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Abstract—Biophotonics, the study of light propagation through
living tissue, is important for many medical applications ranging
from imaging and detection through therapy for conditions such
as cancer. Effective medical use of light depends on simulating
its propagation through highly-scattering tissue. Monte Carlo
simulation of photon migration has been adopted as the “gold
standard” for its ability to capture complicated geometries and
model all of the relevant problem physics. This accuracy and
generality comes at a high computational cost, which limits the
technique’s utility.

Greatly generalizing previous work, we present the first and
only hardware-accelerated Monte Carlo biophotonic simulator
that can accept complicated geometries described by tetrahedral
meshes. Implemented on an Altera Stratix V FPGA, it achieves
high performance (4x) and extremely high energy efficiency (67x)
compared to a tightly-optimized multi-threaded CPU implemen-
tation, with demonstrated potential to expand the performance
gains even further to 15-20x, which would enable important
clinical and research applications.

I. INTRODUCTION AND OUTLINE

Light is useful for many medical applications. It is not

inherently dangerous, as well as being inexpensive to pro-

duce, guide, and measure. Absorption spectra can be used

to measure the composition and function of living tissue.

Photochemical reactions like PDT (introduced below) can also

be used to control biological processes. The ability to simulate

the propagation of light through tissue is critical in all of

these applications, for instance to calculate the tissue volume

interrogated or the energy deposited by light.

This paper starts by giving a quick introduction to biopho-

tonic simulations, highlighting the important features, and in-

troducing Photodynamic Therapy as an application. Section III

presents the basic algorithm used for Monte Carlo modeling

of light propagation. Next, we present a summary of prior

work on hardware acceleration of such simulations. Section V

discusses computational features of the problem, and the

reason for choosing FPGAs as an acceleration platform. We

then discuss implementation details, area, and performance

results. The paper concludes with a summary and directions

for future work.

Our main contribution is an FPGA implementation of the

algorithm, the first accelerated tetrahedral-mesh-based Monte

Carlo simulator (GPU or FPGA). It achieves higher perfor-

mance (4x) and power efficiency (67x) than a best-in-class

tightly-optimized CPU implementation. We also summarize

some important profiling results and analyze an architecture

to enable still-higher performance on a single-FPGA system.

II. BACKGROUND

A. Biophotonics

Fluence Φ(p) [Jcm−2] is generally the quantity of interest

in biophotonic applications, being the quantity received at a

detector, imaged at a sensor, or deposited within a tissue for

therapeutic purposes. Formally, it is the integral over time of

the total light energy that has passed through an infinitesimal

area at point p. Calculation of fluence in heterogeneous tissues

with complicated geometry is therefore an important tool in

many medical applications for optically detecting, treating, and

understanding disease.

Living tissues typically scatter light strongly, which is

measured by the scattering coefficient µs, denoting the number

of times a photon would typically be scattered per centimetre

of path length (≈ 101−103 cm−1). When a photon is scattered,

its new direction is a random variable whose distribution

depends on the material causing the scattering. Photons are

also absorbed according to the absorption coefficient µa ≈
10−1−101 cm−1, generally less than the scattering coefficient.

While an approximate solution can be computed by the

Finite Element Method [1] under some assumptions, Monte

Carlo (MC) techniques are regarded as the “gold standard”

for their ability to model the broadest range of materials,

light sources, and geometries accurately. MC simulations work

by launching a large number of photons, calculating their

propagation according to the relevant statistical distributions,

and tracking where they are absorbed. The method is compu-

tationally intensive, but has a regular structure and significant

parallelism which make hardware acceleration attractive.

B. Inverse Problems

Many applications rely on solving mathematical inverse

problems involving light propagation through tissue. The for-

ward problem solved by the simulator presented here is to

determine the distribution of fluence within the tissue given

a description of the geometry, optical properties, and light

emitters. In the inverse problem, we try to move “backwards”

from a fluence distribution to the problem description that

caused it. Generally, we wish to either find the pattern of

light sources and tissue optical properties that best explain

a measured light pattern, or we wish to create a certain light

distribution within the tissue for therapeutic purposes. There

are many degrees of freedom in terms of optical properties,

source, and detector locations; closed-form solutions are not
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Fig. 1. IPDT workflow: planning (upper) requires ≈ 10
3 iterations; on-line

adjustment (lower) requires 10s of iterations, but is latency-critical

known for general cases, requiring iterative solutions using

many forward simulations. This computational burden can

render otherwise promising techniques such as Photodynamic

Therapy (PDT) for cancer infeasible, which motivates this

work.

