
Speeding Up FPGA Placement:
Parallel Algorithms and Methods

Matthew An, J. Gregory Steffan, Vaughn Betz
Department of Electrical and Computer Engineering

University of Toronto, Ontario, Canada
{ansiyuan, steffan, vaughn}@eecg.toronto.edu

Abstract—Placement of a large FPGA design now commonly
requires several hours, significantly hindering designer produc-
tivity. Furthermore, FPGA capacity is growing faster than CPU
speed, which will further increase placement time unless new
approaches are found. Multi-core processors are now ubiqui-
tous, however, and some recent processors also have hardware
support for transactional memory (TM), making parallelism an
increasingly attractive approach for speeding up placement. We
investigate methods to parallelize the simulated annealing place-
ment algorithm in VPR, which is widely used in FPGA research.
We explore both algorithmic changes and the use of different
parallel programming paradigms and hardware, including TM,
thread-level speculation (TLS) and lock-free techniques. We find
that hardware TM enables large speedups (8.1x on average),
but compromises “move fairness” and leads to an unacceptable
quality loss. TLS scales poorly, with a maximum 2.2x speedup, but
preserves quality. A new dependency checking parallel strategy
achieves the best balance: the deterministic version achieves 5.9x
speedup and no quality loss, while the non-deterministic, lock-free
version can scale to a 34x speedup.

Keywords—FPGA placement; parallel placement; simulated
annealing; transactional memory

I. INTRODUCTION

Over the last 15 years, the size of FPGA devices has
been growing at nearly four times the rate of single-core
CPU performance [1]. As a result, CAD tools typically spend
hours compiling large designs targeting modern FPGAs. For
example, a recent study of 21 large FPGA benchmarks found
that placement is the most time-consuming CAD step and
comprised 49% of total compile time in Altera’s Quartus II
CAD system [2]. The largest design that would fit in a 40 nm
FPGA required over 16 hours to place.

Quartus II uses simulated annealing (SA) placement [1],
which is commonly used for FPGAs because it handles both le-
gality constraints and non-linear delay functions well. Analytic
placement is also used commercially [3], but it is usually paired
with annealing for fine-tuning the result [4], [5]. Consequently,
reducing the computation time of SA using readily available
parallel hardware is an attractive option. However, SA makes
a series of local improvement “decisions” to generate a high-
quality placement, and as one decision impacts subsequent de-
cisions, the algorithm is naturally sequential and parallelization
is non-trivial.

There have been several recent efforts in parallelizing
SA placement for FPGAs [1], [6], [7]. We evaluate new
parallel approaches that build on these prior techniques, and
also leverage new processor features such as transactional

memory (TM) and thread-level speculation (TLS) that aim to
make parallel programming easier. Our contributions include a
quantitative comparison of the speedup and quality-of-results
obtained with various parallel algorithmic and programming
approaches. We find that while TM and TLS simplify parallel
programming, neither can achieve a compelling combination
of speedup and placement quality. Our best algorithms require
more programming effort than TM or TLS, but outperform
prior approaches: without loss of placement quality, we can
reach 5.9x speedup with a deterministic algorithm and 34x
speedup with a non-deterministic one.

This paper is organized as follows. We first detail the
relevant prior work, and then outline the three broad parallel
approaches we investigate. We then quantitatively compare the
result quality and speedup achieved with each approach, and
finally conclude.

II. BACKGROUND

A. Simulated Annealing Placement

SA mimics the process of controlled cooling in metallurgy
to produce high-quality objects [8]. The placer begins with
a random placement of blocks on the FPGA and evaluate a
large number of perturbations to the placement, called moves.
In VPR [9], moves can be split into two phases. During
proposal, a block and a destination are randomly chosen.
During evaluation, the block is moved to its destination (if
the destination already contains a block, the two blocks are
swapped) and the change in placement cost (according to some
cost function) is computed. Moves that decrease the cost of
the overall placement are always accepted, while those that
increase cost are still accepted with some probability to avoid
being trapped in a local minimum of the cost function.

