUTs to pass 
inputs to the hard adders. Unlabled inputs are unused when 
implementing adders.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



12  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

B. Programmable Routing
Programmable routing commonly accounts for over 50% 
of both the fabric area and the critical path delay of ap-
plications [38], so its efficiency is crucial. Programmable 
routing is composed of pre-fabricated wiring segments 
and programmable switches. By programming an appro-
priate sequence of switches to be on, any function block 
output can be connected to any input. There are two 
main classes of FPGA routing architecture. Hierarchical 
FPGAs are inspired by the fact that designs are inherently 
hierarchical: higher-level modules instantiate lower level 
modules and connect signals between them. Communi-

cation is more frequent between 
modules that are near each other 
in the design hierarchy, and hier-
archical FPGAs can realize these 
connections with short wires that 
connect small regions of a chip. As 
shown in Fig. 8, to communicate to 
more distant regions of a hierarchi-
cal FPGA, a connection (highlight-
ed in red) passes through multiple 
wires and switches as it traverses 
different levels of the interconnect 
hierarchy. This style of architec-
ture was popular in many earlier 
FPGAs, such as Altera’s 7K and Apex 
20K families, but it leads to very long 
wires at the upper levels of the inter-
connect hierarchy which became 
problematic as process scaling 
made such wires increasingly resis-
tive. A strictly hierarchical routing 
architecture also results in some 
blocks that are physically close to-

gether (e.g. the blue blocks in Fig 8) which still require 
several wires and switches to connect. Consequently it 
is primarily used today for smaller FPGAs, such as the 
FlexLogix FPGA IP cores that can be embedded in larger 
SoC designs [39].

The other type of FPGA interconnect is island-style, 
as depicted in Fig. 9. This architecture was pioneered 
by Xilinx and is inspired by the fact that a regular two-
dimensional layout of horizontal and vertical directed 
wire segments can be efficiently laid out. As shown 
in Fig. 9, island-style routing includes three components: 
routing wire segments, connection blocks (multiplex-
ers) that connect function block inputs to the routing 
wires, and switch blocks (programmable switches) that 
connect routing wires together to realize longer routes. 
The placement engine in FPGA CAD tools chooses which 
function block implements each element of a design in or-
der to minimize the required wiring. Consequently, most 
connections between function blocks span a small dis-
tance and can be implemented with a few routing wires 
as illustrated by the red connection in Fig. 9.

Creating a good routing architecture involves manag-
ing many complex trade-offs. It should contain enough 
programmable switching and wire segments that the vast 
majority of circuits can be implemented; however, too 
many wires and switches waste area. A routing architec-
ture should also match the needs of applications: ideally 
short connections will be made with short wires to mini-
mize capacitance and layout area, while long connec-
tions can use longer wiring segments to avoid the extra 

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

Switch
Box

Switch
Box

Switch
Box

Switch
Box

Switch Box

Figure 8. Routing architecture in hierarchical FPGAs.

LBLBLB

LBLBLB

Figure 9. Island-style routing architecture. Thick solid lines 
are routing wires while dashed lines are programmable 
switches. Connection and switch blocks are shaded in yellow 
and green, respectively.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 13

delay of passing through many routing switches. Some of 
the routing architecture parameters include: how many 
routing wires each logic block input or output can con-
nect to ( ),Fc  how many other routing wires each wire 
can connect to ( ),Fs  the lengths of the routing wire seg-
ments, the routing switch pattern, the electrical design 
of the wires and switches themselves, and the number 
of routing wires per channel [20]. In Fig. 9 for example, 

, ,F F3 3c s= =  the channel width is 4 wires, and some 
routing wires are of length 1, while others are of length 2. 
Fully evaluating these trade-offs for target applications 
and at a specific process node requires experimentation 
using a full CAD flow as detailed in Section II.

Early island-style architectures incorporated only 
short wires that traversed a single logic block between 
programmable switches. Later research showed that this 
resulted in more programmable switches than neces-
sary, and that making all wiring segments span four logic 
blocks before terminating reduced application delay by 
40% and routing area by 25% [40]. Modern architectures 
include multiple lengths of wiring segments to better 
match the needs of short and long connections, but the 
most plentiful wire segments remain of moderate length, 
with four logic blocks being a popular choice. Longer dis-
tance connections can achieve lower delay using longer 
wire segments, but in recent process nodes wires that 
span many (e.g. 16) logic blocks must use wide and thick 
metal traces on upper metal layers to achieve acceptable 
resistance [41]. The amount of such long-distance wir-
ing one can include in a metal stack is limited. To best 
leverage such scarce wiring, Intel’s Stratix FPGAs allow 
long wire segments to be connected only to short wire 
segments, rather than function block inputs or outputs 
[42]. This creates a form of routing hierarchy within an 
island-style FPGA, where short connections use only the 
shorter wires, but longer connections pass through short 
wires to reach the long wire network. Another area where 
hierarchical FPGA concepts are used within island-style 
FPGAs is within the logic blocks. As illustrated in Fig. 4(d), 
most logic blocks now group multiple BLEs together with 
local routing. This means each logic block is a small clus-
ter in a hierarchical FPGA; island-style routing intercon-
nects the resulting thousands of logic clusters.

There has been a great deal of research into the op-
timal amount of switching, and how to best arrange the 
switches. While there are many detailed choices, a few 
principles have emerged. The first is that the connectiv-
ity between function block pins and wires ( )Fc  can be 
relatively low: typically only 10% or less of the wires that 
pass by a pin will have switches to connect to it. Simi-
larly, the number of other wires that a routing wire can 
connect to at its end ( )Fs  can also be low, but it should 
be at least 3 so that a signal can turn left, right, or go 

straight at a wire end point. The local routing in a logic 
cluster (described in Section III-A) allows some block 
inputs and some block outputs to be swapped during 
routing. By leveraging this extra degree of flexibility and 
considering all the options presented by the multi-stage 
programmable routing network, the routing CAD tool can 
achieve high completion rates even with low Fc  and Fs  
values. Switch patterns that give more options to the 
routing CAD tool also help routability; for example, the 
Wilton switch pattern ensures that following a different 
sequence of channels lets the router reach different wire 
segments near a destination block [43].

There are also multiple options for the electrical de-
sign of programmable switches, as shown in Fig. 10. Early 
FPGAs used pass gate transistors controlled by SRAM 
cells to connect wires. While this is the smallest switch 
possible in a conventional CMOS process, the delay of 
routing wires connected in series by pass transistors 
grows quadratically, making them very slow for large 
FPGAs. Adding some tri-state buffer switches costs area, 
but improves speed [40]. Most recent FPGAs primarily 
use a multiplexer built out of pass gates followed by a 
buffer that cannot be tri-stated, as shown in detail in 
Fig. 4(b). The pass transistors in this direct drive switch 
can be small as they are lightly loaded, while the buffer 
can be larger to drive the significant capacitance of a 
routing wire segment. Such direct drive switches create 
a major constraint on the switch pattern: a wire can only 
be driven at one point, so only function block outputs 
and routing wires near that point can feed its routing mul-
tiplexer inputs and hence be possible signal sources. De-
spite this constraint, both academic and industrial work 
has concluded that direct drive switches improve both 
area and speed due to their superior electrical character-
istics [42], [44]. The exception is expensive or rare wires 
such as long wires implemented on wide metal traces on 
upper metal layers or the interposer-crossing wires dis-
cussed later in Section III-G. These wires often have mul-
tiple tri-state buffers that can drive them, as the cost of 

Configuration
SRAMs

Figure 10. Different implementations for SRAM-controlled 
programmable switches using pass transistors (left), tri-state 
buffers (middle), or buffered multiplexers (right).

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



14  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

these larger programmable switches is merited to allow 
more flexible usage of these expensive wires.

A major challenge for FPGA routing is that the delay of 
long wires is not improving with process scaling, which 
means that the delay to cross the chip is stagnating or 
increasing even as clock frequencies rise. This has led 
FPGA application developers to increase the amount of 
pipelining in their designs, thereby allowing multiple 
clock cycles for long routes. To make this strategy more 
effective, some FPGA manufacturers have integrated 
registers within the routing network itself. Intel’s Stratix 
10 device allows each routing driver (i.e. multiplexer fol-
lowed by a buffer) to be configured as a pulse latch as 
shown in 6(b), thereby acting as a register with low delay 
but relatively poor hold time. This allows deep pipelining 
of interconnect without using expensive logic resources, 
at the cost of a modest area and delay increase to the 
routing driver [45]. Hold time concerns mean that us-
ing pulse latches in immediately consecutive Stratix 10 
routing switches is not possible, so Intel refined this ap-
proach in their next-generation Agilex devices by inte-
grating actual registers (with better hold time) on only 
one-third of the interconnect drivers (to mitigate the area 
cost) [34]. Rather than integrating registers throughout 
the interconnect, Xilinx’s Versal devices instead add by-
passable registers only on the inputs to function blocks. 
Unlike Intel’s interconnect registers, these input registers 
are full-featured, with clock enable and clear signals [46].

C. Programmable IO
FPGAs include unique programmable IO structures to 
allow them to communicate with a very wide variety 
of other devices, making FPGAs the communications 
hub of many systems. For a single set of physical IOs to 
programmably support many different IO interfaces and 
standards is challenging, as it requires adaptation to dif-
ferent voltage levels, electrical characteristics, timing 
specifications, and command protocols. Both the value 
and the challenge of programmable IO are highlighted 
by the large area devoted to IOs on FPGAs. For example, 
Altera’s Stratix II (90 nm) devices support 28 different IO 
standards and devote 20% (largest device) to 48% (small-
est device) of their die area to IO-related structures.

As Fig. 11 shows, FPGAs address this challenge using a 
combination of approaches [47]–[49]. First, FPGAs use IO 
buffers that can operate across a range of voltages. These 
IOs are grouped into banks (commonly on the order of 50 
IOs per bank), where each bank has a separate Vddio  rail 
for the IO buffer. This allows different banks to operate 
at different voltage levels; e.g. IOs in one bank could be 
operating at 1.8 V while those in a different bank operate 
at 1.2 V. Second, each IO can be used separately for sin-
gle-ended standards, or pairs of IOs can be programmed 

to form the positive and negative line for differential IO 
standards. Third, IO buffers are implemented with mul-
tiple parallel pull-up and pull-down transistors so that 
their drive strengths can be programmably adjusted by 
enabling or disabling different numbers of pull-up/pull-
down pairs. By programming some pull-up or pull-down 
transistors to be enabled even when no output is being 
driven, FPGA IOs can also be programmed to implement 
different on-chip termination resistances to minimize 
signal reflections. Programmable delay chains provide a 
fourth level of configurability, allowing fine delay adjust-
ments of signal timing to and from the IO buffer.

In addition to electrical and timing programmability, 
FPGA IO blocks contain additional hardened digital cir-
cuitry to simplify capturing and transferring IO data to 
the fabric. Generally some or all of this hardened circuit-
ry can be bypassed by SRAM-controlled muxes, allowing 
FPGA users to choose which hardened functions are de-
sirable for a given design and IO protocol. Part ➄ of 
Fig. 11 shows a number of common digital logic options 
on the IO input path: a capture register, double to single-
data rate conversion registers (used with DDR memo-
ries), and serial-to-parallel converters to allow transfer 
to the fabric at a lower frequency. Most FPGAs now also 
contain by-passable higher-level blocks that connect to 
a group of IOs and implement higher-level protocols like 
DDR memory controllers. Together these approaches al-
low the general-purpose FPGA IOs to service many differ-
ent protocols, at speeds up to 3.2 Gb/s.