C. Photodynamic Therapy (PDT)

Photodynamic therapy (PDT) is a light-mediated therapy

used to kill diseased cells including cancer and bacterial in-

fections. It uses a light-activated drug called a photosensitizer

(PS) which, when it absorbs a photon, excites the oxygen

normally present in tissue into a reactive form that damages

cells. Oxygen radical production depends on the concentration

of PS and oxygen in the tissues, and on the fluence; if the

accumulated damage is sufficient, the cells in the immediate

vicinity of light exposure die. Light may be delivered by su-

perficial illumination (skin), through an endoscope (mouth and

esophagus), during surgery, or using optical fibres inserted via

needles. When optical fibres are inserted via needles and used

to emit light within the tissue itself, the technique is known as

interstitial PDT (IPDT). Treatment planning, as discussed in

the next section, is critical to the safety and effectiveness of

IPDT and remains a key obstacle to widespread adoption that

can be addressed by faster, more accurate simulations. Further

details about PDT are presented in a review by Wilson [2].

D. PDT Treatment Planning

To produce a PDT plan which is both safe and effective, it is

necessary to propose and evaluate a number of candidate plans

against physician-defined dose targets. The workflow occurs

in two phases as illustrated in Fig 1. In the first phase, off-

line planning, the region to be treated is imaged, minimum

and maximum dose targets are defined, and many candidate

plans are simulated with differing source configurations. Once

an acceptable plan is generated, treatment can begin. The

second phase, on-line adjustment, occurs when the patient

is immobilized and the probes are inserted. Actual probe

placement may differ from the simulation, and patient optical

properties will also vary from those assumed in the planning

phase. Tens of simulations may then be required to ensure

safety given the as-placed locations and to optimize treatment

for the patient’s actual optical properties.

Evaluating the fluence distribution for a single PDT treat-

ment plan is very computationally expensive. Achieving ac-

ceptable result variance requires simulation of ≈ 107 − 109

photon packets, each of which undergoes hundreds or thou-

sands of interactions before being retired. During the offline

planning phase, approximately one thousand candidate plans

may need to be evaluated to optimize a patient’s treatment.

Each plan requires approximately thirty minutes to complete

on a single computing node, even using a highly-optimized

software simulator. Consequently, the total effort to compute a

plan is on the order of 500 node-hours: over twenty node-days

per patient. Since Monte Carlo simulations are inherently par-

allel, virtually arbitrary performance speedup can be achieved

through accumulating the results of multiple parallel instances.

Given a rack of two hundred nodes, the calculation can be done

in a few hours if cost, space, and power consumption are not

constraints. When considering the process for multiple patients

per day, the number of nodes required becomes non-trivial

(≈ 20 per daily patient). Furthermore, power and cooling costs

are first-order concerns when operating a computing facility

given that the nodes required for each daily patient will run

near 100% capacity and consume multiple kilowatts.

In the on-line phase, the simulations are on the critical

path between immobilizing the patient and the completion

of treatment so latency is of the utmost importance. Tens of

simulations will be required in the course of a treatment that

should last no more than an hour, meaning that each simulation

must be reduced from a half-hour to minutes at most (≈ 20x).

The cost of patient discomfort and operating-room time argue

the case for extremely high reliability, quick compute times,

and independence from remote facilities or communication

links, ie. a self-contained portable system. These desiderata

argue for small physical size, low power consumption (thermal

dissipation), manageable cost, and fast computing capability.

Given the foregoing concerns, throughput per-dollar, per-

watt, and per-unit-space are as important as total throughput,

especially for the on-line calculations. Unfortunately, CPU-

based cluster computing can address throughput concerns

only; the other figures of merit remain constant since cost

measures scale with cluster size, and clusters are non-portable.

We therefore seek a system which performs 20x faster than a

high-performance CPU in a package which is portable, uses

no exotic cooling, and can be powered from a standard wall

socket: goals which are likely to be met by an FPGA.

III. ALGORITHM

The basic algorithm for biophotonic Monte Carlo simu-

lations, called “hop, drop, spin”, was first implemented in

open-source software (MCML) for layered materials by Wang,

Jacques, and Zheng [3]. While acceptable for some applica-

tions like skin, infinite planar layers are oversimplified for

many anatomical structures. The algorithm generalizes natu-

rally to more complex problems by increasing the complexity
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Fig. 2. Overview of Monte Carlo “hop, drop, spin” flow. This maps exactly
to hardware functional blocks and data flows in our implementation.

of the geometry description along with related routines to find

the intersection of a ray with region boundaries and calculate

surface normals. Shen and Wang provided such a software

implementation called TIM-OS [4], and we provide a faster,

more flexible version called FullMonte [5] which is used

to gather algorithm profiling information and to validate the

hardware.