B. Prior Work in Parallel SA

A simple way to parallelize SA is to distribute the work
within one move across multiple threads, but there is insuffi-
cient parallelism for this approach to scale well [10]. A more
effective way is to distribute moves among multiple threads to
be evaluated in parallel. However, conflicts can occur when two
threads attempt to move the same block to different locations
(Figure 1a), different blocks to the same location (Figure 1b),
or blocks connected to the same net, which in some cases will
cause both threads to incorrectly evaluate the cost function for
this net (Figure 1c). To ensure that the final placement is valid,
the parallel algorithm must either detect and resolve conflicts



Fig. 1. Examples of move conflicts. Arrows represent moves being evaluated
in parallel.

[1], [7], or prevent them by guaranteeing the independence of
moves being evaluated in parallel [11], [6].

An early parallel implementation for standard cell place-
ment is in the TimberWolf placement and routing package [11].
It partitions the chip to ensure that moves do not conflict.
A related approach for FPGAs was developed in [6], where
each thread generates moves in a local region distinct from
those of all other threads, and also uses stale location data for
the placement of blocks outside its region. Region boundaries
move periodically to allow blocks to move outside their
original regions. Threads also periodically broadcast updated
placement locations to other threads to limit how “stale” their
data can be. This algorithm scales very well (51x speedup
over sequential VPR, with 16 threads) and is deterministic,
but incurs a 10% quality loss.

The parallelized Quartus II placer (Q2P) speculatively
evaluates moves in parallel and uses a manually coded de-
pendency checker to detect conflicts [1]. Whenever possible, it
resolves conflicts by providing speculative moves with updated
information and repairing them. Q2P attains limited speedup
(2.4x on 8 threads), but it is deterministic and maintains the
same placement quality as the original sequential algorithm.
The conflict detection and resolution components are more
difficult to code than the partitioning-based approaches above.

Transactional VPR (TVPR) also evaluates parallel moves
speculatively, and leverages software TM to automatically
detect and resolve conflicts [7]. TVPR scales better than
Q2P (self-relative speedup of 7.3x on 8 threads), but suffers
from excessive TM overhead and only attains real speedup
for some benchmarks, averaging about 0.9x across all tested
benchmarks. The average quality loss of 1% is negligible. The
use of TM makes TVPR non-deterministic, but easier to code
than all of the placers mentioned above.

C. Transactional Memory

TM provides atomicity, consistency, and isolation for arbi-
trary sections of code accessing shared memory, making them
behave like database transactions [12]. TM makes it possible
to parallelize a program by dividing it into tasks, assigning
the tasks to all available threads, and executing each task as
a transaction. Since the independence of tasks is not known
ahead of time, the TM system must monitor all memory ac-
cesses made by transactions and ensure that transactions which
conflict are aborted and rolled back to preserve correctness.
A conflict occurs when multiple transactions access the same
memory location, with at least one transaction writing to it.
If a transaction completes with no conflict, it can commit all
its changes to main memory and make them visible to other
threads.

Software TM (STM) implements tracking, conflict detec-
tion, and rollback entirely in code. To apply STM to a program,
the compiler or programmer inserts extra instructions to track
memory accesses made inside transactions. Hardware TM
(HTM) relies on extensions to the memory subsystem to detect
conflicts and perform rollbacks. Automatic tracking by the
hardware provides two major advantages: tracking instructions
become unnecessary and the programmer only needs to anno-
tate transaction boundaries; and the overhead associated with
tracking becomes minimal. The authors of TVPR observed
that TVPR should attain much higher speedups using HTM
[7]. However, unlike STM, hardware has limited capacity and
hence the amount of data that can be tracked by any HTM
system is limited. Transactions that reach this limit must be
aborted and retried non-transactionally, which prevents parallel
execution and negatively impacts performance.

Some of the latest multi-core CPUs, in particular IBM’s
Blue Gene/Q [13] and Intel’s Haswell [14], now incorporate
HTM support, motivating investigation into the utility of HTM
for parallelizing CAD algorithms.

III. PARALLEL PLACERS

We present three different parallel SA algorithms, some
of which are coded with multiple techniques. For algorithms
with several implementations, we name them as Algorithm-
Technique, e.g. MoveSpec-STM, which is Move Speculation
implemented using software transactional memory.

