
CAD and Routing Architecture for Interposer-Based
Multi-FPGA Systems

Andre Hahn Pereira
Computer and Digital Systems Engineering

Department - Escola Politécnica
University of São Paulo

São Paulo, SP
Brazil

andre.hahn@usp.br

Vaughn Betz
Department of Electrical and Computer

Engineering
University of Toronto

Toronto, ON
Canada

vaughn@eecg.utoronto.ca

ABSTRACT

Interposer-based multi-FPGA systems are composed of mul-
tiple FPGA dice connected through a silicon interposer. Such
devices allow larger FPGA systems to be built than one
monolithic die can accomodate and are now commercially
available. An open question, however, is how efficient such
systems are compared to a monolithic FPGA, as the num-
ber of signals passing between dice is reduced and the signal
delay between dice is increased in an interposer system vs.
a monolithic FPGA.

We create a new version of VPR to investigate the archi-
tecture of such systems, and show that by modifying the
placement cost function to minimize the number of signals
that must cross between dice we can reduce routing demand
by 18% and delay by 2%. We also show that the signal count
between dice and the signal delay between dice are key archi-
tecture parameters for interposer-based FPGA systems. We
find that if an interposer supplies (between dice) 60% of the
routing capacity that the normal (within-die) FPGA routing
channels supply, there is little impact on the routability of
circuits. Smaller routing capacities in the interposer do im-
pact routability however: minimum channel width increases
by 20% and 50% when an interposer supplies only 40% and
30% of the within-die routing, respectively. The interposer
also impacts delay, increasing circuit delay by 34% on aver-
age for a 1 ns interposer signal delay and a four-die system.
Reducing the interposer delay has a greater benefit in im-
proving circuit speed than does reducing the number of dice
in the system.

Categories and Subject Descriptors

B.7.1 [Integrated Circuits]: Types and Design Style—
VLSI ; B.7.2 [Integrated Circuits]: Design Aids—Place-
ment and Routing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FPGA’14, February 26–28, 2014, Monterey, CA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2671-1/14/02 ...$15.00.

http://dx.doi.org/10.1145/2554688.2554776.

General Terms

Algorithms, Design

Keywords

FPGA; Silicon interposer; 2.5D ICs

1. INTRODUCTION
Interposer-based multi-FPGA systems are composed of

multiple FPGA dice, which are connected through a silicon
interposer. The interposer is fabricated with an older tech-
nology than that used for the dies, and links between dice
include both a micro-bump on each FPGA die and a metal
wire on the interposer [11]. This results in a reduced con-
nectivity between dice and increased delay for connections
between dice, as compared to the total routing connectivity
and the delay one can achieve within a single die. In this
paper we present an architecture study of silicon interposer-
based FPGAs that analyzes how the reduced connectivity
and increased delay impact their performance.

The silicon interposer FPGA technology is interesting be-
cause it enables the creation of large FPGAs composed of
small dies and also of very large FPGAs, with higher logic
capacity than one can achieve with a single die. Such FPGA
systems are sometimes called 2.5D FPGAs, since they make
use of vertical stacking of dies on an interposer to enable
higher integration levels.

Being able to make large FPGAs with multiple smaller
dies is particularly interesting at the beginning of a new
manufacturing process, when defect densities are high. In
such a case, good-die yield drops dramatically as the die
size increases, and this drastically impacts the availability
of large FPGAs early in the process lifetime.

The idea of using 3 dimensions to design FPGAs is not
new. [1] proposed the creation of 3D FPGAs by stacking
2D FPGAs and connecting them with solder bumps. Lin
et al also studied 3D FPGAs, but using a different ap-
proach [8], proposing multiple active layers, with different
FPGA functions in each. While promising, both approaches
have manufacturing challenges: [1] requires a higher density
of through-silicon vias than can currently be manufactured
and the multiple active layers required by [8] are not yet
widely available. In contrast, silicon interposers linked to
dies via microbumps are now manufacturable.

Chaware et al presented Xilinx’s approach to silicon inter-
poser FPGAs [4]. They describe the physical characteristics

of their implementation, including the bump pitch and esti-
mates of the amount of die-to-die connectivity and the die-
to-die delay. However [4] does not analyze the architecture
question of the routability of the resulting system, nor de-
scribe possible CAD optimizations, which are the questions
we investigate.