The highest speed IOs implement serial protocols, 
such as PCIe and Ethernet, that embed the clock in data 
transitions and can run at 28 Gb/s or more. To achieve 
these speeds, FPGAs include a separate group of differen-
tial-only IOs with less voltage and electrical programma-
bility; they can only be used as serial transceivers [50]. 
Just as for the general-purpose IOs, these serial IOs have 
a sequence of high-speed hardened circuits between 
them and the fabric, some of which can be optionally 
bypassed to allow end-users to customize the exact in-
terface protocol.

Overall, FPGA IO design is very challenging, due to the 
dual (and competing) demands to make the IO not only 
very fast but also programmable. In addition, distribut-
ing the very high data bandwidths from IO interfaces 
requires wide soft buses in the fabric, which creates ad-
ditional challenges as discussed later in Section III-F.

D. On-Chip Memory
The first form of on-chip memory elements in FPGA ar-
chitectures was FFs integrated in the FPGA’s logic blocks 
as described in Section III-A. However, as FPGA logic 
capacity grew, they were used to implement larger sys-
tems which almost always require memory to buffer and 

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 15

B
an

k 
1

B
an

k 
2

V
dd

io
1

IO
s

1
D

iff
er

en
tV

dd
io

 R
ai

ls
 fo

r 
th

e 
IO

 B
uf

fe
rs

in
 D

iff
er

en
t B

an
ks

 (
e.

g.
,V

dd
io

1
an

d
V

dd
io

2)
 

+ –

+ –

S
in

gl
e-

E
nd

ed
IO

S
in

gl
e-

E
nd

ed
IO

P
D

C

P
D

C

P
D

C

P
D

C

O
ut

1 E
N

O
ut

2 E
N

O
ut

1

In
1

In
2

O
ut

2

Differential
IO 

2
E

ac
h 

P
ai

r 
of

 IO
s 

ca
n 

be
 C

on
fig

ur
ed

 a
s

T
w

o 
S

in
gl

e-
E

nd
ed

 IO
s 

or
 O

ne
 D

iff
er

en
tia

l I
O

To/From Fabric

4
P

ro
gr

am
m

ab
le

 D
el

ay
 C

ha
in

 (
P

D
C

)

3
P

ro
gr

am
m

ab
le

 d
riv

e 
st

re
ng

th
 o

f o
ut

pu
t

bu
ffe

rs
 v

ia
 m

ul
tip

le
 p

ar
al

le
l p

ul
l u

p/
do

w
n

tr
an

si
st

or
s 

an
d

pr
og

ra
m

m
ab

le
 te

rm
in

at
io

n
re

si
st

an
ce

s 
to

 m
in

im
iz

e 
si

gn
al

 r
ef

le
ct

io
ns

.

Impedance
Control 

O
ut

E
N

O
ut In

D
riv

e 
S

tr
en

gt
h

C
on

fig
. S

R
A

M
s

In
O

ut

D
el

ay
 C

on
fig

.
S

R
A

M
s 

S
er

ia
l-T

o-
P

ar
al

le
l

S
in

gl
e

R
at

e

D
ou

bl
e 

D
at

a
R

at
e 

1 

D
ou

bl
e 

D
at

a
R

at
e 

2

F
ro

m
IO

T
o 

F
ab

ric

Input/Output Capture
5

D
iff

er
en

t O
pt

io
ns

 F
or

 C
ap

tu
rin

g 
In

pu
t

V
dd

io
2

V
dd

io

IO
 

B
an

ks

Lo
gi

c
B

lo
ck

s

Fi
gu

re
 1

1.
 O

ve
rv

ie
w

 o
f t

he
 d

iff
er

en
t t

ec
hn

iq
ue

s 
fo

r i
m

pl
em

en
tin

g 
pr

og
ra

m
m

ab
le

 IO
s 

on
 F

P
G

A
s.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



16  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

re-use data on chip, making it highly desirable to have 
denser on-chip storage since building large RAMs out of 
registers and LUTs is over 100# less dense than an (ASIC-
style) SRAM block. At the same time, the RAM needs of 
applications implemented on FPGAs are very diverse, 
including (but not limited to) small coefficient storage 
RAMs for FIR filters, large buffers for network packets, 
caches and register files for processor-like modules, 
read-only memory for instructions, and FIFOs of myriad 
sizes to decouple computation modules. This means that 
there is no single RAM configuration (capacity, word 
width, number of ports) used universally in FPGA de-
signs, making it challenging to decide on what kind(s) of 
RAM blocks should be added to an FPGA such that they 
are efficient for a broad range of uses. The first FPGA to 

include hard functional blocks for memory (block RAMs 
or BRAMs) was the Altera Flex 10 K in 1995 [51]. It in-
cluded columns of small (2 kb) BRAMs that connect to 
the rest of the fabric through the programmable routing. 
FPGAs have gradually incorporated larger and more di-
verse BRAMs and it is typical for ~25% of the area of a 
modern FPGA to be dedicated for BRAMs [52].

An FPGA BRAM consists of an SRAM-based memory 
core, with additional peripheral circuitry to make them 
more configurable for multiple purposes and to con-
nect them to the programmable routing. An SRAM-based 
BRAM is typically organized as illustrated in Fig. 12. 
It consists of a two-dimensional array of SRAM cells to 
store bits, and a considerable amount of peripheral 
circuitry to orchestrate access to these cells for read/

ExtAddrA

Wen

Log2(D )

WL0A

SRAM Cells

R
ow

 D
ec

. A WL1A

WL2A

WL3A

Lo
ca

l C
ro

ss
ba

r

Output Crossbar

W
C

nf
g

D
ec

. 

AddrA

SA

WD
W

WdataA Din
BL

W SA

BL

SA

BL

SA

BL

SA

BL

SA

BL

SA

BL

SA

BL

W CSL

WenA

Log2(W)

CB

SB
W

RdataA

CS

E
xt

A
dd

r

Vdd

Log2(D )+
Log2(W )+

W+1

WLA

WLB

BLA BLA

BLB BLB

W

Wen

Din

Read/Write Circuitry B

Sen

BLA BLA

Dout

R
ow

 D
ec

. B

S
en

se
 A

m
pl

ifi
er

W
rit

e 
D

riv
er

General-Purpose Routing

On Switch
Off Switch

WD WD WD WD WD WD WD

Figure 12. Organization and circuitry of a conventional dual-port SRAM-based FPGA BRAM. The components highlighted in 
blue are common in any SRAM-based memory module, while those highlighted in green are FPGA-specific. This BRAM has a 
maximum data width of 8 bits, but the output crossbar is configured for 4-bit output mode.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 17

write operations. To simplify timing of the read and write 
operations, all modern FPGA BRAMs register all their in-
puts. During a write operation, the column decoder acti-
vates the write drivers, which in turn charge the bitlines 
(BL and )BL  according to the input data to-be-written to 
the memory cells. Simultaneously, the row decoder acti-
vates the wordline of the row specified by the input write 
address, connecting one row of cells to their bitlines so 
they are overwritten with new data. During a read op-
eration, both the BL and BL  are pre-charged high and 
then the row decoder activates the wordline of the row 
specified by the input read address. The contents of the 
activated cells cause a slight difference in the voltage be-
tween BL and ,BL  which is sensed and amplified by the 
sense amplifier circuit to produce the output data [52].

The main architectural decisions in designing FPGA 
BRAMs are choosing their capacity, data word width, and 
number of read/write ports. More capable BRAMs cost 
more silicon area, so architects must carefully balance 
BRAM design choices while taking into account the most 
common use cases in application circuits. The area oc-
cupied by the SRAM cells grows linearly with the capac-
ity of the BRAM, but the area of the peripheral circuitry 
and the number of routing ports grows sub-linearly. This 
means that larger BRAMs have lower area per bit, making 
large on-chip buffers more efficient. On the other hand, if 
an application requires only small RAMs, much of the ca-
pacity of a larger BRAM may be wasted. Similarly, a BRAM 
with a larger data width can provide higher data band-
width to downstream logic. However, it costs more area 
than a BRAM with the same capacity but a smaller word 
width, as the larger data word width necessitates more 
sense amplifiers, write drivers and programmable rout-
ing ports. Finally, increasing the number of read/write 
ports to a BRAM increases the area of both the SRAM 
cells and the peripheral circuitry, but again increases the 
data bandwidth the BRAM can provide and allows more 
diverse uses. For example, FIFOs (which are ubiquitous 
in FPGA designs) require both a read and a write port. 
The implementation details of a dual-port SRAM cell is 
shown at the bottom of Fig. 12. Implementing a second 
port to the SRAM cell (port B highlighted in red) adds 
two transistors, increasing the area of the SRAM cells 
by 33%. In addition, the second port also needs an ad-
ditional copy of the sense amplifiers, write drivers and 
row decoders (the “Read/Write Circuitry B” and “Row 
Decoder B” blocks in Fig. 12). If both ports are read/write 
(r/w), we also have to double the number of ports to the 
programmable routing.

Because the FPGA on-chip memory must satisfy the 
needs of every application implemented on that FPGA, it 
is also common to add extra configurability to BRAMs to 
allow them to adapt to application needs [53], [54]. FPGA 

BRAMs are designed to have configurable width and 
depth by adding low-cost multiplexing circuitry to the 
peripherals of the memory array. For example, in Fig. 12 
the actual SRAM array is implemented as a 4 × 8-bit array, 
meaning it naturally stores 8-bit data words. By adding 
multiplexers controlled by 3 address bits to the output 
crossbar, and extra decoding and enabling logic to the 
read/write circuitry, this RAM can also operate in 8 × 4-bit, 
16 × 2-bit or 32 × 1-bit modes. The width configurability 
decoder (WCnfg Dec.) selects between Vdd  and address 
bits, as shown in the top-left of Fig. 12 for a maximum 
word size of 8 bits. The multiplexers are programmed 
using configuration SRAM cells and are used to generate 
column select (CS) and write enable (Wen) signals that 
control the sense amplifiers and write drivers for nar-
row read and write operations, respectively. For typical 
BRAM sizes (several kb or more), the cost of this addi-
tional width configurability circuitry is small compared 
to the cost of a conventional SRAM array, and it does not 
require any additional routing ports.

Another unique component of the FPGA BRAMs com-
pared to conventional memory blocks is their interface 
to the programmable routing fabric. This interface is gen-
erally designed to be similar to that of the logic blocks 
described in Section III-A; it is easier to create a routing 
architecture that balances flexibility and cost well if all 
block types connect to it in similar ways. Connection 
block multiplexers, followed by local crossbars in some 
FPGAs, form the BRAM input routing ports, while the 
read outputs drive switch block multiplexers to form the 
output routing ports. These routing interfaces are costly, 
particularly for small BRAMs; they constitute 5% to 35% 
of the BRAM tile area for 256Kb down to 8Kb BRAMs, re-
spectively [55]. This motivates minimizing the number 
of routing ports to a BRAM as much as possible without 
unduly comprising its functionality. Table I summarizes 
the number of routing ports required for different num-
bers and types of BRAM read and write ports. For ex-
ample, a single-port BRAM (1r/w) requires ( )logW D2+  
input ports for write data and read/write address, and W 

Table I.  
Number of routing ports needed for different numbers 
and types of BRAM read/write ports (W: data width, D: 
BRAM depth).