A. Move Speculation

This is the approach taken by TVPR. Entire moves are
made speculative by enclosing them in transactions, and the
TM system automatically detects conflicts between them. On a
conflict, one of the conflicting moves is aborted and rolled back
by the TM system, so the other move still has a consistent view
of global state. If a move successfully commits, any changes
it makes to the placement will be valid. Figure 2 shows an
example:

1) Thread 1 starts transaction T1 and proposes to move block
A, while thread 2 starts transaction T2 and proposes to
move block B. Neither transaction can see the conflict
with connection AC because they have not written any-
thing to memory yet.

2) T1 moves A to its destination and evaluates new costs
for connections AB and AC. At the same time, T2 moves
B to its destination. Now the conflict is detected by the
TM system because T1 is reading the location of B while
T2 is writing to it. Either T1 or T2 must abort, and the
programmer cannot specify which one, so the behavior of
Move Speculation is fundamentally non-deterministic.

3) If T1 aborts:
a) A is restored to its original location so that T2 can

correctly compute the new cost of connection AB.
Cost computations done by T1 are discarded. These
include the cost of connection AC, even though it
was not involved in the conflict.

b) T1 is re-executed with a new move proposal.
4) If T2 aborts:

a) B is restored to its original location so that T1 can
correctly compute the new cost of connection AB.



Fig. 2. Illustration of Move Speculation with two threads. Objects in red (dashed lines) have been modified by transactions and changes to them have not been
committed to memory.

b) T2 is re-executed. Since each thread uses a separate
random number generator to propose moves, the new
move for T2 is not the same as the one for T1.

While it is possible to re-propose the original unsuccessful
move, the placer could get stuck in an infinite loop of rolling
back and retrying two transactions that repeatedly conflict with
each other. The solution in TVPR is to always abandon the
unsuccessful move and propose a new move when a transaction
is retried. This causes the entire set of moves to change
depending on when and where conflicts occur, and the result is
favoritism (called swap favoritism by the TVPR authors): the
placer favors shorter, simpler moves that access less memory
and have a lower probability of encountering conflicts, and
larger moves are frequently rolled back and never attempted
again.

1) MoveSpec-STM: MoveSpec-STM is our implementa-
tion of Move Speculation by applying STM to VPR 6.
MoveSpec-STM uses the same programming techniques as
TVPR: throughout the placement code, we annotate transaction
boundaries and all shared memory accesses within the trans-
action. This is necessary because STM only detects conflicts
between annotated memory accesses. Annotations for TVPR
were also added manually due to limited compiler support
when TVPR was being developed. Searching through all
functions called during move evaluation and annotating them
takes a significant amount of programming effort. However, it
provides opportunities to reduce the annotations to a minimum
and hence lower the overhead associated with STM tracking. In
MoveSpec-STM, we only annotate accesses that are essential
for conflict detection (which means read-only accesses are left
out) and identify data structures being used as scratch space,
which can also be left out and instead replicated for each thread
(privatized) to eliminate false conflicts.

An important optimization from TVPR, which we also
apply to all of our parallel placers, is ignoring big nets. This
is based on the observation that high fan-out nets tend to have
very little impact on placement quality because they usually
cannot be localized well and hence do not cause significant
cost changes. By ignoring cost computations for these nets,
the parallel placer can avoid conflicts associated with them

and reduce the frequency of transaction rollbacks. TVPR uses
a size threshold of 10%, which means that nets containing
more than 10% of all the blocks in the design are ignored.

2) MoveSpec-HTM: MoveSpec-HTM is our implementa-
tion of Move Speculation using HTM. As discussed in Section
II-C, the key advantages of using HTM are ease of program-
ming and potentially better performance than STM. Since
we cannot instruct the hardware to leave out certain memory
locations for tracking, we cannot manually apply annotations
to further reduce tracking overhead.

3) MoveSpec-TLS: Thread-level speculation (TLS) can be
viewed as an ordered (hence deterministic) version of TM.
The transaction being executed by the currently oldest thread is
guaranteed to commit; and before younger threads are allowed
to commit, they must wait for older threads to commit first.
As a result, the commit order of transactions is always the
same, regardless of the number of threads used. It also becomes
impossible to abandon moves on conflict, so TLS can only
exploit parallelism between consecutively proposed moves, not
actively find parallelism the way MoveSpec with TM does.
Our implementation of Move Speculation with TLS is called
MoveSpec-TLS, and the only programming difference from
MoveSpec-HTM is the type of annotation for speculative code.