MC methods simulate photons in groups (called packets)

which propagate together through the flow shown in Fig 2.

Each packet is launched, travels in a straight line for an

exponentially-distributed step length (“hop”), then interacts

with the material. During that interaction, part of the packet

energy (called weight w) is deposited (“drop”), the photon

scatters into a new random direction (“spin”) and the process

repeats.

A. Launch

The packet’s initial state is defined by a source distribution.

In this work, we use an isotropic point source which radiates

equally in all directions. The starting position and surrounding

region are known constants and the direction d̂ is chosen as

a random point on the unit sphere.

B. Draw Step

Based on the coefficients of scattering and absorption for

the current region, µs, µa, the attenuation coefficient µt =
µs + µa defines the average number of interactions a photon

has per unit path length traveled. The length of a step s is

exponentially distributed with mean 1

µt

, and is generated from

a uniform random variable r by

s =
l

µt

= − log r

µt

r ∼ U01 (1)

C. Region Lookup

One important novelty of our work is that we are the first

hardware accelerator to support a tetrahedral mesh description,

and hence the first which can approximate surface normals

to general smooth curves properly - an essential feature for

accuracy when dealing with reflection and refraction [6]. The

problem geometry is represented as a set of tetrahedra, each

of which is assigned a material ID. The set of points p inside

a tetrahedron is defined by

{p : n̂i ·p− Ci ≤ 0, i ∈ [1, 4]} (2)

The description therefore consists of four faces and an index

into the material-properties lookup table. Each face is defined

by a normal vector n̂i, constant Ci, and the index of the

adjacent tetrahedron.

D. Hop

To take a “hop”, the packet is advanced by the drawn step

length s along direction d̂ to its final position p′ = p + sd̂.

If it remains within the current tetrahedral region, then the

hop is finished and the packet proceeds to “drop”. Otherwise,

the packet is passed to the interface logic which handles the

boundary.

E. Interface

If the packet crosses a face during its hop, the intersection

of the ray and the face crossed is calculated. In the refractive-

index differs across the boundary, calculations to account

for that interface must be done: Fresnel reflection gives a

probability of reflection as a function of incidence angles

and refractive indices; total internal reflection specifies an

incidence angle above which reflection always occurs as a

function of refractive index; and Snell’s law specifies the angle

of the transmitted ray if it does not reflect. If the scattering and

absorption coefficients change, then the remaining step length

is updated to s′ = µt

µ′

t

s to preserve correct step-length statistics

for the new interaction coefficient. If the photon passes beyond

the edge of the mesh, ie. the adjacent tetra ID is 0, then we

count it as having exited the mesh and stop tracing it.

F. Drop

At the conclusion of the step, the packet drops some of

its energy to model the absorption probability. The albedo

α = µs

µs+µa

, 0 ≤ α ≤ 1 gives the probability that a given

interaction with the material will be scattering. In order to

model the expected behavior of individual photons, the packet

deposits weight (1−α)w in the region and continues onwards

with decreased weight w′ = αw. The deposited weight is

accumulated for that mesh element to calculate the fluence at

the end of the simulation.

G. Dead

As the photon propagates and is fractionally absorbed at

multiple steps, its weight declines so it contributes less to

the absorption scores. The computational cost of tracking a

packet is independent of its weight so the effort spent shows

diminishing returns in terms of its impact on the accumulated

fluence value. To avoid wasting effort, packets with a weight

less than a constant wmin undergo a self-termination process

called “Russian roulette” in which they are given a 1-in-P

chance of surviving with weight Pw, otherwise terminating.

An average packet will undergo hundreds of hop-drop-spin

cycles before expiring in this energy-conserving way.



H. Spin

Living tissues consist of scatterers with varying size and

optical properties, so precise modeling of each scatterer is

impractical. Instead the Henyey-Greenstein (HG) phase func-

tion is often used to model the distribution of aggregate

behavior for the deflection angle θ between d̂ and d̂′. The

azimuthal angle ψ is uniformly distributed. The HG function

ICDF shown below takes a parameter g = E [cos θ] which

describes how forward-biased the distribution is in terms of

the correlation between the incident and outgoing directions.

cos θ =
1

2g

[

1 + g2 −
(

1− g2

1− g(2q − 1)

)2
]

(3)

Direct evaluation for a uniform random value of q gives an

appropriately-distributed value of cos θ. The sine is calculated

using
√
1− cos2 θ.