The main contributions of our work are as follows:

• A detailed study of how the multi-FPGA system routabil-
ity is impacted by the amount of connectivity between
dice provided by the interposer.

• An Analysis of the impact of the interposer on timing.

• Modification of the VPR CAD tool to model and target
2.5D silicon interposer-based FPGAs, as well as CAD
changes to optimize for 2.5D FPGAs.

• Analysis of the commercially available Xilinx Virtex-
7 silicon interposer FPGAs [13][14]. We measure the
connectivity reduction and delay increase between dies
caused by the interposer on such FPGAs in order to
see where these devices lie within the architcture space
we explore.

The paper is organized as follows. Section 2 gives more
information about silicon interposer technology. Section 3
describes the changes made to the FPGA architecture de-
scription and to VPR to target 2.5D FPGAs. Section 4 de-
scribes optimizations made to the VPR placement algorithm
to improve quality on such FPGAs and Section 5 presents
architectural results for 2.5D FPGAs.

2. SILICON INTERPOSER BACKGROUND
As mentioned in the previous section, interposer-based

FPGAs allow the creation of chips larger than a single die,
making a ”More than Moore” improvement on the size and
number of logic elements possible, and with chips combined
far more tightly and with more connectivity than if they
were on separate boards connected through conventional
means.

The improvement in the number of logic elements of 2.5D
FPGAs over conventional ones is very significant. Xilinx’s
largest interposer-based FPGA, the Virtex-7 XC7V2000T,
has 4 dies (which Xilinx calls Super Logic Regions) and 1.954
million logic elements [14], while the largest non-interposer
Virtex-7 die (the XC7VX980T), has 979k logic elements and
Altera’s largest FPGA, the Stratix V 5SGXBB, has 952k
logic elements [2]. Even though all these FPGAs use a 28
nm process, silicon interposer technology allows the creation
of FPGAs with twice the resources possible on even an ex-
tremely large single die.

Another major advantage of interposer-based FPGAs comes
at the beginning of a new manufacturing process, when the
defect density is high [11]. Bigger dice suffer a much reduced
yield compared to smaller dice, and this greatly affects the
supply and cost of top-of-the-line FPGAs to early adopters.

To illustrate this impact, consider a new process in which
the defect density is 1/cm2, which is a reasonable value early
in the process lifecycle, and the die area is 6cm2, which
roughly matches the size of the largest member of a high-
end FPGA family such as Virtex 7. Using the Poisson Yield
Model [6], the yield is only 0.25% of die. If instead the
chip is composed of four 1.5cm2 dies, the yield is 22%. This

means that a 12 inch silicon wafer with 730cm2 of area would
produce on average 0.3 working 6cm2 dies, while the same
wafer would produce on average 107 working 1.5cm2 dies.
Therefore, as a 6cm2 chip would be composed of four 1.5cm2

dies, the wafer would yield 26.75 systems on average, as the
”assembly yield” of placing these four die on an interposer is
very high [4]. Hence the number of interposer-based FPGAs
created from the same silicon wafer would be almost 100×
greater than a monolithic FPGA of the same size.

When the process matures and the defect density de-
creases this advantage drops significantly. Consider a ma-
ture process with defect density of 0.1/cm2. The yield for a
6cm2 die is 55% and the yield for a 1.5cm2 die is 86%. Hence
the number of single die FPGAs created from a 730cm2 sili-
con wafer would be 66.9 and the number of interposer-based
FPGAs created would be 104.6. While the interposer-based
FPGA still has a yield advantage it might not lead to a
major cost advantage, particularly when the cost of the in-
terposer and assembling the die to it are included. For the
large, state-of-the-art FPGAs that are built early in a pro-
cess cycle and heavily used for prototyping, however, there
is clearly a compelling cost advantage to an interposer-based
solution.

2.1 Virtex-7 Interposer-based FPGAs
The Xilinx 2.5D FPGAs from the Virtex-7 family are

currently the only commercially available silicon interposer-
based FPGAs. As described in Section 3 we are studying
the impact of several key interposer parameters on the per-
formance of the multi-FPGA system, including (i) the per-
centage of the wiring normally present between rows of the
FPGA which are cut when crossing between dice, and (ii)
the extra delay (vs. a normal connection between adjacent
rows) added when one must traverse the interposer. To lo-
cate where Virtex-7 lies in this architecture space, we com-
bined published information on the implementation of Xil-
inx’s interposer-based FPGAs [4] with a detailed analysis
of the XC7V2000T FPGA routing resources visible in the
Vivado Device View.