B. Proposal Speculation

Abandoning moves that conflict is effective at finding
parallelism, but wastes work done up to the point of detecting
the conflict. We improve on this method by making conflict
detection as early as possible. During move proposal, the
placer identifies all dependencies of this move—blocks, grid
locations, and nets this move will affect—and tags them as
“in-use” or “reserved”. The placer encounters a conflict if it
tries to tag a dependency that has already been tagged. When
a conflict occurs, the current move proposal is abandoned by
untagging anything tagged so far. On the other hand, if tagging
is successful, the placer can safely evaluate the proposed
move concurrently with other moves in progress, because all
dependencies for this move (and others in progress) have
already been exclusively reserved. Conflicts during evaluation
are effectively prevented. At the end of move evaluation, the



Fig. 3. Illustration of Proposal Speculation with two threads. Objects in red (dashed lines) are tagged and the tagging can be done directly in memory.

dependencies are untagged. We call this algorithm Proposal
Speculation, or PropSpec for short. Figure 3 shows an example:

1) Net AB connects blocks A and B, while net ACD
connects blocks A and D to C. Thread 1 (T1) proposes
to move A, while thread 2 (T2) proposes to move B.

2) T1 successfully tags A and its destination, then tries to tag
all nets connected to A (AB and ACD). T2 successfully
tags B and its destination, then tries to tag AB. Execution
then depends on which thread tags AB first.

3) If T2 tags AB first:
a) T1 will be unable to tag AB. T1 then abandons its

move and untags A and its destination. If T1 has
tagged ACD already, it will also untag ACD.

b) T2 proceeds to evaluate its move while T1 proposes
a new move.

4) If T1 tags AB first:
a) T2 will be forced to abandon its move and untag A

and its destination.
b) T1 tags ACD and proceeds to evaluate its move.

Meanwhile, T2 proposes a new move. T2 will con-
flict with T1 again because D is part of ACD, even
though the two moves can safely execute in parallel.
(T2 will not affect any bounding box or connection
costs that T1 will compute.) Note that because con-
flicting proposals get abandoned, PropSpec can be
subject to favoritism.

Step 3b shows that the actual dependencies of a move may
be specific (not all) terminals of a net, so conflict detection
using entire nets is more coarse-grained and conservative,
but much more efficient to tag and check given the fan-
out of typical nets. Our dependency checking scheme is
similar to the dependency checker from Q2P [1] but is more
conservative and applied at the beginning instead of the end of
move evaluation. As with Q2P, the programmer must correctly
identify all dependencies for this scheme to work. Failing to
tag a dependency allows another thread to potentially modify
its associated data and render the proposed move illegal or
improperly costed. Tagging and untagging actually take less
coding than STM annotations, since the logic to determine
dependencies is straightforward, consisting mainly of traversals

through lists.

We implement PropSpec two ways. Since there is fine-
grained parallelism between proposals, TM provides an easy
way to exploit it. In PropSpec-HTM, we put the move pro-
posal and tagging into a transaction and use HTM to detect
tagging conflicts. (Note that we cannot use TLS because
only move proposal is speculative but evaluation is not, and
a speculative thread cannot switch to non-speculative mode
before committing the entire evaluation.) In PropSpec-LF, we
exploit the parallelism manually using lock-free techniques
[15]: tagging is done using compare-and-swap operations,
with failed operations indicating conflicts. Because we cannot
leverage the TM rollback mechanism to resolve conflicts here,
we manually write rollback code to untag any dependencies
that have been tagged so far. Consequently, PropSpec-LF takes
the most programming effort among all the algorithms we
present.