BRAM Ports BRAM Mode # Routing Ports 

1r Single-port ROM ( )log D W2 +  
1r/w Single-port RAM ( )log D 2W2 +  
1r+1w Simple dual-port RAM ( )log D2 2W2 +  
2r/w True dual-port RAM ( )log D2 4W2 +  
2r+2w Quad-port RAM ( )log D4 4W2 +  

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



18  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

output ports for read data, where W and D are the maxi-
mum word width and the BRAM depth, respectively. The 
table shows that a true dual-port (2r/w) BRAM requires 
2 W more ports compared to a simple dual-port (1r+1w) 
BRAM, which significantly increases the cost of the rout-
ing interfaces. While true dual-port memory is useful 
for register files, caches and shared memory switches, 
the most common use of multi-ported RAMs on FPGAs 
is for FIFOs, which require only one read and one write 
port (1r+1w rather than 2r/w ports). Consequently, FPGA 
BRAMs typically have true dual-port SRAM cores but 
with only enough routing interfaces for simple-dual port 
mode at the full width supported by the SRAM core (W), 
and limit the width of the true-dual port mode to only half 
of the maximum width ( / ).W 2

Another way to mitigate the cost of additional BRAM 
ports is to multi-pump the memory blocks (i.e. operate 
the BRAMs at a frequency that is a multiple of that used 
for the rest of the design logic). By doing so, a physi-
cally single-ported SRAM array can implement a logically 
multi-ported BRAM without the cost of additional ports 
as in Tabula’s Spacetime architecture [56]. Multi-pump-
ing can also be used with conventional FPGA BRAMs by 
building the time-multiplexing logic in the soft fabric; 
however, this leads to aggressive timing constraints for 
the time-multiplexing logic, which can make timing clo-
sure more challenging and increase compile time. Altera 
introduced quad-port BRAMs in its Mercury devices in 
the early 2000s to make shared memory switches (use-
ful in packet processing) and register files more efficent 
[57]. However, this feature increased the BRAM size and 
was not sufficiently used to justify its inclusion in subse-
quent FPGA generations. Instead designers use a variety 
of techniques to combine dual-ported FPGA BRAMs and 
soft logic to make highly-ported structures when needed, 
albeit at lower efficiency [58], [59]. We refer the inter-
ested reader to both [52] and [55] for extensive details 
about the design of BRAM core and peripheral circuitry.

In addition to building BRAMs, FPGA vendors can add 
circuitry that allows designers to repurpose the LUTs 
that form the logic fabric into additional RAM blocks. 
The truth tables in the logic block K-LUTs are 2K ×1-bit 
read-only memories; they are written once by the con-
figuration circuitry when the design bitstream is loaded. 
Since LUTs already have read circuitry (read out a stored 
value based on a K-bit input/address), they can be used 
as small distributed LUT-based RAMs (LUT-RAMs) just 
by adding designer-controlled write circuitry. However, 
a major concern is the number of additional routing 
ports necessary to implement the write functionality 
to change a LUT to a LUT-RAM. For example, an ALM in 
recent Altera/Intel architectures is a 6-LUT that can be 
fractured into two 5-LUTs and has 8 input routing ports, 

as explained in Section III-A. This means it can operate 
as a 64 × 1-bit or a 32 × 2-bit memory with 6 or 5 bits for 
read address, respectively. This leaves only 2 or 3 unused 
routing ports, which are not enough for write address, 
data, and write enable (8 total signals) if we want to read 
and write in each cycle (simple dual-port mode), which is 
the most commonly used RAM mode in FPGA designs. To 
overcome this problem, an entire logic block of 10 ALMs 
is configured as a LUT-RAM to amortize the control cir-
cuitry and address bits across 10 ALMs. The write address 
and write enable are assembled by bringing one signal 
in from an unused routing port in each ALM and broad-
casting the resulting address and enable to all ALMs [60]. 
Consequently, a logic block can implement a 64 × 10-bit or 
32 × 20-bit simple dual-port RAM, but has a restriction that 
a single logic block cannot mix logic and LUT-RAM. Xilinx 
Ultrascale similarly converts an entire logic block to LUT-
RAM, but all the routing ports of one out of the eight LUTs 
in a logic block are repurposed to drive the (broadcast) 
write address and enable signals. Therefore, a Xilinx logic 
block can implement a 64 × 7-bit or 32 × 14-bit simple dual-
port RAM, or a slightly wider single-port RAM (64 × 8-bit 
or 32 × 16-bit). Avoiding extra routing ports keeps the cost 
of LUT-RAM low, but it still adds some area. Since it would 
be very unusual for a design to convert more than 50% of 
the logic fabric to LUT-RAMs, both Altera/Intel and Xilinx 
have elected to make only half of their logic blocks LUT-
RAM capable in their recent architectures, thereby further 
reducing the area cost.

Designers require many different RAMs in a typical 
design, all of which must be implemented by the fixed 
BRAM and LUT-RAM resources on the chip. Forcing de-
signers to determine the best way to combine BRAM and 
LUT-RAM for each memory configuration they need and 
writing verilog to implement them would be laborious 
and also would tie the design to a specific FPGA architec-
ture. Instead, the vendor CAD tools include a RAM map-
ping stage that implements the logical memories in the 
user’s design using the physical BRAMs and LUT-RAMs 
on the chip. The RAM mapper chooses the physical mem-
ory implementation (i.e. memory type and the width/
number/type of its ports) and generates any additional 
logic required to combine multiple BRAMs or LUT-RAMs 
to implement each logical RAM. Fig. 13 gives an example 
of mapping a logical 2048 × 32-bit RAM with 2 read and 1 
write ports to an FPGA with physical 1024 × 8-bit dual-port 
BRAMs. First, four physical BRAMs are combined in par-
allel to make wider RAMs with no extra logic. Then, soft 
logic resources are used to perform depth-wise stitching 
of two sets of four physical BRAMs, such that the most-
significant bits of the write and read addresses are used 
as write enable and read output mux select signals, re-
spectively. Finally, in this case we require two read ports 

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 19

and one write port while the 
physical BRAMs only support 
a maximum of 2r/w ports. To 
implement the second read 
port, the whole structure is ei-
ther replicated (see Fig. 13) or 
double-pumped as previously 
explained. Several algorithms 
for optimizing RAM mapping 
are described in [61], [62].

Over the past 25 years, 
FPGA memory architecture 
has evolved considerably and 
has also become increasing -
ly important, as the ratio of 
memory to logic on an FPGA 
die has grown significantly. 
Fig. 14 plots the memory bits 
per logic element (including 
LUT-RAM) versus the number 
of logic elements in Altera/
Intel devices starting from 
the 350 nm Flex 10 K devices 
(1995) to 10 nm Agilex de-
vices (2019). There has been 
a gradual increase in the 
memory richness of FPGAs 
over time, and to meet the 
demand for more bits, modern 
BRAMs have larger capacities 
(20 kb) than the first BRAMs 
(2 kb). Some FPGAs have had 
highly heterogeneous BRAM 
architectures in order to pro-
vide some physical RAMs 
that are efficient for small 
or wide logical RAMs, and 
others that are efficient for 
large and relatively narrow 
logical RAMs. For example, 
Stratix (130 nm) had 3 types 
of BRAM, with capacities of 
512 b, 4 kb and 512 kb. The 
introduction of LUT-RAM in 
Stratix III (65 nm) reduced 
the need for small BRAMs, so 
it moved to a memory archi-
tecture with 9 kb and 144 kb 
BRAM. Stratix V (28 nm) and 
later Intel  devices have 
moved to a combination of 
LUT-RAM and a single medi-
um-sized BRAM (20 kb) to 

R
da

ta
0

[3
1:

0]

R
da

ta
1

[3
1:

0]

32
 b

2,048 Words

R
A

dd
r0

[1
0:

0]

R
A

dd
r1

[1
0:

0]

W
A

dd
r

[1
0:

0]

W
da

ta
[3

1:
0]

W
en

8 
b

8 
b

8 
b

8 
b 1.024 Words

Rdata0
[31:0]

W
da

ta
[3

1:
0]

R
A

dd
r0

[9
:0

]

W
A

dd
r

[9
:0

]

W
en

W
A

dd
r[

10
]

R
A

dd
r0

[1
0]

8 8

8 8
8 8

8 8

8 
b

8 
b

8 
b

8 
b1.024 Words

8 
b

8 
b

8 
b

8 
b 1.024 Words

Rdata1
[31:0]

Wdata
[31:0]

R
A

dd
r1

[1
0]

8 8

8 8
8 8

8 8

8 
b

8 
b

8 
b

8 
b1.024 Words

Lo
gi

ca
l R

A
M

P
hy

si
ca

l R
A

M

R
A

dd
r0

[9
:0

]

W
A

dd
r

[9
:0

]

W
en

W
A

dd
r[

10
]

R
A

dd
r1

 [9
:0

]

W
A

dd
r 

[9
:0

]

W
en

W
A

dd
r 

[1
0]

R
A

dd
r1

 [9
:0

]

W
A

dd
r 

[9
:0

]

W
en

W
A

dd
r[

10
]

Fi
gu

re
 1

3.
 M

ap
pi

ng
 a

 2
04

8 
× 

32
-b

it 
2r

+1
w

 lo
gi

ca
l R

A
M

 to
 a

n 
FP

G
A

 w
ith

 1
02

4 
× 

8-
bi

t 1
r+

1w
 p

hy
si

ca
l B

R
A

M
s.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



20  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

simplify both the FPGA layout as well as RAM mapping 
and placement. Tatsumura et al. [52] plot a similar trend 
for on-chip memory density in Xilinx devices as well. Sim-
ilarly to Intel, Xilinx’s RAM architecture combines LUT-
RAM and a medium-sized 18 kb RAM, but also includes 
hard circuitry to combine two BRAMs into a single 36 kb 
block. However, Xilinx’s most recent devices have also 
included a large 288 kb BRAM (UltraRAM) to be more ef-
ficient for very large buffers, showing that there is still no 
general agreement on the best BRAM architecture.