Figure 1: Lateral view of an interposer-based
FPGA[13]. The FPGA dice are at the top, and
are connected to the silicon interposer through mi-
crobumps. The interposer is then connected to the
substrate through C4 bumps.

The XC7V2000T is composed of four identical dice ar-
ranged such that the vertical routing crosses between the
dice. Each horizontal edge of each die has 280 groups of

48 length-12 wires crossing the interposer, which sums to a
total of 13440 wires between dice. There are also 40 clock
wires crossing the interposer. The average number of wires
per vertical channel of this FPGA is 210 and there are ap-
proximately 280 vertical channels on the FPGA, resulting
in approximately 58800 vertical wires crossing a horizontal
cutline within a die. Hence the number of wires which cross
the interposer is about 23% of the total number of within-die
vertical wires.

The 28nm dies are connected to the 65nm silicon inter-
poser through microbumps with a 45µm pitch. Hence the
area occupied by microbumps at one edge of one die is 13440
× (45µm)2 = 27mm2. If we assume each die is 7 × 12mm,
as presented by Chaware et al. in [4], the bumps have to be
spread out near the edge and need to go as far as 2.25mm
away from the edge of the die. This greater distance from
the border increaes the length of the inter-die connections,
and along with the presence of the micro-bumps and their
capacitance, leads to an increased delay for these crossing
wires vs. that of a typical on-die routing wire. Chaware
et al. state that the latency to cross the interposer is ap-
proximately 1ns. For comparison, a typical medium length
28 nm FPGA routing wire (e.g. spanning four logic blocks)
has a delay of approximately 125 ps, while a longer wire (e.g.
spanning 12 logic blocks) has a delay of approximately 250
ps.

Overall, these interposer-based FPGAs have increased de-
lay and reduced connectivity between dies, with approxi-
mately 23% of the usual number of vertical wires crossing
between dies and approximately 1ns of increased delay to
cross the interposer.

3. ARCHITECTURE MODELS
To properly model a silicon interposer FPGA, the popular

FPGA exploration toolset, Verilog-to-Routing (VTR) [12],
was used. The logic synthesis portions of the flow (ODIN
II and ABC) were left untouched, while the placement and
routing portion of the flow (VPR [3]) was modified to model
and optimize for interposer-based FPGAs. The modifica-
tions were made in such a way that they require no changes
to any of the input files, so one can experiment with interposer-
based FPGAs with any existing benchmark circuits and any
existing VPR-format FPGA architecture description simply
by specifying appropriate command-line parameters.

Three parameters were added to VPR: % wires cut, in-
creased delay and number of cuts. These three parameters
describe the interposer portion of the 2.5D FPGA as detailed
below.

3.1 % wires cut
This variable describes and models the reduced connec-

tivity between different dice by specifying the fraction of
routing wires that are removed at the border between dice.
For example, if a channel had 200 wires and % wires cut
was 70, 140 of them would be cut and only 60 would pass
through the interposer. Higher values of % wires cut make
an interposer easier to manufacture, and can reduce the in-
terposer delay by allowing all the microbumps linking dice
to be placed near the die edge. However, the higher % wires
cut is, the less routable the multi-die system becomes. As
described in 2.1, the Virtex 7 family has % wires cut = 77%.

3.2 Increased delay

Interposer wires are longer and wider than on-die wires
and have microbumps on each end. Increased delay models
the resulting larger delay when compared with wires which
are internal to a die. A reasonable estimate for this variable
is around 1ns, as presented by Chaware et al[4].

3.3 Number of cuts
Number of cuts describes how many cuts were made to the

interposer-based FPGA versus a monolithic die. If number
of cuts equals 1 then there are 2 dies, and so on. We in-
vestigate values of this parameter between 1 and 3 (between
2 and 4 dies), reflecting commercial practice: the Virtex 7
family has members with number of cuts = 2 and 3. Figure
2 shows a sample architecture with one cutline.