IV. PRIOR WORK: GPU AND FPGA ACCELERATION

A. Software

A number of different software models have been created

over time with varying simplifications. Only MC simulators

based on a tetrahedral mesh geometry are sufficiently general

to deal accurately with complicated geometries including

curves and refractive index changes. Of those, our previous

work FullMonte-SW [5] runs slightly faster than the next-

fastest such software, TIM-OS [4] while supporting the same

problem definitions. Prior acceleration work exists as summa-

rized below, but it is insufficiently general for IPDT planning.

Software implementations vary greatly in their level of

optimization, requiring caution when interpreting reported

speedup results for accelerated versions. In our experience,

the speedup of running multi-threaded simulations is linear

in the number of physical cores, and Simultaneous Multi-

Threading1 also offers a significant benefit. Single-threaded

versions are therefore inherently at least 5-10x slower than

potential multi-threaded performance on modern processors

with 4-8 cores. During the evolution of FullMonte-SW, we also

noted a performance difference of 2-3x due to optimizations

in data structures and use of SIMD intrinsics. Unoptimized

single-threaded software may therefore be 10-30x slower than

an optimized implementation.

B. GPU

Fang and Boas [7] present MCX, a GPU-based simulator,

for propagation within a voxelized geometry representation

which has well-known drawbacks in representing curved

surfaces [6] and offers no way to vary the level of detail

throughout the simulation volume. The resulting implementa-

tion is unnecessarily memory-bandwidth-intensive, compute-

intensive, and inflexible in its geometry representation.

Alerstam [8] implemented CUDAMC on a GPU, for a

greatly simplified problem definition: semi-infinite geometry

(the half-space below z = 0), non-absorbing (no requirement

1Intel “HyperThreading”, in which multiple threads execute concurrently
sharing a single computing core

for atomic read-accumulate-write of fluence), and homoge-

neous (single material). That implementation achieved 1000x

speedup against an unoptimized single-threaded program,

which should be adjusted to approximately 30-100x.

Alerstam and Lo [9] and Lo [10] present the related

packages CUDAMCML and GPU-MCML, both of which

achieve approximately 100x speedup for a more complicated

radially symmetric multi-layered model which, unlike CUD-

AMC, scores absorption and permits differing materials. The

benchmark comparison is again a single-threaded unoptimized

C implementation, so a fair estimate would place the speedup

versus an optimized software implementation at 3-10x. In

exchange for a modest increase in geometry complexity and

output data versus CUDAMC, the GPU-CPU performance

ratio has dropped by an order of magnitude. The geometry

model is still simple: implicit (+z) surface normals, and both

the geometry description and the absorption grid are small.

C. FPGA

In a different vein, Lo [10] created FBM, an implementation

of MCML on an Altera Stratix III FPGA, permitting up to

10 layers and a cylindrically-symmetric fluence distribution

Φ(r, z) of up to 256x256 elements. He reported an advantage

of 45x in speed and 700x in power efficiency over a CPU of

the same process node, which provide a basis for comparison

in the results of Sec VII. Adjusting for the unoptimized single-

thread baseline, the speed difference is closer to 1.5-3x.

V. CHOICE OF ACCELERATOR TECHNOLOGY

We optimized our reference software code extensively

using SIMD instructions, multithreading, and compact data

structures. While some incremental improvements are pos-

sible, software implementations remain more than an order

of magnitude away from the necessary performance defined

in Sec II-D, so alternative platforms must be considered. To

choose a platform, we examined the features of the algorithm

and made the following observations:

1) Fixed dynamic range: The relevant problem variables

have a well-defined range, consisting of bounded variables,

unit vectors, and positions within a defined cube.

2) Limited precision needs: Precision needs are modest;

single-precision float (24b mantissa) results were indistin-

guishable from double (54b) in software (Sec VII-A). Vali-

dation of the hardware implementation has shown further that

18b fixed point is sufficient. Each packet terminates after a few

hundred steps so little error accumulates, unlike the numerical

stability issues seen in iterative calculations.

3) Data parallelism: There exists nearly infinite data par-

allelism since each photon packet is independent of all others.

The same results are expected from running N packets on

one processor as from summing M parallel simulations of N
M

packets each with different random seeds.

4) Pipeline parallelism: The algorithm (Fig 2) exhibits

significant pipeline parallelism, with well-defined operations,

few branches, and no inter-packet dependences.



5) Unique memory structure: As discussed further in

Sec VI-A, the problem involves a mix of large read-only ge-

ometry memory, medium-sized read-accumulate-write fluence

memories, and small read-only constant memories. The ability

to exploit the particular sizing, access patterns, and aspect

ratios of the memories is important for scalability.