To give some insight into the relative areas and effi-
ciencies of different RAM blocks, Table II shows the re-
source usage, silicon area, and frequency of a 2048 × 72-bit 
logical RAM when it is implemented by Quartus (the 
CAD flow for Altera/Intel FPGAs) in a variety of ways on 
a Stratix IV device. The silicon areas are computed using 
the published Stratix III block areas from [63] and scaling 
them from 65 nm down to 40 nm, as Stratix III and IV have 
the same architecture but use different process nodes. 
As this logical RAM is a perfect fit to the 144 kb BRAM in 

Stratix IV, it achieves the best area 
when mapped to a single 144 kb 
BRAM. Interestingly, mapping to 
eighteen 9 kb BRAMs is only .1 9# 
larger in silicon area (note that 
output width limitations lead to 18 
BRAMs instead of the 16 one might 
expect). The 9 kb BRAM imple-
mentation is actually faster than 
the 144 kb BRAM implementation, 
as the smaller BRAMs have higher 
maximum operating frequencies. 
Mapping such a large logical RAM 
to LUT-RAMs is inefficient, requir-
ing .12 7# more area and running at 
40% of the frequency. Finally, map-
ping only to the logic and routing 
resources shows how important 
on-chip RAM is: area is over 300# 
larger than the 144 kb BRAM. While 
the 144 kb BRAM is most efficient 

for this single test case, real designs have diverse logical 
RAMs, and for small or shallow memories the 9 kb and 
LUT-RAM options would outperform the 144 kb BRAM, 
motivating a diversity of on-chip RAM resources. To 
choose the best mix of BRAM sizes and maximum word 
widths, one needs both a RAM mapping tool and tools to 
estimate the area, speed and power of each BRAM [55]. 
Published studies into BRAM architecture trade-offs for 
FPGAs include [30], [55], [64].

Until now, all commercial FPGAs use only SRAM-based 
memory cells in their BRAMs. With the desire for more 
dense BRAMs that would enable more memory-rich 
FPGAs and SRAM scaling becoming increasingly difficult 
due to process variation, a few academic studies (e.g. [52], 
[65]) have explored the use of other emerging memory 
technologies such as magnetic tunnel junctions (MTJs) 
to build FPGA memory blocks. According to [52], MTJ-
based BRAMs could increase the FPGA memory capac-
ity by up to .2 95# with the same die size; however, they 
would increase the process complexity.

E. DSP Blocks
Initially the only dedicated arith-
metic circuits in commercial FPGA 
architectures were carry chains 
to implement efficient adders, as 
discussed in Section III-A. Thus mul-
tipliers had to be implemented in 
the soft logic using LUTs and carry 
chains, incurring a substantial area 
and delay penalty. As high-mul-
tiplier-density signal processing 

1,000 10 k 100 k 1 M
0

20

40

60

80

100

120

140

350 nm 150 nm 130 nm 90 nm 65 nm nm
28 nm 14 nm 10 nm

Number of LEs (4-LUT Equivalent)

M
em

or
y 

B
its

 P
er

 L
E

512 b/4 kb/512 kb

2 kb
9 kb/144 kb

20 kb

40

Figure 14. Trends in memory bits per LE for Altera/Intel FPGAs starting from the 
350 nm Flex 10k (1995) to the 10 nm Agilex (2019) architecture. The labels show the 
sizes of BRAMs in each of these architectures.

Table II.  
Implementation results for a 2048 × 72-bit 1r+1w RAM using BRAMs,  
LUT-RAMs and registers on Stratix IV.

BRAMs  
Implementation half-ALM 9k 144k Area (mm2) Freq. (Mhz) 
144kb BRAMs 0 0 1 0.22 (1.0×) 336 (1.0×) 
9kb BRAMs 0 18 0 0.41 (1.9×) 497 (1.5×) 
LUT-RAM 6597 0 0 2.81 (12.8×) 134 (0.4×) 
Registers 165155 0 0 68.8 (313×) 129 (0.4×) 

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 21

and communication applications constituted a major 
FPGA market, designers proposed novel implementa-
tions to mitigate the inefficiency of multiplier imple-
mentations in soft logic. For example, the multipli-
er-less distributed arithmetic technique was proposed to 
implement efficient finite impulse response (FIR) filter 
structures on LUT-based FPGAs [66], [67].

With the prevalence of multipliers in FPGA designs from 
key application domains, and their lower area/delay/power 
efficiency when implemented in soft logic, they quickly 
became a candidate for hardening as dedicated circuits in 
FPGA architectures. An N-bit multiplier array consists of N2 
logic elements with only 2 N inputs and outputs. There-
fore, the gains of hardening the multiplier logic and the 
cost of the programmable interfaces to the FPGA’s rout-
ing fabric resulted in a net efficiency gain and strongly 
advocated for adopting hard multipliers in subsequent 
FPGA architectures. As shown at top left of Fig. 15, Xilinx 
introduced its Virtex-II architecture with the industry’s 
first 18 18#  bit hard multiplier blocks [68]. To simplify 
the layout integration with the full-custom FPGA fabric, 
these multipliers were arranged in columns right beside 
BRAM columns. In order to further reduce the intercon-
nect cost, the multiplier block and its adjacent BRAM 
had to share some interconnect resources, limiting the 
maximum usable data width of the BRAM block. Multiple 
hard 18-bit multipliers could be combined to form bigger 
multipliers or FIR filters using soft logic resources.

In 2002, Altera adopted a different approach by intro-
ducing full featured DSP blocks targeting the communica-

tions and signal processing domains in their Stratix archi-
tecture [42] (see second block in Fig. 15). The main design 
philosophy of this DSP block was to minimize the amount 
of soft logic resources used to implement common DSP 
algorithms by hardening more functionality inside the 
DSP block, and enhancing its flexibility to allow more ap-
plications to make use of it. The Stratix DSP block was 
highly configurable with support for different modes of 
operation and multiplication precisions unlike the fixed-
function hard 18-bit multipliers in the Virtex-II architec-
ture. Each Stratix variable-precision DSP block spanned  
8 rows and could implement eight 9 9#  bit multipliers, 
four 18 18#  bit multipliers, or one 36 36#  multiplier.

These modes of operation selected by Altera highlight 
an important theme of designing FPGA hard blocks: in-
creasing the configurability and utility of these blocks by 
adding low-cost circuitry. For example, an 18 18#  mul-
tiplier array can be decomposed into two 9 9#  arrays 
that together use the same number of inputs and outputs 
(and hence routing ports). Similarly, four 18 18#  multipli-
ers can be combined into one 36 36#  array using cheap 
glue logic. Fig. 16 shows how an 18 18#  multiplier array 
can be fractured into multiple 9 9#  arrays. It can be split 
into four 9 9#  arrays by doubling the number of input 
and output pins. However, to avoid adding these costly 
routing interfaces, the 18 18#  array is split into only 
two 9 9#  arrays (colored blue in Fig. 16). This is done 
by splitting the partial product compressor trees at the 
positions indicated by the red dashed lines and adding 
inverting capabilities to the border cells of the top-right 

MULT

One 
18 ×18

R
eg

R
eg

R
eg

MULT

Eight 9 × 9
Four 18 × 18
One 36 × 36

R
eg

R
eg

A
dd

/S
ub

/A
cc MULT

One 
25 × 18

R
eg

R
eg

R
eg

A
LU

+
+

MULT

One fp32
One 27 × 27
Two 18 × 18

R
eg

R
eg

R
eg

+
+ F
ilt

er
 C

oe
ff.

MULT
One fp32
Two fp16

One 27 × 27
Two 18 × 18
Four 9 × 9

R
eg

R
eg

R
eg

A
dd

/S
ub

/A
cc+

+ F
ilt

er
 C

oe
ff.

MULT
fp32
fp16

24 × 24
16 × 16

8 × 8

R
eg

R
eg

R
eg

+
+

MULT
Thirty 8 × 8
Sixty 4 × 4

fp32
Bfloat16
Bfloat24D

at
a 

R
eu

se
R

eg
s

R
eg

3×
Add
Acc

Xilinx Virtex-II
(2001)

Altera Stratix
(2002)

Xilinx Virtex-6
(2009)

Intel Arria 10
(2013)

Xilinx Versal
(2019)

Intel Agilex
(2019)

Intel Stratix 10 NX
(2020)

A
dd

/S
ub

/A
cc

A
LU

R
eg

Figure 15. DSP block evolution in Altera/Intel and Xilinx FPGAs. Incrementally added features are highlighted in red.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



22  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

array, marked with crosses in Fig. 16 to implement two’s 
complement signed multiplication using the Baugh-Wool-
ey algorithm [69] (the bottom left array already has the 
inverting capability from the 18 18#  array).

In addition to the fracturable multiplier arrays, the 
Stratix DSP also incorporated an adder/output block to 
perform summation and accumulation operations, as 
well as hardened input registers that could be configured 
as shift registers with dedicated cascade interconnect 
between them to implement efficient FIR filter structures 
[70]. The latest 28 nm architectures from Lattice also 
have a variable precision DSP block that can implement 
the same range of precisions, in addition to special 1 D 
and 2 D symmetry modes for filter structures and video 
processing applications, respectively. Xilinx also adopted 
a full-featured DSP block approach by introducing their 
DSP48 tiles in the Virtex-4 architecture [71]. Each DSP 
tile had two fixed-precision 18 18#  bit multipliers with 
similar functionalities to the Stratix DSP block (e.g. input 
cascades, adder/subtractor/accumulator). Virtex-4 also 

introduced the ability to cascade the adders/accumula-
tors using dedicated interconnects to implement high-
speed systolic FIR filters with hardened reduction chains.

An N-tap FIR filter performs a discrete 1 D convolution 
between the samples of a signal { , , , }X x x xT0 1 f=  and 
certain coefficients { , , , }C c c cN0 1 1f= -  that represent the 
impulse response of the desired filter, as shown in eq. (1).

 y c x c x c x c xn n n N n N i
i

N

n i0 1 1
0

g= + + + =- -

=

-/  (1)

Many of the FIR filters used in practice are symmetric 
with ,c ci N i= -  for i 0=  to / .N 2  As a result of this sym-
metry, the filter computation can be refactored as shown 
in eq. (2).

 [ ] [ ]y c x x c x x/ / /n n n N N n N n N0 2 1 2 1 2g= + + + +- - - - -  (2)

Fig. 17 shows the structure of a systolic symmetric FIR 
filter circuit, which is a key use case for FPGAs in wireless 
base stations. Both Stratix and Virtex-4 DSP blocks can 

implement the portions highlighted 
by the dotted boxes, resulting in sig-
nificant efficiency gains compared 
to implementing them in the FPGA’s 
soft logic. Interestingly, while FPGA 
CAD tools will automatically imple-
ment a multiplication (*) operation 
in DSP blocks, they will generally 
not make use of any of the advanced 
DSP block features (e.g. accumula-
tion, systolic registers for FIR filters) 
unless a designer manually instanti-
ates a DSP block in the proper mode. 
Consequently, using the more pow-
erful DSP block features makes a de-
sign less portable.

The Stratix III DSP block was simi-
lar to the Stratix II one, but could im-
plement four 18 18#  multipliers per 
half a DSP block (instead of two) if 
their results are summed to limit 

the number of output routing interfaces [72]. Table III 
lists the implementation results of both symmetric and 
asymmetric 51-tap FIR filters, with and without using the 
hard DSP blocks on a Stratix IV device. When DSP blocks 
are not used, we experiment with two different cases: 
fixed filter coefficients, and filter coefficients that can 
change at runtime. If the filter coefficients are fixed, the 
multiplier arrays implemented in the soft logic are opti-
mized by synthesizing away parts of the partial product 
generation logic that correspond to zero bits in the co-
efficient values. Hence, it has lower resource utilization 
than with input coefficients that can change at runtime. 

C0 C1 C2 C3

X

Y

Figure 17. Systolic symmetric FIR filter circuit.