C. Serialized Proposals

Like MoveSpec, PropSpec is fundamentally non-
deterministic because it does not enforce any ordering between
threads. Non-determinism is an undesirable characteristic for
FPGA CAD tools because it makes debugging difficult, and
is unacceptable for designers such as high-security FPGA
users, who expect the same results every time they use the
tool. To make PropSpec deterministic, we simply serialize
the move proposals. We designate one master thread to
do all the proposing, including tagging, conflict detection,
and untagging. All other available threads are designated
as workers and only perform move evaluations. Like Q2P,
we assign each move a sequential ID. Proposed moves are
inserted into a task queue of length L. Since these moves
are independent, they can be evaluated by any worker in any
order. Initially, moves are inserted until the queue is full. To
maintain determinism, workers do not untag dependencies
after evaluating a move, and finished moves only leave the
queue when they reach its front. When a finished move leaves
the queue, its dependencies are untagged and a new move
must be inserted to keep the queue full. The constraints above
ensure that before every proposal, the master always sees



Fig. 4. Illustration of Serialized Proposals with two workers and a task queue
of length 2. Each diagram shows tagged dependencies (dashed lines) along
with the corresponding moves in the queue.

the dependencies of the previous L − 1 moves tagged, and
everything else untagged. Consequently, the placement state
before every proposal only depends on L and not the number
of threads, so the algorithm is deterministic. We call this
algorithm Serialized Proposals, or SerialProp for short. Figure
4 shows an example with L = 2:

1) The master proposes moves M1 and M2, tags their
dependencies, and inserts them into the queue. It cannot
propose another move because the queue is full. Workers
T2 and T3 each choose an arbitrary move from the queue
to evaluate.

2) M2 is accepted first. Since M2 is not at the front of queue,
it cannot leave and its dependencies are still tagged.

3) M1 is accepted. It leaves the queue and its dependencies
are untagged. M2 reaches the front but is not allowed to
leave early because there is space in the queue. Now the
master tries to propose M3, but encounters a conflict.

4) M3 is re-proposed successfully, tagged, and inserted. Now
M2 can leave because the queue has filled up. Note that
the final proposal of M3 would be the same if M1 had
been accepted first.

Using the dependency checking infrastructure from PropSpec,
the implementation of SerialProp is straightforward. The task
queue is easily specified using OpenMP [16], and the only
communication between threads that must be explicitly coded

TABLE I. QUALITATIVE COMPARISON OF OUR PARALLEL PLACERS.

Name Deterministic? Programming Effort
MoveSpec-STM No Medium
MoveSpec-HTM No Low
MoveSpec-TLS Yes Low
PropSpec-HTM No High

PropSpec-LF No Highest
SerialProp Yes High

is for workers to notify the master that they have finished
evaluating a particular move.

Table I shows the key characteristics of our parallel placer
implementations.

IV. METHODOLOGY

We implemented all of our parallel placers by modifying
the sequential placer in VPR 6. For MoveSpec-STM, we
used TinySTM 1.0.4 [17], a newer version of the STM used
in TVPR. We conducted all experiments on an IBM Blue
Gene/Q (BG/Q) compute node containing 16 cores. Each core
is threaded 4 ways for a total of 64 hardware threads. The
BG/Q provides hardware support for both TM and TLS, and
the IBM XL compiler makes it available to the programmer
[13]. Following [18], we compiled all of our placers with the
-O3 and -qhot optimization flags. We ran all placers with
default placement options, but reduced the level of effort by
setting inner_num to 1. (This is the default for VPR 7.)
For performance results, we measured the wall-clock time of
placement only and excluded time taken by timing analysis.
For quality of results, we used the placement estimates of wire
length and critical path delay provided by VPR. All results
were averaged over the 8 largest VTR benchmarks [19]. We
used VPR to pack them for an FPGA architecture with 6-
input LUTs and 10 LUTs per logic block, and the packed
circuit sizes range from 1142 to 7761 blocks. All available
heterogeneous block types (RAM, DSP, etc.) are used by at
least one of the benchmarks.

V. RESULTS

Table II summarizes the speedup and quality-of-results
for all of our parallel placers at their optimal number of
threads. Speedup and quality metrics are calculated relative
to sequential VPR 6. Some of the placers scale beyond the
number of threads given, but they lose too much quality with
more threads. We allow a maximum average increase of 20%
in either wire length or critical path delay.

TABLE II. PERFORMANCE AND QUALITY RESULTS FOR EACH PLACER.
ONLY PLACERS MARKED WITH * ARE DETERMINISTIC.