6) Special Functions: At several points in the algorithm,

special functions (sine, cosine, square-root, division) are re-

quired. Due to the limited precision and dynamic range, it is

possible to trade quality for speed in the implementation.

7) Atomic accesses: Some implementations simplify by not

scoring absorbed energy, which is not appropriate in this case.

Fluence scoring requires frequent atomic read-accumulate-

write access to relatively large arrays (≈ 104−106 elements).

8) High memory access requirements: The present problem

formulation is distinguished from previous accelerated work

by its large memory access requirements. When dealing with

semi-infinite or planar media, the problem description is on

the order of kilobits. The tetrahedral meshes required to handle

real-life geometries are 3-5 orders of magnitude larger.

9) Random number generation: As a Monte Carlo method,

random number generation (RNG) is an essential step in the

process. FPGAs excel at generating and manipulating random

numbers of varying precision using bitwise operations.

Some factors listed above apply equally well to GPU and

FPGA acceleration, however there are several significant fac-

tors which favour FPGAs uniquely. Given the limited precision

needs and fixed dynamic range, fixed-point arithmetic can be

used which offers significant savings in area and power on

an FPGA. It also allows the instantiation of custom special-

function blocks with the right precision and in the exact quan-

tity required, in contrast to GPUs where special functions are

slower, overly accurate, and less plentiful [11]. The relatively

straight-forward data flow graph of Fig 2 suggests an efficient

spatial layout, which saves power and area for routing data.

Due to its simplicity and negligible memory access needs,

CUDAMC is fully compute-bound on a GPU and so gives

a hard upper bound on speedup. CUDAMCML’s layers in-

troduce the need for a small constant array to describe the

geometry, which can easily fit into per-processor shared mem-

ory and so geometry storage remains trivial. Since it outputs

the spatial distribution of accumulated energy, however, it

introduces a modest global memory requirement for accessing

the absorption array which does not fit in shared memory.

Generalizing to a tetrahedral mesh on a GPU would add

an entirely new memory access requirement since the size

of the geometry description would increase by 3-4 orders

of magnitude. That is a hugely important difference between

fitting in local shared memory (64kB) and requiring access

to the large, relatively slow main memory. Operating at peak

efficiency, modern GPUs can provide hundreds of gigabytes

per second in memory access, if accesses are coalesced into

groups of 16 between adjacent threads. Given that a packet’s

location at a given moment is uncorrelated with any other

packet, and that the access granularity is on the order of a few

hundred bits, a very high proportion of bandwidth waste is

probable. The situation becomes even worse when attempting

to score absorption, where access granularity is just 64 bits for

atomic read-accumulate-write operations to a large data set.

In contrast, modern FPGAs offer thousands of configurable

RAM blocks with a variety of width, depth, and port con-

figurations providing massive internal memory bandwidth in

addition to plentiful and efficient computing resources. We

propose and analyze a highly efficient custom memory system

to exploit that configurability in Sec VII-D.

VI. DESIGN DETAILS

The algorithm of Sec III was implemented in an Altera

Stratix V GS A7 chip (-C1 fastest speed grade). Architec-

turally, the design is a direct implementation of the algorithm

flow shown in Fig 2, with one hardware block for each graph

node. All compute units except the rarely-used launcher are

fully unrolled and pipelined to accept a new input on each

clock. Inter-packet parallelism is exploited by keeping multiple

packets in-flight at once. We used the Bluespec SystemVerilog

(BSV) high-level synthesis language, which excels at control-

intensive designs, making writing and validating the high-level

flow relatively simple.

Our current implementation focuses on performance-critical

issues, placing two restrictions on the model. First, only 48k

tetrahedral elements are supported in order to fit in on-chip

Block RAM. For comparison, a commonly-used open-source

mesh description of a mouse often used for imaging experi-

ments, Digimouse [12], contains slightly over 300k elements

to model the entire animal. Testing showed that over 95% of

the absorption events covering 99+% of absorbed energy occur

within the 48k most-frequently accessed elements. Such a

limitation on mesh size therefore still permits useful results for

clinical applications, and provides a meaningful generalization

both in size (48k elements vs 10 layers) and type (tetrahedral

mesh vs planar layers) over previous accelerated work. We are

working on resolving this limitation without detracting from

performance, and present analysis that shows it can be done

using a memory hierarchy including off-chip DRAM.

Second, we do not currently handle refractive interfaces.