Input A

Input B

Output

B0

B1

A0A1

A0 × B0A1 × B1

Figure 16. Fracturing an 18 × 18 multiplier array into two 9 × 9 arrays with the same 
number of input/output ports.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 23

For the symmetric filter, even when using the DSP blocks, 
we still need to use some soft logic resources to imple-
ment the input cascade chains and pre-adders as shown 
in Fig. 17. Using the hard DSP blocks results in 3# higher 
area efficiency vs. using the soft fabric in the case of fixed 
coefficients. This gap grows to .6 2# for filter coefficients 
that are changeable during runtime. For the asymmetric 
filter, the complete FIR filter structure can be implement-
ed in the DSP blocks without any soft logic resources. 
Thus, the area efficiency gap increases to .3 9# and .8 5# 
for fixed and input coefficients, respectively. These gains 
are large but still less than the 35# gap between FPGAs 
and ASICs [11] usually cited in academia. The difference 
is partly due to some soft logic remaining in most appli-
cation circuits, but even in the case where the FIR filter 
perfectly fits into DSP blocks with no soft logic the area 
reduction hits a maximum of . .8 5#  The primary reasons 
for the lower than 35# gain of [11] are the interfaces to 
the programmable routing and the general inter-tile pro-
grammable routing wires and multiplexers that must be 
implemented in the DSP tile. In all cases, using the hard 
DSP blocks results in about 2# frequency improvement 
as shown in Table III.

The subsequent FPGA architecture generations from 
both Altera and Xilinx witnessed only minor changes in 
the DSP block architecture. The main focus of both ven-
dors was to fine tune the DSP block capabilities for key ap-
plication domains without adding costly programmable 
routing interfaces. In Stratix V, the DSP block was greatly 
simplified to natively support two 18 18#  bit multipli-
cations (the key precision used in wireless base station 
signal processing) or one 27 27#  multiplication (useful 
for single-precision floating-point 
mantissas). As a result, the simpler 
Stratix V DSP block spanned a sin-
gle row, which is more friendly to 
Altera’s row redundancy scheme. 
In addition, input pre-adders as 
well as embedded coefficient banks 
to store read-only filter weights 
were added [73], which allowed 
implementing the whole symmet-
ric FIR filter structure shown in 
Fig. 17 inside the DSP blocks with-
out the need for any soft logic re-
sources. On the other hand, Xilinx 
switched from 18 18#  multipliers 
to 25 18#  multipliers in their Vir-
tex-5 DSP48E tile [74], after which 
they incorporated input pre-adders 
and enhanced their adder/accumu-
lator unit to also support bitwise 
logic operations in their Virtex-6 

DSP48E1 tile [75]. Then, they increased their multiplica-
tion width again to 27 18#  bit and added a fourth input 
to their ALU in the Ultrascale family DSP48E2 tile [76].

As illustrated in Fig. 15, up to 2009 the evolution of 
the DSP block architecture was mainly driven by the 
precisions and requirements of communication applica-
tions, especially in wireless base stations, with very few 
academic research explorations [77], [78]. More recently, 
FPGAs have been widely deployed in datacenters to ac-
celerate various types of workloads such as search en-
gines and network packet processing [9]. In addition, DL 
has emerged as a key component of many applications 
both in datacenter and edge workloads, with MAC be-
ing its core arithmetic operation. Driven by these new 
trends, the DSP block architecture has evolved in two 
different directions. The first direction targets the high-
performance computing (HPC) domain by adding na-
tive support for single-precision floating-point (fp32) 
multiplication. Before that, FPGA vendors would supply 
designers with IP cores that implement floating-point 
arithmetic out of fixed-point DSPs and a considerable 
amount of soft logic resources. This created a huge bar-
rier for FPGAs to compete with CPUs and GPUs (which 
have dedicated floating-point units) in the HPC domain. 
Native floating-point capabilities were first introduced 
in Intel’s Arria 10 architecture, with a key design goal of 
avoiding a large increase in DSP block area [79]. By re-
using the same interface to the programmable routing, 
not supporting uncommon features like subnormals, 
flags and multiple rounding schemes, and maximizing 
the reuse of existing fixed-point hardware, the block area 
increase was limited to only 10% (i.e. 0.5% total die area 

Table III.  
Implementation results for a 51-tap symmetric FIR filter on Stratix IV  
with and without using the hardened DSP blocks.

Symmetric Filter

Implementation half-ALMs DSPs Area (mm2) Freq. (Mhz) 
With DSPs 403 3 8

2  0.49 (1.0×) 510 (1.0×) 

Without DSPs 
(fixed coeff.)

3505 0 1.46 (3.0×) 248 (0.5×) 

Without DSPs 
(input coeff.)

7238 0 3.01 (6.2×) 220 (0.4×) 

Asymmetric Filter
Implementation half-ALMs DSPs Area (mm2) Freq. (Mhz) 
With DSPs 0 6 8

3  0.63 (1.0×) 510 (1.0×) 

Without DSPs 
(fixed coeff.)

5975 0 2.48 (3.9×) 245 (0.5×) 

Without DSPs 
(input coeff.)

12867 0 5.35 (8.5×) 217 (0.4×) 

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



24  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

increase). Floating-point capabilities will also be support-
ed in the DSP58 tiles of the next-generation Xilinx Versal 
architecture [80].

The second direction targets increasing the density of 
low-precision integer multiplication specifically for DL in-
ference workloads. Prior work has demonstrated the use 
of low-precision fixed-point arithmetic (8-bit and below) 
instead of fp32 at negligible or no accuracy degradation, 
but greatly reduced hardware cost [81]–[83]. However, 
the required precision is model-dependent and can even 
vary between different layers of the same model. As a re-
sult, FPGAs have emerged as an attractive solution for 
DL inference due to their ability to implement custom 
precision datapaths, their energy efficiency compared 
to GPUs, and their lower development cost compared 
to custom ASICs. This has led both academic research-
ers and FPGA vendors to investigate adding native sup-
port for low-precision multiplication to DSP blocks. The 
authors of [84] enhance the fracturability of an Intel-like 
DSP block to support more int9 and int4 multiply and 
MAC operations, while keeping the same DSP block rout-
ing interface and ensuring its backward compatibility. 
The proposed DSP block could implement four int9 and 
eight int4 multiply/MAC operations along with Arria-
10-like DSP block functionality at the cost of 12% DSP 
block area increase, which is equivalent to only 0.6% in-
crease in total die area. This DSP block increased the per-
formance of 8-bit and 4-bit DL accelerators by .1 3# and 

.1 6# while reducing the utilized FPGA resources by 15% 
and 30% respectively, compared to an FPGA with DSPs 
that do not natively support these modes of operation. 
Another academic work [85] enhanced a Xilinx-like DSP 
block by including a fracturable multiplier array instead 
of the fixed-precision multiplier in the DSP48E2 block to 
support int9, int4 and int2 precisions. It also added 
a FIFO register file and special dedicated interconnect 
between DSP blocks to enable more efficient standard, 
point-wise and depth-wise convolution layers. Shortly 
after, Intel announced that the same int9 mode of op-
eration will be added to the next-generation Agilex DSP 
block along with half-precision floating-point (fp16) and 
brain float (bfloat16) precisions [86]. Also, the next-
generation Xilinx Versal architecture will natively sup-
port int8 multiplications in its DSP58 tiles [80].

Throughout the years, the DSP block architecture has 
evolved to best suite the requirements of key application 
domains of FPGAs, and provide higher flexibility such 
that many different applications can benefit from its ca-
pabilities. The common focus across all the steps of this 
evolution was reusing multiplier arrays and routing ports 
as much as possible to best utilize both these costly re-
sources. However, this becomes harder with the recent 
divergence in the DSP block requirements of key FPGA 

application domains between high-precision floating-
point in HPC, medium-precision fixed-point in communi-
cations, and low-precision fixed-point in DL. As a result, 
Intel has recently announced an AI-optimized FPGA, the 
Stratix 10 NX, which replaces conventional DSP blocks 
with AI tensor blocks [87]. The new tensor blocks drop 
the support for legacy DSP modes and precisions that 
were targeting the communications domain and adopt 
new ones targeting the DL domain specifically. This ten-
sor block significantly increases the number of int8 and 
int4 MACs to 30 and 60 per block respectively, at almost 
the same die size [88]. Feeding all multipliers with inputs 
without adding more routing ports is a key concern. Ac-
cordingly, the NX tensor block introduces a double-buff-
ered data reuse register network that can be sequentially 
loaded from a smaller number of routing ports, while al-
lowing common DL compute patterns to make the best 
use of all available multipliers [89]. The next-generation 
Speedster7t FPGA from Achronix will also include a ma-
chine learning processing (MLP) block [90]. It supports a 
variety of precisions from int16 down to int3 in addi-
tion to fp24, fp16 and bfloat16 floating-point formats. 
The MLP block in Speedster7t will also feature a tightly 
coupled BRAM and circular register file that enable the 
reuse of both input values and output results. Each of 
these tightly integrated memory banks has a 72-bit exter-
nal input but can be configured to have an up-to 144-bit 
output that feeds the MLP’s multiplier arrays, reducing 
the number of required routing ports by .2#

F. System-Level Interconnect: Network-on-Chip
FPGAs have continuously increased both in capacity and 
in the bandwidth of their external IO interfaces such as 
DDR, PCIe and Ethernet. Distributing the data traffic be-
tween these high-speed interfaces and the ever-larger 
soft fabric is a challenge. This system-level interconnect 
has traditionally been built by configuring parts of the 
FPGA logic and routing to implement soft buses that re-
alize multiplexing, arbitration, pipelining and wiring be-
tween the relevant endpoints. These external interfaces 
operate at higher frequencies than the FPGA fabric can 
achieve, and therefore the only way to match their band-
width is to use wider (soft) buses. For example, a single 
channel of high-bandwidth memory (HBM) has a 128-bit 
double data rate interface operating at 1 GHz, so a 
bandwidth-matched soft bus running at 250 MHz must 
be 1024 bits wide. With recent FPGAs incorporating up to 
8 HBM channels [91] as well as numerous PCIe, Ethernet 
and other interfaces, system level interconnect can rap-
idly use a major fraction of the FPGA logic and routing 
resources. In addition, system-level interconnect tends to 
span large distances. The combination of very wide and 
physically long buses makes timing closure  challenging 

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 25

and usually requires deep pipelining of the soft bus, 
further increasing its resource use. The system-level in-
terconnect challenge is becoming more difficult in ad-
vanced process nodes, as the number and speed of FPGA 
external interfaces increases, and the metal wire parasit-
ics (and thus interconnect delay) scales poorly [92].