Figure 2: A sample two-die / 1-cutline architecture
containing both logic blocks and RAM blocks.

3.4 Implementation
To model an interposer-based FPGA in VPR the Routing

Resource Graph (rrgraph) must be modified. The rrgraph
is the data structure that defines all the available routing
wires and switches in the FPGA, as well the delay of each.
Given a suitable rrgraph, the VPR router can implement
circuits in the desired FPGA, and the VPR timing analyzer
can estimate their delay.

The presence of multiple dice in an interposer-based FPGA
was modeled by creating horizontal cuts in the FPGA, which
are equally spaced vertically. Every wire that crosses one of
these cuts in fact passes through the interposer. In the ex-
periments below, we use an architecture that has only unidi-
rectional wires [9], as these are the dominant routing archi-
tecture in modern FPGAs. Such wires can only be driven at
their beginning. To control the wiring capacity between dies

% wires cut wires of each channel segment crossing a cut-
line have their connections to wires and block inputs on the
die opposite to their starting point removed, and the wires
which aren’t cut have increased delay added to their connec-
tions which cross the cutline. Note that the combination of
a unidirectional routing architecture and a silicon interposer
results in some blocks near the cutline having reduced rout-
ing connectivity as some of the routing wires driving their
inputs are disconnected from the (single) wire driver, when
that driver is on the other side of the cutline and the wire
is one of the cut wires.

Figure 3 illustrates the approach used.

Figure 3: Illustration of the approach used to sim-
ulate crossing the interposer. The red dashed line
indicates the interposer, the black arrows indicate
the direction of the wires. Blue arrows indicate nor-
mal connections from the wires to the CLBs. The
red arrows indicate removed connections and green
arrows indicate connections with increased delay.

For all experiments in this paper, the remaining architec-
ture parameters of the FPGA are taken from the ”flagship”
architecture of the VTR project (k6 frac N10 mem32K 40nm.xml).
The parameters of this architecture are in line with both
current commercial FPGAs and academic research into best
practices. It consists of logic clusters with 10 fracturable 6-
LUTs per block (N=10, k=6), and also includes 32kb RAM
blocks and DSP blocks configurable to perform 9x9, 18x18
or 36x36 multipliers. The delay values in the architecture
are taken from 40 nm circuit simulations and 40 nm com-
mercial FPGAs. It uses unidirectional routing, with all wire
segments having length L = 4.

4. CAD ENHANCEMENTS
Once the routing resource graph was modified as detailed

in Section 3, the VPR router adapted automatically to the
interposer architecture. Placement, however, is crucial in
mitigating the impact of the reduced wiring and increased

delay when crossing between dice; a good placement should
minimize the number of signals crossing between dice, par-
ticularly time-critical ones. We investigated several enhance-
ments to VPR’s placement cost function to improve result
quality.

VPR uses 2 different costs as the metrics for its placer
algorithm: the timing cost and the bounding box (wiring)
cost. The usual VPR timing cost is a (criticality-weighted)
summation of the estimated delay (given the current place-
ment) of every connection required by the circuit [10]:

T iming Cost =
∑

∀i,j⊂circuit

delay(∆xij,∆yij)×

criticality(i, j)

(1)

where ij denotes a connection from block i to block j that
exists in the circuit netlist. The bounding box cost estimates
the amount of wiring required for a net, based on the number
of pins and size of the net’s bounding box. VPR’s original
formulation is [3]:

wiring costorig =

Nnets∑

n=1

q(n)× [
bbx(n)

avg chanx W (n)
+

bby(n)

avg chany W (n)
]

(2)

where bbx(n) and bby(n) are the dimensions of the bound-
ing box of net n in the x and y directions, respectively.
avg chanx W and avg chany W are the average x-directed
and y-directed channel widths over this bounding box. Fi-
nally, q(n) is a function obtained from [5] which models the
fact that bounding boxes underpredict the required routing
for high fanout nets. q(n) slowly increases with the fanout
of net n, rising from 1 for nets with 3 or fewer terminals to
2.79 for nets with 50 terminals.

We modified both the placer’s bounding box and timing
costs to account for the increased latency to cross the inter-
poser and for the reduced wire capacity close to the cutlines,
as the wire availability becomes more sparse.