While important to give accurate results, profiling of the

software algorithm showed that packets encounter interfaces

102 − 103x less often than they undergo intersection testing

and scattering. Some resources will of course be necessary

to accommodate such calculations, but due to its rarity the

area requirements can be minimized through operator sharing.

Our work has thus far focused on the performance-critical

parts of the problem and demonstrating feasibility of the

accelerated calculation. In our view, the essential challenges

are memory access and the calculations for intersection testing

and scattering. Development in progress suggests that the

operator can be supported without degrading performance

(throughput, Fmax) using 1-2 DSP and a few thousand ALMs.

There is sufficient packet pipeline parallelism to avoid stalling

the main pipeline, and the throughput requirement is low

enough to permit sharing between multiple pipelines.



Dataset Type Bits Total size
per el. #El Bits

Geometry storage RO 404 48k 18.5M
Volume accumulation RW 64 48k 2.9M
Surface accumulation RW 64 4.8k 320k
Material properties RO 128 16 2k

TABLE I
MEMORY ACCESS REQUIREMENTS

Since hop and spin are very resource-intensive, the design

keeps them as close to 100% occupied as possible. Packets

which are killed in roulette are immediately replaced at the

draw-step stage by a newly-launched packet to ensure that

the “hop” core never stalls. All functional blocks have fixed

latency since on-chip BRAM is used for all storage, however

the branch decisions depend on random variables. Where paths

merge (eg. region-lookup), all but one of the paths are queued

while the other is given priority. Simulation assertions were

used to ensure the queues never overflow.

A. Memory Access

The datasets accessed by the algorithm are summarized in

Table I. Data storage is the single largest difference between

the current and previous acceleration work. Though the ge-

ometry is far more general, it only adds marginal complexity

to the propagation calculations, but its demands on storage

are much higher (18.5Mbit, nearly half of available RAM).

Each tetrahedron is described by a material ID and four face

descriptions (see Sec III-C). Walking the mesh requires testing

for ray-plane intersection to determine which of the four

faces is crossed, followed by loading the adjacent tetrahedron

corresponding to the index stored in the face description.

After geometry lookup, absorption accumulation is the most

frequent operation (nearly every clock), and also the largest

read-write data set. It is stored in M20k block RAM by

reading, adding, and writing back in lock step for each datum

received. Surface accumulation works similarly, though the

array is smaller by about 10x and less frequently accessed

(≈ 100x) so it is not a major performance or area issue.

Since there are only a few properties to define the material

(µs, µa, g, n), and 16 materials are sufficient for very general

applications, the material properties are stored in MLABs near

their point of use. Different properties are needed at different

stages of calculation, so small distributed stores make sense.

B. Random Number Generation

Uniform [0, 1) pseudo-random numbers are generated using

the 800-bit Tiny Twister (TT800) generator of Saito and Mat-

sumoto [13], using their open-source C code as a reference.

A very fast and lightweight parallel implementation produces

800 random bits per clock in parallel at rates exceeding 500

MHz using only logic cells and registers.

To reduce the latency of the main loop, distributed random

numbers are pre-calculated and queued to hide calculation

latency. This reduces the number of delay balancing registers

in the main loop, and the number of in-flight packets required

to avoid pipeline stalling.

Unit vectors are generated using standard methods. For the

2D case, (cos 2πψ, sin 2πψ) are evaluated using the standard

CORDIC method [14] for uniform random ψ. To get a 3D unit

vector, a 2D unit vector in the xy-plane is rotated towards the

+z direction by φ where cosφ is uniform on [0, 1].
The step-length random variable is calculated by taking the

logarithm of a uniform random variable. Further savings are

achieved by taking the base-2 logarithm and scaling the stored

coefficients appropriately. Calculation of log2 x is done using

bit-shifts and a Taylor expansion for log(1 + y).

C. Intersection Testing

Intersection testing is performed by direct evaluation of the

four conditions of Eq 2, which fits naturally into the 18x18

variable-precision DSP blocks in the Stratix V architecture.