Abdelfattah and Betz [93]–[95] proposed embed-
ding a hard, packet-switched network-on-chip (NoC) in 
the FPGA fabric to enable more efficient and easier-to-
use system-level interconnect. Although a full-featured 
packet-switched NoC could be implemented using the 
soft logic and routing of an FPGA, an NoC with hardened 
routers and links is 23# more area efficient, 6# faster, 
and consumes 11# less power compared to a soft NoC 
[95]. Designing a hard NoC for an FPGA is challenging 
since the FPGA architect must commit many choices to 
silicon (e.g. number of routers, link width, NoC topology) 
yet still maintain the flexibility of an FPGA to implement 
a wide variety of applications using many different ex-
ternal interfaces and communication endpoints. Work 
in [95] advocates for a mesh topology with a moderate 
number of routers (e.g. 16) and fairly wide (128 bit) links; 
these choices keep the area cost to less than 2% of the 
FPGA while ensuring the NoC is easier to lay out and a 
single NoC link can carry the entire bandwidth of a DDR 
channel. A hard NoC must also be able to flexibly connect 
to user logic implemented in the FPGA fabric; Abdelfat-
tah et al. [96] introduced the fabric port which interfaces 
the hard NoC routers to the FPGA programmable fabric 
by performing width adaptation, clock domain crossing 
and voltage translation. This decouples the NoC from the 
FPGA fabric such that the NoC can run at a fixed (high) 
frequency, and still interface to FPGA logic and IO inter-
faces of different speeds and bandwidth requirements 
with very little glue logic. Hard NoCs also appear very 
well suited to FPGAs in datacenters. Datacenter FPGAs 
are normally configured in two parts: a shell provides 
system-level interconnect to the external interfaces, and 
a role implements the application acceleration function-
ality [9]. The resource use of the shell can be significant: 
it requires 23% of the device resources in the first genera-
tion of Microsoft’s Catapult systems [8]. Yazdanshenas 
et al. [97] showed that a hard NoC significantly improves 
resource utilization, operating frequency and routing 
congestion in such shell + role FPGA use cases. Other 
studies have proposed FPGA-specific optimizations to in-
crease the area efficiency and performance of soft NoCs 
[98]–[100]. However, [101] shows that even optimized 
soft NoCs still trail hard NoCs in most respects (usable 
bandwidth, latency, area and routing congestion).

Recent Xilinx (Versal) and Achronix (Speedster7t) 
FPGAs integrate a hard NoC [102], [103] similar to 
the academic proposals discussed above. Versal uses 

a hard NoC for system-level communication between 
various endpoints (Gigabit transceivers, processor, AI 
subsystems, soft fabric), and is in fact the only way for 
external memory interfaces to communicate with the 
rest of the device. It uses 128-bit wide links running at  
1 GHz, matching a DDR channel’s bandwidth. Its topology 
is related to a mesh, but with all horizontal links pushed 
to the top and bottom of the device to make it easier to 
lay out within the FPGA floorplan. The Versal NoC con-
tains multiple rows (i.e. chains of links and routers) at the 
top and bottom of the device, and a number of vertical 
NoC columns (similar to any other hard block columns 
such as DSPs) depending on the device size as shown 
in Fig. 18(a). The NoC has programmable routing tables 
that are configured at boot time and provides standard 
AXI interfaces [104] as its fabric ports. The Speedster7t 
NoC topology is optimized for external interface to 

Specialized Engines

T
ra

ns
ce

iv
er

s

P
ro

ce
ss

or
S

ub
sy

st
em

Memory Controllers and High-Speed IOs

Routers

Links

(a)

(b)

Transceivers

Security and Config.

M
em

or
y 

C
on

tr
ol

le
rs

M
em

or
y 

C
on

tro
lle

rs

Mem. Controllers

NoC
Row

NoC
Column

Peripheral 
Ring NoC

Figure 18. Network-on-Chip sytem-level interconnect in 
next-generation (a) Xilinx Versal and (b) Achronix Speed-
ster7t architectures.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



26  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

fabric transfers. It consists of a peripheral ring around 
the fabric with NoC rows and columns at regular inter-
vals over the FPGA fabric as shown in Fig. 18(b). The 
peripheral ring NoC can operate independently without 
configuring the FPGA fabric to route the traffic between 
different external interfaces. There is no direct connec-
tivity between the NoC rows and columns; the packets 
from a master block connecting to a NoC row will pass 
through the peripheral ring to reach a slave block con-
nected to a NoC column.

G. Interposers
FPGAs have been early adopters of interposer technol-
ogy that allows dense interconnection of multiple silicon 
dice. As shown in Fig. 19(a), a passive interposer is a sili-
con die (often in a trailing process technology to reduce 
cost) with conventional metal layers forming routing 
tracks and thousands of microbumps on its surface that 
connect to two or more dice flipped on top of it. One mo-
tivation for interposer-based FPGAs is achieving higher 
logic capacity at a reasonable cost. Both high-end sys-
tems and emulation platforms to validate ASIC designs 
before fabrication demand FPGAs with high logic capac-
ity. However, large monolithic (i.e. single-silicon-die) de-
vices have poor yield, especially early in the lifetime of a 
process technology (exactly when the FPGA is state-of-

the-art). Combining multiple smaller dice on a silicon in-
terposer is an alternative approach that can have higher 
yield. A second motivation for 2.5 D systems is to enable 
integration of different specialized chiplets (possibly us-
ing different process technologies) into a single system. 
This approach is also attractive for FPGAs as the fabric’s 
programmability can bridge disparate chiplet functional-
ity and interface protocols.

Xilinx’s largest Virtex-7 (28 nm) and Virtex Ultrascale 
(20 nm) FPGAs use passive silicon interposers to inte-
grate three to four FPGA dice that each form a portion 
of the FPGA’s rows. The largest interposer-based devices 
provide more than twice the logic elements of the largest 
monolithic FPGAs at the same process node. The FPGA 
programmable routing requires a large amount of inter-
connect, raising the question of whether the interposer 
microbumps (which are much larger and slower than 
conventional routing tracks) will limit the routability 
of the sytem. For example, in Virtex-7 interposer-based 
FPGAs, only 23% of the vertical routing tracks cross be-
tween dice through the interposer [105], with an esti-
mated additional delay of ~1 ns [106]. The study in [105] 
showed that CAD tools that place the FPGA logic to mini-
mize crossing of an interposer boundary combined with 
architecture changes that increase the switch flexibility 
to the interposer-crossing tracks can largely mitigate the 
impact of this reduced signal count. The entire vertical 
bandwidth of the NoC in the next-generation Xilinx Versal 
architecture (discussed in Section III-F) crosses between 
dice, helping to provide more interconnect bandwidth. 
An embedded NoC makes good use of the limited number 
of wires that can cross an interposer, as it runs its links 
at a high frequency and they can be shared by different 
communication streams as they are packet switched.

Intel FPGAs instead use smaller interposers called 
embedded multi-die interconnect bridges (EMIB) carved 
into the package substrate as shown in Fig. 19(b). Intel 
Stratix 10 devices use EMIB to integrate a large FPGA fab-
ric die with smaller IO transceiver or HBM chiplets in the 
same package, decoupling the design and process tech-
nology choices of these two crucial elements of an FPGA. 
Some recent studies [107]–[109] used EMIB technology 
to tightly couple an FPGA fabric with specialized ASIC 
accelerator chiplets for DL applications. This approach 
offloads specific kernels of the computation (e.g. matrix-
matrix or matrix-vector multiplications) to the more ef-
ficient specialized chiplets, while leveraging the FPGA 
fabric to interface to the outside world and to implement 
rapidly changing DL model components.

H. Other FPGA Components
Modern FPGA architectures contain other important com-
ponents that we will not cover in detail.

(a)

(b)

Package Substrate

FPGA 1

Interposer

FPGA 2

Microbumps

Through-Silicon Vias

Package Substrate

FPGA

Transceiver 
Chiplets

Tx Tx

Microbumps

Interposers

Figure 19. Different interposer technologies used for inte-
grating multiple chips in one package in: (a) Xilinx multi-die 
interposer-based FPGAs and (b) Intel devices with EMIB-
connected transceiver chiplets.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 27

One such component is the configuration circuitry that 
loads the bitstream into the millions of SRAM cells that 
control the LUTs, routing switches and configuration bits 
in hard blocks. On power up, a configuration control-
ler loads this bitstream serially from a source such as 
on-board flash or a hardened PCIe interface. When a suf-
ficient group of configuration bits are buffered, they 
are written in parallel to a group of configuration SRAM 
cells, in a manner similar to writing a (very wide) word 
to an SRAM array. This configuration circuitry can also 
be accessed by the FPGA soft logic, allowing partial re-
configuration of one part of the device while another 
portion continues processing. A complete FPGA ap-
plication is very valuable intellectual property, and 
without security measures it could be cloned simply 
by copying the programming bitstream. To avoid this, 
FPGA CAD tools can optionally encrypt a bitstream, 
and FPGA devices can have a private decryption key 
programmed in by the manufacturer, making a bit-
stream usable only by a single customer who purchas-
es FPGAs with the proper key.

Since FPGA applications are often communicating 
with many different devices at different speeds, they 
commonly include dozens of clocks. Most of these clocks 
are generated on-chip by programmable phase-locked 
loops (PLLs), delay-locked loops (DLLs) and clock data re-
covery (CDR) circuits. Distributing many high frequency 
clocks in different ways for different applications is chal-
lenging, and leads to special interconnect networks for 
clocks. These clock networks are similar in principle to 
the programmable interconnect of Section III-B but use 
routing wire and switch topologies that allow construc-
tion of low-skew networks like H-trees, and are imple-
mented using wider metal and shielding conductors to 
reduce crosstalk and hence jitter.

IV. Conclusion and Future Directions
FPGAs have evolved from simple arrays of program-
mable logic blocks and IOs interconnected via pro-
grammable routing into more complex multi-die sys-
tems with many different embedded components such 
as BRAMs, DSPs, high-speed external interfaces, and 
system-level NoCs. The recent adoption of FPGAs in 
the HPC and datacenter domains, along with the emer-
gence of new high-demand applications such as deep 
learning, is ushering in a new phase of FPGA architec-
ture design. These new applications and the multi-user 
paradigm of the datacenter create opportunities for 
architectural innovation. At the same time, process 
technology scaling is changing in fundamental ways. 
Wire delay is scaling poorly which motivates rethink-
ing programmable routing architecture. Interposers 
and 3D integration enable entirely new types of het-

erogeneous systems. Controlling power consumption 
is an overriding concern, and is likely to lead to FPGAs 
with more power-gating and more heterogeneous hard 
blocks. We do not claim to predict the future of FPGA 
architecture, except that it will be interesting and dif-
ferent from today!

Acknowledgments
The authors would like to thank Fynn Schwiegelshohn 
for valuable feedback, and the NSERC/Intel industrial 
research chair in programmable silicon and the Vector 
institute for funding support.

Andrew Boutros received his B.Sc. de-
gree in electronics engineering from the 
German University in Cairo in 2016, and 
his M.A.Sc. degree in electrical and com-
puter engineering from the University of 
Toronto in 2018. He was a research sci-

entist at Intel’s Accelerator Architecture Lab in Oregon 
before he returned to the University of Toronto where he 
is currently pursuing his Ph.D. degree. His research inter-
ests include FPGA architecture and CAD, deep learning 
acceleration, and domain-specific architectures. He is a 
post-graduate affiliate of the Vector Institute for Artificial 
Intelligence and the Center for Spatial Computational 
Learning. He received two best paper awards at Reconfig 
2016 and FPL 2018.