4.1 Placer timing cost
The standard placer timing cost in VPR assumes that the

FPGA is homogeneous and consequently the delay between
2 points (x1, y1) and (x2, y2) only depends on (∆x,∆y).
This is obviously not true for interposer-based FPGAs, as
the cutlines make them heterogeneous in the y direction.

To solve this problem and improve the quality of the re-
sults, an extra term was added to the delay function. The
delay function becomes:

delay(i, j) =delay(∆xij,∆yij)+

times crossed(i, j)× delay increase
(3)

where times crossed(i, j) is the number of times this path
has to cross the interposer to go from (xi, yi) to (xj , yj) and
delay increase is the timing penalty of crossing the inter-
poser.

4.2 Placer wiring cost
VPR’s wiring cost also considers the FPGA to be homoge-

neous, and uses only the number of nets, the size of the net’s
bounding box and the average number of wires per channel

to calculate the cost. Thus, to account for the reduced con-
nectivity near the cutlines an extra cost term, cut cost, was
created. This new cost is added to (2) to create the total
wiring cost.

wiring cost = wiring costorig + cut cost (4)

We tested several different cut cost formulations, as well
as different weighting (C values) for each. For all of the
formulations the variable C′ was defined as:

C′ =
C × ratio wires cut

avg chany W (n)
(5)

where ratio wires cut is the ratio of wires cut at the cut-
line. This formulation of C′ ensures that when we choose a
C value of 1, the new term cost term is of roughly the same
magnitude as wire costorig in (2) and that it is weighted
more heavily for interposer architectures in which the wiring
between dice is more scarce.

The first cut cost term we tested was:

cut cost =

Nnets∑

n=1

C′
× times crossed(n) (6)

which penalizes the net according to the number of cut-
lines the bounding box spans; this directly penalizes each
signal crossing between dice. Surprisingly this extra term
did not result in significant improvements to the quality of
results and in some cases even made them worse. We be-
lieve this is due to the discontinuous, non-smooth, nature
of this cost function – it does not guide placement opti-
mization well as a bounding box shrinks toward a cutline.
Placement changes that make bounding boxes ”almost not
cross” a cutline are not given any gain; only a sudden change
in the placement that moves a bounding box entirely to one
side or the other of the cutline yields a cost reduction. This
insight led us to the other proposed functions, which give
gradual gains as bounding boxes change in their size and
come closer to avoiding a cutline crossing.

The other tested terms were:

cut cost =

Nnets∑

n=1

C′
× bbWidth(n)× times crossed(n) (7)

cut cost =

Nnets∑

n=1

C′
× bbHeight(i)× times crossed(n) (8)

cut cost =

Nnets∑

n=1

C′
×minDist(i)× times crossed(n)+

C′
× times crossed(n)

(9)

cut cost =

Nnets∑

n=1

C′
× bbHeight(n) (10)

where bbWidth(n) and bbHeight(n) are the width and height
of the bounding box of the net n, respectively, andminDist(n)
is the minimum distance from the top or bottom of the
bounding box to a cutline.

4.3 Effectiveness of the enhancements
We used VPR 7.0, with the enhancements we detailed

above, and the architecture file k6 frac N10 mem32K 40nm
in the experiments below. All experiments targeted the
smallest FPGA (with number of rows equal to number of
columns) which could accomodate a benchmark circuit; this
represents a very full FPGA with little white space left, and
hence presents a difficult case to an interposer-based FPGA
as no die can be left mostly empty.

Figures 4 and 5 show the efficacy of the five placer wiring
cost modifications as their weight, C varies. Each point
in the graphs is the geometric mean of the results with %
wires cut = 60 and 80, and the results for 60% and 80%
are themselves geometric means of the results of 6 circuits
from the VTR benchmark suite [12]: stereovision0, stereo-
vision1, mkDelayWorker32B, mkSMAdapter4B, or1200 and
blob merge. These values for % wires cut were chosen be-
cause they in the likely range of wires which can cross the
interposer without exceeding the microbump capacity, as de-
scribed in Section 2.1. The area-delay product is the product
of the minimum channel width and the critical path delay.
To obtain the critical path delay the circuits were run with a
low stress routing with a channel width, W = 1.3×minW ,
where minW is the minimum channel width for which the
circuit is still routable.