Name Threads Speedup Wire Length Critical Path Delay
MoveSpec-STM 16 3.6 +8.5% +2.3%
MoveSpec-HTM 4 8.1 +19.0% +1.7%
MoveSpec-TLS* 5 1.7 -0.1% +0.2%
PropSpec-HTM 64 17.2 +0.8% +0.7%

PropSpec-LF 64 33.9 +1.7% +0.6%
SerialProp* 9 5.9 +0.0% +0.1%

A. Move Speculation

Figure 5 shows the quality of placement obtained with
MoveSpec-STM and MoveSpec-HTM. The run time for each is
varied by changing the thread count from 2 to 64; quality varies



with thread count due to move favoritism (Section III-A).
Figure 5 also shows the quality vs. run time for sequential
VPR in two modes: annealing and quench (T = 0). Run time
for sequential VPR is varied by changing the placement effort
level via inner_num [9]. Note that for very low run times,
quenching results in a higher quality placement than annealing
because there are too few moves for effective hill-climbing.
Quality and run time values are normalized to those from
sequential VPR in annealing mode with inner_num = 1.

1) MoveSpec-STM: The results for MoveSpec-STM are
plotted as the STM quality curves in Figure 5. At 8 threads,
we obtain a 1.7x speedup at a small quality loss of 1.6% wire
length increase and 0.2% delay increase. This outperforms
TVPR, which also uses STM and achieves a 0.9x speedup
at 8 threads. Even though MoveSpec-STM tracks a minimal
amount of data via careful annotations, the ratio of speedup
to thread count is still low due to STM overhead. At 16
threads (Table II), the speedup improves to 3.6x but incurs
a significant quality loss of 8.7% wire length and 2.3% delay.
Speedup further increases to 11x at 64 threads but the quality
loss becomes unacceptable. Due to move favoritism (Section
III-A), the quality losses from using more threads are worse
compared to sequential VPR at lower effort levels. In other
words, running MoveSpec-STM on multiple threads always
produces a lower quality placement than running VPR on one
thread for the same amount of time. This is shown in Figure
5 by the STM quality curves being above the sequential (and
quench) ones.

2) MoveSpec-HTM: We expected MoveSpec-HTM to be-
have similarly to MoveSpec-STM, albeit with much lower
overhead. Unfortunately, this is not the case due to transac-
tional capacity limits imposed by the hardware (Section II-C).
The BG/Q only monitors transactions in its L2 cache, so a
transaction with a memory footprint that does not fit in the
cache will abort. Furthermore, since the cache is divided into
non-overlapping sets (meaning that when one set is full, it
must start evicting data; it cannot make room by transferring
its data to another set), a transaction that overflows any set
will be aborted. We suspect that even if most transactions do
not conflict and would normally fit in the cache, they start to
abort when many are executed concurrently because the cache
sets cannot accommodate all of them together.

The net result for MoveSpec-HTM appears to be extreme
favoritism, because only moves that do not overflow the cache
can successfully evaluate. Effectively, the algorithm is unable
to consider moves requiring a large amount of memory, which
usually are the ones having the most positive impact on quality.
A disproportionate number of small moves leads to super-
linear speedup (8x on 4 threads), since the algorithm does
less work to finish the annealing process. Accordingly, the
19% wire length increase at 4 threads is much worse than the
8.5% increase for MoveSpec-STM at 16 threads (Table II).
Running MoveSpec-HTM with more threads only exacerbates
the favoritism, as capacity limits increase the bias toward lower
quality. As shown in Figure 5, the HTM curves rise more
sharply than the STM ones, but all of their shapes are similar.
In both cases, the quality curves are above the sequential ones,
indicating that sequential VPR offers a better quality/run time
trade-off.

3) MoveSpec-TLS: According to Table II, MoveSpec-TLS
is the least scalable of our algorithms (1.7x speedup on 5
threads). However, it always gives results of the same quality
regardless of thread count, and achieves an average quality
equal to that of sequential VPR. Generally speaking, larger
circuits have better performance than smaller ones. This is
consistent with the observation from TVPR that parallel moves
for large circuits are less likely to conflict [7].