Vaughn Betz received his B.Sc. degree in 
electrical engineering from the Univer-
sity of Manitoba in 1991, his M.S. degree 
in electrical and computer engineering 
from the University of Illinois at Urbana–
Champaign in 1993, and his Ph.D. degree 

in electrical and computer engineering from the Univer-
sity of Toronto in 1998. He is the original developer of the 
widely used VPR FPGA placement, routing and architec-
ture evaluation CAD flow, and a lead developer in the VTR 
project that has built upon VPR. He co-founded Right 
Track CAD to commercialize VPR, and joined Altera upon 
its acquisition of Right Track CAD. Dr. Betz spent 11 years 
at Altera, ultimately as Senior Director of software engi-
neering, and is one of the architects of the Quartus CAD 
system and the first five generations of the Stratix and 
Cyclone FPGA families. He is currently a professor and 
the NSERC/Intel Industrial Research Chair in Program-
mable Silicon at the University of Toronto. He holds 101 
US patents and has published over 100 technical articles 
in the FPGA area, thirteen of which have won best or 
most significant paper awards. Dr. Betz is a Fellow of the 
IEEE and the NAI, and Faculty Affiliate of the Vector Insti-
tute for Artificial Intelligence.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



28  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2021

References
[1] M. Hall and V. Betz, “HPIPE: Heterogeneous layer-pipelined and sparse-
aware CNN inference for FPGAs,” 2020, arXiv:2007.10451.
[2] P. Yiannacouras et al., “Data parallel FPGA workloads: Software versus 
hardware,” in Proc. IEEE Int. Conf. Field-Programmable Logic Appl. (FPL), 
2009, pp. 51–58.
[3] M. Cummings and S. Haruyama, “FPGA in the software radio,” IEEE 
Commun. Mag., vol. 37, no. 2, pp. 108–112, 1999. doi: 10.1109/35.747258.
[4] J. Rettkowski et al., “HW/SW co-design of the HOG algorithm on a 
Xilinx Zynq SoC,” J. Parallel Distrib. Comput., vol. 109, pp. 50–62, 2017. doi: 
10.1016/j.jpdc.2017.05.005.
[5] A. Bitar et al., “Bringing programmability to the data plane: Packet 
processing with a NoC-enhanced FPGA,” in Proc. IEEE Int. Conf. Field-Pro-
grammable Technol. (FPT), 2015, pp. 24–31.
[6] H. Krupnova and G. Saucier, “FPGA-based Emulation: Industrial and 
Custom Prototyping Solutions,” in Proc. Int. Workshop on Field-Program-
mable Logic Appl. (FPL), Springer-Verlag, 2000, pp. 68–77.
[7] A. Boutros et al., “Build fast, trade fast: FPGA-based high-frequency 
trading using high-level synthesis,” in Proc. IEEE Int. Conf. Reconfigurable 
Comput. FPGAs (ReConFig), 2017, pp. 1–6.
[8] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale 
datacenter services,” in Proc. ACM/IEEE Int. Symp. Comput. Architecture 
(ISCA), 2014, pp. 13–24.
[9] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in Proc. 
IEEE/ACM Int. Symp. Microarchitecture (MICRO), 2016, pp. 1–13.
[10] J. Fowers et al., “A configurable cloud-scale DNN processor for real-
time AI,” in Proc. ACM/IEEE Int. Symp. Comput. Architecture (ISCA), 2018, 
pp. 1–14.
[11] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” 
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2, pp. 
203–215, 2007. doi: 10.1109/TCAD.2006.884574.
[12] A. Boutros et al., “You cannot improve what you do not measure: 
FPGA vs. ASIC efficiency gaps for convolutional neural network infer-
ence,” ACM Trans. Reconfigurable Technol. Syst. (TRETS), vol. 11, no. 3, pp. 
1–23, 2018. doi: 10.1145/3242898.
[13] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide: Ver-
sion 3.0. Microelectronics Center of North Carolina, 1991.
[14] K. Murray et al., “VTR 8: High-performance CAD and customizable 
FPGA architecture modelling,” ACM Trans. Reconfigurable Technol. Syst. 
(TRETS), vol. 13, no. 2, pp. 1–55, June 2020. doi: 10.1145/3388617.
[15] K. Murray et al., “Titan: enabling large and complex benchmarks in 
academic CAD,” in Proc. IEEE Int. Conf. Field-Programmable Logic Appl. 
(FPL), 2013, pp. 1–8.
[16] H. Parandeh-Afshar et al., “Rethinking FPGAs: Elude the flexibility 
excess of LUTs with and-inverter cones,” in Proc. ACM/SIGDA Int. Symp. 
Field-Programmable Gate Arrays (FPGA), 2012, pp. 119–128. 
[17] H. Parandeh-Afshar et al., “Shadow AICs: Reaping the benefits of and-
inverter cones with minimal architectural impact,” in Proc. ACM/SIGDA 
Int. Symp. Field-Programmable Gate Arrays (FPGA), 2013, pp. 279–279.
[18] H. Parandeh-Afshar et al., “Shadow and-inverter cones,” in Proc. IEEE 
Int. Conf. Field-Programmable Logic Appl. (FPL), 2013, pp. 1–4.
[19] G. Zgheib et al., “Revisiting and-inverter cones,” in Proc. ACM/SIGDA 
Int. Symp. Field-Programmable Gate Arrays (FPGA), 2014, pp. 45–54. doi: 
10.1145/2554688.2554791.
[20] V. Betz et al., Architecture and CAD for Deep-Submicron FPGAs. Spring-
er Science & Business Media, 1999.
[21] V. Betz and J. Rose, “How much logic should go in an FPGA logic 
block?” IEEE Design Test Comput., vol. 15, no. 1, pp. 10–15, 1998. doi: 
10.1109/54.655177.
[22] G. Lemieux et al., “Generating highly-routable sparse crossbars for 
PLDs,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays 
(FPGA), 2000, pp. 155–164. doi: 10.1145/329166.329199.
[23] C. Chiasson and V. Betz, “COFFE: Fully-automated transistor sizing 
for FPGAs,” in Proc. IEEE Int. Conf. Field-Programmable Technol. (FPT), 
2013, pp. 34–41.
[24] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-
submicron FPGA performance and density,” IEEE Trans. Very Large 
Scale Integr. (VLSI) Syst., vol. 12, no. 3, pp. 288–298, 2004. doi: 10.1109/
TVLSI.2004.824300.
[25] “Stratix II Device Handbook, Volume 1 (SII5V1-4.5).” Altera Corp., 2007.
[26] D. Lewis et al., “The Stratix II logic and routing architecture,” in Proc. 
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2005,  
pp. 14–20.

[27] T. Ahmed et al., “Packing techniques for Virtex-5 FPGAs,” ACM Trans. 
Reconfigurable Technol. Syst. (TRETS), vol. 2, no. 3, pp. 1–24, 2009. doi: 
10.1145/1575774.1575777.
[28] W. Feng et al., “Improving FPGA performance with a S44 LUT struc-
ture,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays 
(FPGA), 2018, pp. 61–66. doi: 10.1145/3174243.3174272.
[29] “Versal ACAP Configurable Logic Block Architecture Manual (AM005 
v1.0),” Xilinx Inc, 2020.
[30] D. Lewis et al., “Architectural enhancements in Stratix V,” in Proc. 
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2013, pp. 
147–156.
[31] I. Ganusov and B. Devlin, “Time-borrowing platform in the Xilinx Ul-
trascale+ family of FPGAs and MPSoCs,” in Proc. IEEE Int. Conf.Field Pro-
grammable Logic Appl. (FPL), 2016, pp. 1–9.
[32] K. Murray et al., “Optimizing FPGA logic block architectures for arith-
metic,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 6, pp. 
1378–1391, 2020. doi: 10.1109/TVLSI.2020.2965772.
[33] S. Yazdanshenas and V. Betz, “Automatic circuit design and model-
ling for heterogeneous FPGAs,” in Proc. IEEE Int. Conf. Field Programmable 
Technol. (ICFPT), 2017, pp. 9–16.
[34] J. Chromczak et al., “Architectural enhancements in Intel Agilex FPGAs,” 
in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2020, 
pp. 140–149.
[35] S. Rasoulinezhad et al., “LUXOR: An FPGA logic cell architecture 
for efficient compressor tree implementations,” in Proc. ACM/SIGDA Int. 
Symp. Field-Programmable Gate Arrays (FPGA), 2020, pp. 161–171. 
[36] A. Boutros et al., “Math doesn’t have to be hard: Logic block architec-
tures to enhance low-precision multiply-accumulate on FPGAs,” in Proc. 
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2019, pp. 
94–103.
[37] M. Eldafrawy et al., “FPGA logic block architectures for efficient deep 
learning inference,” ACM Trans. Reconfigurable Technol. Syst. (TRETS), 
vol. 13, no. 3, pp. 1–34, 2020. doi: 10.1145/3393668.
[38] C. Chiasson and V. Betz, “Should FPGAs abandon the pass gate?” in 
Proc. Int. Conf. Field-Programmable Logic Appl., 2013, pp. 1–8.
[39] FlexLogix eFPGA. https://flex-logix.com/efpga/
[40] V. Betz and J. Rose, “FPGA routing architecture: Segmentation and 
buffering to optimize speed and density,” in Proc. ACM Int. Symp. FPGAs, 
1999, pp. 59–68. 
[41] O. Petelin and V. Betz, “The speed of diversity: Exploring complex 
FPGA routing toplogies for the global metal layer,” in Proc. IEEE Int. Conf. 
Field-Programmable Logic Appl. (FPL), 2016, pp. 1–10.
[42] D. Lewis et al., “The Stratix routing and logic architecture,” in Proc. ACM/
SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2003, pp. 12–20.
[43] X. Tang et al., “A study on switch block patterns for tileable FPGA 
routing architectures,” in Proc. IEEE Int. Conf. Field-Programmable Technol. 
(FPT), 2019, pp. 247–250.
[44] G. Lemieux et al., “Directional and single-driver wires in FPGA inter-
connect,” in Proc. IEEE Int. Conf. Field-Programmable Technol. (FPT), 2004, 
pp. 41–48.
[45] D. Lewis et al., “The Stratix 10 highly pipelined FPGA architecture,” 
in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 
2016, pp. 159–168.
[46] B. Gaide et al., “Xilinx adaptive compute acceleration platform: Ver-
sal architecture,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate 
Arrays (FPGA), 2019, pp. 84–93. doi: 10.1145/3289602.3293906.
[47] J. Tyhach et al., “A 90 nm FPGA I/O buffer design with 1.6 Gbps data 
rate for source-synchronous system and 300 MHz clock rate for external 
memory interface,” in Proc. IEEE Custom Integrated Circuits Conf., 2004, 
pp. 431–434.
[48] N. Zhang et al., “Low-voltage and high-speed FPGA I/O cell design in 
90nm CMOS,” in Proc. IEEE Int. Conf. ASIC, 2009, pp. 533–536.
[49] T. Qian et al., “A 1.25Gbps programmable FPGA I/O buffer with multi-
standard support,” in Proc. IEEE Int. Conf. Integr. Circuits Microsyst., 2018, 
pp. 362–365.
[50] P. Upadhyaya et al., “A fully-adaptive wideband 0.5–32.75Gb/s FPGA 
transceiver in 16nm FinFET CMOS technology,” in Proc. IIEEE Symp. VLSI 
Circuits, 2016, pp. 1–2.
[51] “Implementing RAM functions in FLEX 10K Devices (A-AN-052-01),” 
Altera Corp., 1995.
[52] K. Tatsumura et al., “High density, low energy, magnetic tunnel junc-
tion based block RAMs for memory-rich FPGAs,” in Proc. IEEE Int. Conf. 
Field-Programmable Technol. (FPT), 2016, pp. 4–11.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 29