D. Spin

Deflection (sin θ, cos θ) scattering angles are calculated

from uniform random numbers according to the Henyey-

Greenstein inverse CDF (Eq 3) to 18 bit precision each. To

minimize inner-loop latency, values are calculated and stored

in a queue (one for each of 16 distinct materials) in advance

of being requested. As values are dequeued, a new random

variable is drawn and a calculation is launched to replenish the

queue; since queue size exceeds calculation latency, a value is

always available. A single shared queue is maintained for the

azimuthal angle ψ. In the original software implementation,

division and square-root operations are required to calculate

the outgoing direction vector. The hardware version reduces

latency and eliminates square-root and division entirely by

carrying two extra column vectors â, b̂ orthonormal to the

packet direction so that the spin may be calculated as a 3x3

matrix multiplication using fast, low-latency, plentiful, power-

efficient hard multipliers by

[

d̂ â b̂
]T

=





cos θ − sin θ cosψ sin θ sinψ
sin θ cos θ cosψ − cos θ sinψ
0 sinψ cosψ





[

d̂ â b̂
]T

(4)

VII. RESULTS

The results discussion below is split into four sections:

validation, area, speed and energy efficiency, and scale-up

architecture. We simulated and debugged the design using

Bluespec’s Bluesim simulator. Performance and area results

were produced by running the Verilog code produced by

Bluespec through Altera Quartus II place-and-route targeting

a Stratix V 5SGXMA7N1F45C1 28nm FPGA.

A. Validation

For validation, we used the “cube 5med” test geometry

from the TIM-OS test suite [4]. It consists of a cube with

five layers of differing optical parameters (µs, µa, g, n), which

we adjusted to match the hardware simulator’s capability

by making the index of refraction homogeneous. Our own

software implementation was used as a reference, which was



Fig. 3. Validation output for the “cube 5med” test case (L: hardware 1.6M
packets, R: software 100M packets)

itself validated [5] against TIM-OS. We used the Bluespec

Bluesim cycle-accurate hardware simulator to run 1.6 million

packets (≈ 109 inner loop iterations) in 18 hours2. Both

qualitative (Fig 3) and quantitative comparison showed no

meaningful difference in output results (mean or variance)

for surface or volume fluence. As intended, we achieved

100% utilization of the intersection-test core, and over 70%

utilization of the scatter core which are the most resource-

intensive functional blocks.

B. Area

The hardware resources required and maximum frequency

for the principal blocks synthesized in isolation, and for a

complete single pipeline instance are shown in Table II. Mesh

storage and absorption/exit accumulation were not synthe-

sized in isolation since they are not significant consumers

of resources aside from BRAM. Step finishing is part of

the main loop code and so is itemized only to explain the

DSP count. The total resource utilization exceeds the sum

of the parts because the main module contains glue logic,

pipeline delays, and queuing which cannot be separated out.

Physical synthesis also implements some resource duplication

to improve performance. In the case of block RAM, the need

for duplication to achieve a high clock rate could be reduced

by additional pipelining. Only one of the two available ports

is used to access the geometry ROM, so in the future two

pipeline instances could share storage.

The design achieves high clock rate and area-efficiency by

explicit instantiation of hard blocks for DSP functions such as

multiply-add to compute dot products. On the -A7 device, DSP

and Block RAM availability limit the number of instances to

four.

C. Performance & Power Efficiency

In software testing, we found that the number of Million

INTersection Tests per Second (“Mints”) limits performance

across a wide range of geometries and material properties.

Intersection testing requires accessing the deepest and widest

array in the algorithm (the geometry storage), as well as sig-

nificant calculation. By design, the hardware implementation

is also Mints-limited since the intersection-test (“hop”) block

of Fig 2 is on all cycles of the flow graph.

2Approximately 400x slower than the C++ reference, but providing bit- and
cycle-accurate hardware queuing, flow control, and arithmetic

Fmax M20k
Functional block MHz ALM FF DSP BRAM

Point source 290 1792 2014 2 2
Henyey-Greenstein 364 1740 2857 4 0
Scatter 302 280 546 19 0
TT800 RNG 590 804 800 0 0
Intersection test 329 510 799 20 0
Boundary 340 1707 2713 5 2
Step finish * 3 0
Mesh storage * 0 1034
Fluence accumulation * 0 211

Total 280 16271 29154 59 1265
% of Available 7% 6% 23% 49%

* Not synthesized individually; no isolated Fmax available
TABLE II

RESOURCES AND Fmax FOR SINGLE INSTANCE ON STRATIX V A7

Relative
Power (W) Speed Energy/pkt

CPU 76 1.0 67.5
Single-instance Stratix V 4.5 4.0 1.0
Estimated 4 instances 13.9 16.0 0.77

TABLE III
PERFORMANCE AND ENERGY-EFFICIENCY COMPARISON (FPGA VS CPU)

The FPGA (28nm technology) achieves 280 Mints perfor-

mance at the maximum clock rate of 280 MHz. Power draw

was estimated at 4.5W using Altera’s post-synthesis vectorless

power estimation and a 12.5% input toggle rate. To produce

the estimate for four instances, the core power (excluding I/O)

was quadrupled which explains the higher efficiency value.