The limited scaling of MoveSpec-TLS is due to its inability
to actively search for parallel moves, since moves must com-
plete in order. Stalling and wasted work caused by rollbacks
also contribute to overhead. When placing the circuit with the
best speedup among all tested benchmarks (2.2x), 5 threads
only spend 57% of their time doing useful work. Overall
performance is also reduced by HTM overhead, since TLS
in the BG/Q is implemented on top of its HTM support. Our
results broadly agree with the (simulated) 2x speedup on 4
threads obtained in [20] by manually applying TLS to a much
older (SPEC 2000) version of VPR.

B. Proposal Speculation

According to Table II, this algorithm shows the best
scaling among all of our algorithms, in addition to negligible
losses in quality. At 64 threads, the lock-free implementation
outperforms HTM, attaining a 34x speedup with a 1.7%
wire length increase and 0.6% delay increase. However, both
implementations of PropSpec scale equally well up to 16
threads. We suspect that the BG/Q HTM performance stops
improving beyond 16 threads because the hardware only
handles transaction retries at a limited rate, and is unable to
keep up when many transactions (proposals) are frequently
conflicting and aborting [18].

Despite the similarity of PropSpec to MoveSpec, its impact
on quality is much less problematic. In Figure 6, the quality
curves for both PropSpec implementations are nearly flat,
which means that quality changes very little with more threads.
The amount of shared data accessed during dependency check-
ing in PropSpec is mainly determined by the number of nets
affected, which varies much less across different moves than
the number of block locations and connection cost changes
that must be accessed transactionally in MoveSpec. Thus, the
difference in memory footprint between small move proposals
and large ones is not enough to cause much favoritism toward
small moves, especially as the circuit grows in size and exhibits
improved locality.

C. Serialized Proposals

As Table II shows, this algorithm preserves both quality
and determinism while scaling reasonably well (5.9x speedup).
Like MoveSpec-TLS, SerialProp always gives the same results
regardless of thread count, and also achieves an average quality
equal to that of sequential VPR. Eventually, move proposal
becomes the bottleneck as it is all done by one thread, so
adding workers only increases the proportion of time they
spend waiting for successful proposals. For some circuits,
moves tend to be quick to evaluate and this scaling limit is
reached at 5 workers. The maximum number of useful workers
is about 10, since none of the benchmarks have an evaluation-
to-proposal time ratio greater than 10. Figure 7 shows the



Fig. 5. Placement quality vs. time for Move Speculation. Data labels indicate thread count.

Fig. 6. Placement quality vs. time for Proposal Speculation. Data labels indicate thread count.

Fig. 7. Scaling behavior of Serialized Proposals. In the breakdown, “Success” means work during successful proposals, and “Failure” means work during
proposals that were ultimately abandoned. The master thread spends all remaining time waiting for workers to finish move evaluation.

correlation between overall speedup and load on the master
thread. While the ratio of useful work (successful proposals) to
wasted work (abandoned proposals) remains fairly consistent,
the increase in work done by the master diminishes with each
additional worker. This is because waiting for move evaluation
is unavoidable: moves in the task queue can be evaluated in
any order and not all of them will finish in the same amount of
time, but the waiting is done in a fixed order. The final result
is that beyond 3 workers, each additional worker contributes
less performance gain.

We set the task queue length L to 12 for our experiments,
but it should be possible to fine-tune this parameter in order to

trade quality for performance. A shorter queue decreases the
probability of conflict and hence reduces time spent on failed
proposals. It also discourages favoritism, but the queue would
empty out more frequently and force workers to wait longer.
A longer queue keeps workers busy, but encourages favoritism
and makes proposal a bottleneck at fewer threads.

VI. CONCLUSION

We have found that speculatively evaluating moves in
parallel is an effective strategy for parallelizing SA. When
conflict tracking is applied to the entire move (MoveSpec),
we obtain two extremes: TM scales well but has too much



favoritism and quality loss, while TLS scales poorly due to
too many rollbacks. While TM and TLS certainly simplify the
parallelization of placement, their use results in problematic
behavior. This observation may hold true for other decision-
based CAD algorithms as well.