Figure 4: Minimum channel width vs. weighting for
different cut cost terms.

Figure 5: Area-delay product vs. weighting for dif-
ferent cut cost terms.

The best C value and the resulting performance for each
term is summarized in Table 1. Note that cost term (8)

Term Best C minW crit path(ns) Area-delay

None - 124.636 9.844 1226.955
6 0.3 122.929 9.413 1157.09
7 5 114.444 9.565 1094.68
8 1 107.303 9.285 996.26
9 1 113.381 9.280 1052.16

10 5 112.703 9.841 1109.11

Table 1: Best weighting and performance for each
cut cost term.

with weighting C = 1.0 has the best performance; this is
the configuration used in the rest of our experiments.

We believe the key to the good performance of this cost
function is that it produces gradual gains as bounding boxes
crossing the cutline shrink to be closer and closer to being
captured entirely on one side of the cutline. Consider for
example the 3 bounding boxes shown in Figure 6. Note that
bounding box (a) and (b) both cross the cutline and hence
are penalized equally by (6), while bounding box (c) does
not cross a cutline and hence is not penalized. However,
bounding box (b) is mostly on the lower side of the cut-
line; it is more likely that later smaller placement changes
will result in the bounding box moving entirely below the
cutline, reducing interposer wiring demand. Cost function
terms (8) and (9) will both penalize bounding box (a) more
than bounding box (b) to guide placement to gradually move
bounding boxes to one side or the other of a cutline. Fig-
ure 5 shows that these are the two best performing cut cost
terms.

Figure 6: Illustration of three different scenarios for
the wiring cost. The dashed green box shows a case
where (a) it crosses the interposer, the dotted black
box shows a case where (b) it barely crosses the
cutline, and the solid blue one shows a case where
(c) the bounding box does not span the cutline.

Figure 7 shows the minimum channel width for different
values of % wires cut when there are no optimizations and

when cut const (8) is used. Figure 8 compares result quality
with both enhanced timing and wiring cost functions. These
experiments were run with term (8), and are the geometric
means of the runs with % wires cut = 60, 70, 80.

Figure 7: Minimum channel width vs. % wires cut.

Figure 8: Performance of different placer optimiza-
tions, relative to the original VPR results. The area-
delay product is calculated as the product minW ×

criticalpathdelay.

The graphs show that combining the timing with the bound-
ing box optimizations led to an average of 20% improvement
on the area-delay product and the most significant contri-
bution was made by incorporation of cut cost into the wire
cost function.

5. ARCHITECTURE RESULTS
Using the best CAD settings found in Section 4 we an-

alyzed the impact of three key architecture parameters: %
wires cut, delay increase and number of cuts. All the experi-
ments were run with the eight largest circuits from the VTR
benchmark [12], namely: bgm, LU8PEEng, LU32PEEng,
mcml, mkDelayWorker32B, stereovision0, stereovision1 and
stereovision2. The size of these circuits ranges from 9, 100 to
153, 000 primitives (LUTs, FFs, etc.), with an average size
of 52, 600 primitives. All results are the geometric mean over
all circuits for a given interposer architecture.

5.1 Interposer Wiring Capacity (% wires cut)
To analyze the impact of the number of cut wires we ran

experiments varying only this parameter while leaving the
number of cuts and the increased delay constant. The values
used for these parameters were number of cuts = 3 (corre-
sponding to four dice) and increased delay = 1ns, as these
values are similar to those of the XC7V2000T device.

Figure 9 shows the graph of minimum channel width ver-
sus % wires cut. It can be noted from this graph that the
minimum channel width increases slowly up to 60% of wires
cut, indicating that the placement engine is able to avoid
saturating the interposer routing until that point. When
more than 60% of the wires are cut however (i.e. the inter-
poser provides less than 40% of the usual within-die routing
capacity), the minimum channel width grows rapidly indi-
cating that the interposer routing bandwidth has become a
limiting factor. The minW value at 60% is 20% greater than
with no wires cut, while at 70% it is 52% above and at 80%
it is 125% larger than the minW with no cut wires.