[53] T. Ngai et al., “An SRAM-programmable field-configurable memory,” 
in Proc. IEEE Custom Integr. Circuits Conf. (CICC), 1995, pp. 499–502.
[54] S. Wilton et al., “Architecture of centralized field-configurable memo-
ry,” in Proc. ACM Int. Symp. Field-Programmable Gate Arrays (FPGA), 1995, 
pp. 97–103.
[55] S. Yazdanshenas et al., “Don’t forget the memory: Automatic block 
RAM modelling, optimization, and architecture exploration,” in Proc. 
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2017, pp. 
115–124.
[56] T. R. Halfhill, “Tabula’s time machine,” Microprocessor Rep., vol. 131, 
2010.
[57] “Mercury programmable logic device family (DS-MERCURY-2.2),” Al-
tera Corp., 2003.
[58] C. E. LaForest and J. G. Steffan, “Efficient multi-ported memories for 
FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays 
(FPGA), 2010, pp. 41–50. doi: 10.1145/1723112.1723122.
[59] C. E. LaForest et al., “Multi-ported memories for FPGAs via XOR,” in 
Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2012, 
pp. 209–218. doi: 10.1145/2145694.2145730.
[60] D. Lewis et al., “Architectural enhancements in Stratix-III and Stratix-
IV,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays 
(FPGA), 2009, pp. 33–42.
[61] R. Tessier, et al. “Power-efficient RAM mapping algorithms for FPGA 
embedded memory blocks,” IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. 26, no. 2, pp. 278–290, 2007. doi: 10.1109/TCAD.2006.887924.
[62] B.-C. C. Lai and J.-L. Lin, “Efficient designs of multiported memory on 
FPGA,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 1, pp. 
139–150, 2016. doi: 10.1109/TVLSI.2016.2568579.
[63] H. Wong et al., “Comparing FPGA vs. custom CMOS and the impact on 
processor microarchitecture,” in Proc. ACM/SIGDA Int. Symp. Field-Program-
mable Gate Arrays (FPGA), 2011, pp. 5–14. doi: 10.1145/1950413.1950419.
[64] E. Kadric et al., “Impact of memory architecture on FPGA energy con-
sumption,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays 
(FPGA), 2015, pp. 146–155. doi: 10.1145/2684746.2689062.
[65] L. Ju et al., “NVM-based FPGA block RAM with adaptive SLC-MLC 
conversion,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, 
no. 11, pp. 2661–2672, 2018. doi: 10.1109/TCAD.2018.2857261.
[66] P. Longa and A. Miri, “Area-efficient FIR filter design on FPGAs us-
ing distributed arithmetic,” in Proc. IEEE Int. Symp. Signal Process. Inform. 
Technol., 2006, pp. 248–252.
[67] P. K. Meher et al., “FPGA realization of FIR Filters by efficient and 
flexible systolization using distributed arithmetic,” IEEE Trans. Signal 
Process., vol. 56, no. 7, pp. 3009–3017, 2008. doi: 10.1109/TSP.2007.914926.
[68] “Virtex-II platform FPGAs: Complete data sheet (DS031 v4.0),” Xilinx 
Inc, 2014.
[69] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array 
multiplication algorithm,” IEEE Trans. Comput., vol. C-22, no. 12, pp. 1045–
1047, 1973. doi: 10.1109/T-C.1973.223648.
[70] “Using the DSP Blocks in Stratix & Stratix GX Devices (AN-214-3.0),” 
Altera Corp., 2002.
[71] “XtremeDSP for Virtex-4 FPGAs (UG073 v2.7),” Xilinx Inc, 2008.
[72] “DSP Blocks in Stratix III Devices (SIII51005-1.7),” Altera Corp., 2010.
[73] “Stratix V Device Handbook Volume 1: Device Interfaces and Integra-
tion (SV-5V1),” Altera Corp., 2020.
[74] “Virtex-5 FPGA XtremeDSP Design Considerations (UG193 v3.6),” 
Xilinx Inc, 2017.
[75] “Virtex-6 FPGA DSP48E1 Slice (UG369 v1.3),” Xilinx Inc, 2011.
[76] “UltraScale Architecture DSP Slice (UG579 v1.9),” Xilinx Inc, 2019.
[77] H. Parandeh-Afshar and P. Ienne, “Highly versatile DSP blocks for 
improved FPGA arithmetic performance,” in Proc. IEEE Int. Symp. Field-
Programmable Custom Computing Mach. (FCCM), 2010, pp. 229–236.
[78] A. Cevrero et al., “Field programmable compressor trees: Accel-
eration of multi-input addition on FPGAs,” ACM Trans. Reconfigurable 
Technol. Syst. (TRETS), vol. 2, no. 2, pp. 1–36, 2009. doi: 10.1145/1534916. 
1534923.
[79] M. Langhammer and B. Pasca, “Floating-point DSP block architecture 
for FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays 
(FPGA), 2015, pp. 117–125. doi: 10.1145/2684746.2689071.
[80] S. Ahmad et al., “Xilinx First 7nm device: Versal AI core (VC1902),” in 
Proc. Hot Chips Symp., 2019, pp. 1–28.
[81] P. Gysel et al., “Hardware-oriented approximation of convolutional 
neural networks,” 2016, arXiv:1604.03168.
[82] N. Mellempudi et al., “Mixed low-precision deep learning inference 
using dynamic fixed point,” 2017, arXiv:1701.08978.

[83] A. Mishra et al., “WRPN: Wide reduced-precision networks,” 2017, 
arXiv:1709.01134.
[84] A. Boutros et al., “Embracing diversity: Enhanced DSP blocks for low-
precision deep learning on FPGAs,” in Proc. IEEE Int. Conf. Field Program-
mable Logic Appl. (FPL), 2018, pp. 35–357.
[85] S. Rasoulinezhad et al., “PIR-DSP: An FPGA DSP block architecture 
for multi-precision deep neural networks,” in Proc. IEEE Int. Symp. Field-
Programmable Custom Comput. Mach. (FCCM), 2019, pp. 35–44.
[86] Intel Corp. “Intel Agilex variable precision DSP blocks user guide (UG-
20213),” Intel Corp., 2020.
[87] “Intel Stratix 10 NX FPGA: AI-optimized FPGA for high-bandwidth, 
low-latency AI acceleration (SS-1121-1.0),” Intel Corp., 2020.
[88] L. Gwennap, “Stratix 10 NX adds AI blocks,” The Linley Group News-
letters, 2020.
[89] A. Boutros et al., “Beyond peak performance: Comparing the real 
performance of AI-optimized FPGAs and GPUs,” in Proc. IEEE Int. Conf. 
Field-Programmable Technol. (FPT), 2020.
[90] “Speedster7t machine learning processing user guide (UG088),” 
Achronix Corp., 2019.
[91] “High Bandwidth Memory (HBM2) Interface Intel FPGA IP User Guide 
(UG-20031),” Intel Corp., 2020.
[92] M. T. Bohr, “Interconnect scaling: The real limiter to high perfor-
mance ULSI,” in Proc. Int. Electron Devices Meeting, 1995, pp. 241–244.
[93] M. S. Abdelfattah and V. Betz, “Design tradeoffs for hard and soft 
FPGA-based networks-on-chip,” in Proc. IEEE Int. Conf. Field-Programmable 
Technol. (FPT), 2012, pp. 95–103.
[94] M. S. Abdelfattah and V. Betz, “The power of communication: Energy-
efficient NoCs for FPGAs,” in Proc. IEEE Int. Conf. Field Programmable Logic 
Appl. (FPL), 2013, pp. 1–8.
[95] S. Abdelfattah and V. Betz, “The case for embedded networks on chip 
on field-programmable gate arrays,” IEEE Micro, vol. 34, no. 1, pp. 80–89, 
2013.
[96] M. S. Abdelfattah et al., “Take the highway: Design for embedded 
NoCs on FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate 
Arrays (FPGA), 2015, pp. 98–107. doi: 10.1145/2684746.2689074.
[97] S. Yazdanshenas and V. Betz, “Quantifying and mitigating the costs 
of FPGA virtualization,” in Proc. IEEE Int. Conf. Field-Programmable Logic 
Appl. (FPL), 2017, pp. 1–7.
[98] N. Kapre, and and J. Gray, “Hoplite: A deflection-routed directional 
torus NoC for FPGAs,” ACM Trans. Reconfigurable Technol. Syst. (TRETS), 
vol. 10, no. 2, pp. 1–24, 2017. doi: 10.1145/3027486.
[99] M. K. Papamichael and J. C. Hoe, “CONNECT: Re-examining conven-
tional wisdom for designing NoCs in the context of FPGAs,” in Proc. ACM/
SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2012, pp. 37–46. 
[100] Y. Huan and A. DeHon, “FPGA optimized packet-switched NoC using 
split and merge primitives,” in Proc. IEEE Int. Conf. Field-Programmable 
Technol. (FPT), 2012, pp. 47–52.
[101] S. Yazdanshenas and V. Betz, “Interconnect solutions for virtualized 
field-programmable gate arrays,” IEEE Access, vol. 6, pp. 10,497–10,507, 
2018. doi: 10.1109/ACCESS.2018.2806618.
[102] I. Swarbrick et al., “Network-on-chip programmable platform in ver-
sal ACAP architecture,” in Proc. ACM/SIGDA International Symposium on 
Field-Programmable Gate Arrays (FPGA), 2019, pp. 212–221.
[103] “Speedster7t network on chip user guide (UG089),” Achronix Corp., 
2019.
[104] “AMBA AXI and ACE protocol specification,” ARM Holdings, Tech. 
Rep., 2013.
[105] E. Nasiri et al., “Multiple dice working as one: CAD flows and rout-
ing architectures for silicon interposer FPGAs,” IEEE Trans. Very Large 
Scale Integr. (VLSI) Syst., vol. 24, no. 5, pp. 1821–1834, 2015. doi: 10.1109/
TVLSI.2015.2478280.
[106] R. Chaware et al., “Assembly and reliability challenges in 3D integra-
tion of 28nm FPGA die on a large high density 65nm passive interposer,” in 
Proc. IEEE Electronic Components Technol. Conf., 2012, pp. 279–283.
[107] E. Nurvitadhi et al., “In-package domain-specific ASICs for intel 
Stratix 10 FPGAs: A case study of accelerating deep learning using ten-
sortile ASIC,” in Proc. IEEE Int. Conf. Field-Programmable Logic Appl. (FPL), 
2018, pp. 106–1064.
[108] E. Nurvitadhi et al., “Evaluating and Enhancing Intel Stratix 10 FP-
GAs for persistent real-time AI,” in Proc. ACM/SIGDA Int. Symp. Field-Pro-
grammable Gate Arrays (FPGA), 2019, pp. 119–119.
[109] E. Nurvitadhi et al., “Why compete when you can work together: FPGA-
ASIC integration for persistent RNNs,” in Proc. IEEE Int. Symp. Field-Program-
mable Custom Comput. Mach. (FCCM), 2019, pp. 199–207.

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on May 26,2021 at 04:10:12 UTC from IEEE Xplore.  Restrictions apply. 