By tracking conflicts only during proposal, our dependency
checking scheme greatly reduces favoritism but takes more
programming effort. The best non-deterministic implementa-
tion (PropSpec) attains a 34x speedup on 64 threads with
less than 2% quality degradation. The speedup is comparable
to approaches based on partitioning the move space across
threads, but the quality loss is much smaller. The deterministic
version (SerialProp) incurs no quality loss and can reach
5.9x speedup on 9 threads, which is better scaling than Q2P.
This is mainly due to the coarsening of conflict detection
and checking dependencies before move evaluation instead of
allowing evaluation to be speculative.

There are several improvements we can make to our par-
allel placers: make proposals more efficient, modify the move
generator to create more independent moves, and fine-tune the
mechanism for ignoring big nets. Evaluating the scalability of
our algorithms the very large FPGA benchmarks from [2] is
also important future work.

ACKNOWLEDGMENTS

We are grateful to NSERC and Altera for funding. We
thank Amy Wang and Rahul Gopalkrishnan providing insights
into the HTM and TLS results, and also thank Henry Wong
for improving the formulation of SerialProp. Computations
were performed on the bgq supercomputer at the SciNet
HPC Consortium. SciNet is funded by: the Canada Foundation
for Innovation under the auspices of Compute Canada; the
Government of Ontario; Ontario Research Fund - Research
Excellence; and the University of Toronto.

REFERENCES

[1] A. Ludwin and V. Betz, “Efficient and deterministic parallel placement
for FPGAs,” TODAES, vol. 16, no. 3, p. 22, 2011.

[2] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Titan: Enabling
large and complex benchmarks in academic CAD,” FPL, 2013.

[3] T. Feist, “Vivado design suite,” 2012. Available:
http://www.xilinx.com/support/documentation/white papers/wp416-
Vivado-Design-Suite.pdf

[4] Q. Wu and K. McElvain, “A Fast Discrete Placement Algorithm for
FPGAs,” FPGA, 2012, pp. 115–118.

[5] T.-H. Lin, P. Banerjee, and Y.-W. Chang, “An efficient and effective
analytical placer for FPGAs,” DAC, 2013, p. 10.

[6] J. B. Goeders, G. G. Lemieux, and S. J. Wilton, “Deterministic
timing-driven parallel placement by simulated annealing using half-box
window decomposition,” ReConFig, 2011, pp. 41–48.

[7] S. Birk, J. G. Steffan, and J. H. Anderson, “Parallelizing FPGA
placement using transactional memory,” FPT, 2010, pp. 61–69.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[9] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” FPL, 1997, pp. 213–222.

[10] A. Ludwin, V. Betz, and K. Padalia, “High-quality, deterministic parallel
placement for FPGAs on commodity hardware,” FPGA, 2008, pp. 14–
23.

[11] W.-J. Sun and C. Sechen, “A parallel standard cell placement algo-
rithm,” TCAD, vol. 16, no. 11, pp. 1342–1357, 1997.

[12] T. Harris, J. Larus, and R. Rajwar, “Transactional memory,” Synthesis
Lectures on Computer Architecture, vol. 5, no. 1, pp. 1–263, 2010.

[13] M. Gilge, “IBM system Blue Gene solution: Blue Gene/Q application
development,” IBM Redbook Draft SG24-7948-00, vol. 9, 2012.

[14] T. Jain and T. Agrawal, “The Haswell microarchitecture–4th generation
processor,” International Journal of Computer Science and Information
Technologies, vol. 4, no. 3, pp. 477–480, 2013.

[15] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchro-
nization: Double-ended queues as an example,” Distributed Computing
Systems, 2003, pp. 522–529.

[16] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable
shared memory parallel programming. The MIT Press, 2008, vol. 10.

[17] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of
word-based software transactional memory,” PPoPP, 2008, pp. 237–
246.

[18] A. Wang et al, “Evaluation of Blue Gene/Q hardware support for
transactional memories,” PACT, 2012, pp. 127–136.

[19] J. Rose et al, “The VTR project: architecture and CAD for FPGAs from
Verilog to routing,” FPGA, 2012, pp. 77–86.

[20] M. K. Prabhu and K. Olukotun, “Exposing speculative thread paral-
lelism in SPEC2000,” PPoPP, 2005, pp. 142–152.