Unlike prior works which used a single-threaded unopti-

mized software baseline, we use our own tightly-optimized

multi-threaded best-in-class C++ software package [5]. Opti-

mizations include using single-precision floating-point where

appropriate, data structure packing to maximize cache per-

formance, use of approximate math instructions, best-in-class

libraries, and explicit use of Intel SSE vector instructions.

Multiple methods were explored for critical sections including

intersection testing and scattering calculations. We believe that

only marginal improvements can be made through further soft-

ware optimization. The CPU used for comparison is an Intel

i7-2600K “Sandy Bridge” (32nm) with a thermal design power

(TDP) rating of 95W. For a power-efficiency comparison, we

assumed conservatively 80% of TDP (76W). It achieved 70

Mints on the “cube 5med” benchmark when compiled with

all non-essential output disabled and full optimizations.

As shown in Table III, our FPGA implementation is

4x faster and conservatively 67x more power-efficient than

a highly-optimized CPU implementation. Lo’s FBM [10]

achieved over 700x advantage in power efficiency using an

FPGA versus a processor that were both two generations older.

We note three factors to explain the difference in power-

efficiency comparisons: first, the current problem definition is

far more complex, with a working set over 10x as large (RAM

is the leading dynamic power drain); second, our processor

baseline is far more carefully optimized; and third, processor

energy efficiency has improved since FBM was built.



D. Scaling Up

We have also investigated memory architectures for scaling

the system up to more parallel pipelines and larger meshes.

Based on memory traces gathered from the software simulator

for various problem definitions, there is little temporal reuse

beyond the 4-8 most recently used elements (≈ 60% hit rate).

It would therefore be appropriate to use an eight-element first-

level (L1) cache with LRU (least recently used) eviction policy

using 11 BRAMs. Beyond that, reuse in time is low but access

frequency by address is highly non-uniform, giving a Zipf-

like [15] distribution. Because the distribution remains static

over a simulation run, L1 misses would be served well by

a hierarchy of static caches based on access frequency. A

simulation would start with some naive cache set or best guess

and assign elements to the appropriate cache level after a brief

warm-up run to determine the distribution. Since the L1 hit

rate exceeds 50%, two L1 caches can share a single L2 cache

read port. Each L2 cache (4k elements, 88 BRAM) provides

two read ports, so two L2 blocks could serve eight L1. Since

each L2 has a hit rate over 50%, two of those could share

an L3 cache (32k elements, 704 BRAM, 80% hit), with the

remaining 5% of accesses served by off-chip DRAM. Such a

scheme could handle a very large (>1M elements) mesh and

keep 8 pipelines saturated using only 968 BRAM, which is

less than the current system. The performance limit due to

memory would then be 8Fmax tetrahedra per second, 25-35x

faster than a CPU if sufficient computing pipelines could be

instantiated (current limit is 4 based on DSPs for A7 device).

VIII. CONCLUSIONS AND FUTURE WORK

We have demonstrated the first hardware-accelerated (FPGA

or GPU) implementation of a tetrahedral mesh Monte Carlo

biophotonic simulator. It can accommodate a mesh of up to

48k elements, and has been validated and benchmarked against

highly-optimized software. It offers advantages in performance

(4x) and power efficiency (67x), and demonstrates the feasibil-

ity of achieving the performance goals described in Sec II-D

as necessary for widespread adoption of IPDT.

Since each pipeline instance requires slightly under one

quarter of the chip, the existing prototype can be repli-

cated four times within a Stratix V A7 chip to yield 4x

the performance. We are therefore confident of at least 16x

performance against a CPU, and additional tuning (pipelining,

logic-arithmetic optimization) should yield further incremental

speedup. The profiling and architecture design presented here

(greater detail in [16]) have also shown convincing potential

for more performance improvement and extension to larger

meshes. Some development effort remains to realize a full sys-

tem interfaced over PCIe, but the difficult research questions

have been answered leaving very little technical uncertainty.

In creating the software implementation of FullMonte, we

created a significant suite of profiling tools to analyze the

memory access patterns. Using that data, we have designed

and analyzed a custom memory hierarchy using both on- and

off-chip memory (SRAM and DRAM) to accommodate larger

meshes, eliminating the 48k element restriction.

Lastly, we intend to use the simulator for IPDT treatment

plan evaluation with a goal towards creating an iterative

treatment plan optimization algorithm. In collaboration with

Princess Margaret Cancer Centre and Sunnybrook Hospital,

we plan to use the created software and hardware simula-

tors for other biophotonic research as appropriate including

medical-device design, imaging system analysis, and biolumi-

nescence tomography (BLT).
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