The critical path delay, depicted in Figure 10, on the other
hand, is not strongly influenced by the percentage of wires
cut, as the critical path delay at 60% of the wires cut is
essentially the same as at 0% wires cut. At 80% of the
wires cut the critical path delay does rise somewhat, by 6%;
this is due to two factors: the placement is being modified
to improve routability at the expense of timing, and some
circuitous routes are occuring due to saturated interconnect
across the interposer.

Tables 2 and 3 show the minimum channel width and
critical path delay for each circuit. The trends for individual
circuits follow those of the averages quite closely.

Figure 9: Minimum channel width vs. % wires cut
for 3 cuts and 1ns of delay increase.

Figure 10: Critical path delay vs. % wires cut for 3
cuts and 1ns of delay increase.

Figure 11 provides an alternative way to visualize the re-
lationship between interposer routing supply and routabil-
ity. This figure shows how the geometric average minimum

% wires cut 0 20 40 60 70 80

bgm 114 128 124 132 152 226
LU32PEEng 172 178 182 218 304 426
LU8PEEng 110 116 118 128 158 236
mcml 108 124 128 116 152 218
mkDelayWorker32B 76 80 82 88 100 132
stereovision0 62 60 70 88 110 166
stereovision1 104 108 116 120 178 312
stereovision2 162 164 168 194 244 360
Geometric mean 108 114 118 129 164 243

Table 2: Minimum channel width when number of
cuts = 3 and increased delay = 1ns.

% wires cut 0 20 40 60 70 80

bgm 35.1 33.6 32.2 32.9 37.8 40.3
LU32PEEng 115 114 114 114 115 113
LU8PEEng 118 117 119 116 117 124
mcml 82.3 82.9 84.0 83.4 88.3 85.7
mkDelayWorker32B 11.0 12.3 12.0 12.3 14.4 12.8
stereovision0 6.9 7.8 7.0 7.4 7.6 7.0
stereovision1 11.6 9.2 10.4 11.0 11.6 11.8
stereovision2 23.3 25.4 23.9 24.9 25.6 24.8
Geometric mean 30.8 30.9 30.6 31.2 33.1 32.6

Table 3: Critical path delay (in ns) when number of
cuts = 3 and increased delay = 1ns.

channel width required within the FPGA dice varies as the
geometric average of the absolute number of wires crossing
the interposer in each channel varies, again for 4-die system.
When 108 tracks cross the interposer, the interposer chan-
nels have the same capacity as the vertical routing channels
within each FPGA die. As fewer wires cross the interposer,
the channel width required within the FPGA dice increases
to compensate for the routing difficulty in crossing the in-
terposer. The increase is gradual as the interposer routing is
reduced from 108 tracks per channel to 52 tracks per chan-
nel; over this range the routing per channel required in the
FPGA dice increases from 108 tracks per channel to 129
tracks per channel. As the routing crossing the interposer
is further reduced however, it becomes very difficult to in-
crease the within-die routing sufficiently to compensate. At
49 tracks crossing the interposer channels, for example, the
within-die routing must have a channel width of 243 tracks
to successfully route the designs. Clearly the CAD tools
have the ability to trade-off interposer routing for within-
die routing over a reasonable range but below a certain level
(48% of the original within-die minimum channel width in
our experiments) routability becomes almost solely limited
by the wiring crossing the interposer and further reduction
in interposer routing is not productive.

5.2 Circuit Speed vs. Interposer Delay
To investigate the impact of the interposer delay (delay

increase), we kept the number of cuts constant at 3 while
delay increase was swept between 0 and 1.5ns.

Figure 12 shows critical path delay versus % wires cut for
4 different values of delay increase. The penalty in critical
path delay is significant, ranging between 5 and 9 times the
interposer delay increase, when compared to the case where

Figure 11: Geometric mean of required intra-die
minimum channel width vs. geometric mean of the
number of wires crossing the interposer for 3 cuts
and 1ns of delay increase.

the interposer adds no delay. Note that the 0% wires cut
with a 0 ns delay increase in Figure 12 corresponds to a
traditional monolithic FPGA. The speed of an interposer-
based FPGA is strongly correlated to delay increase: a 0.5ns
interposer delay increases the critical path delay by 20%,
while a 1ns interposer delay increases critical path delay by
approximately 35% vs. a monolithic FPGA. Once again,
the critical path increase shows little correlation to the %
wires cut, however. Tables 4, 5, 3 and 6 show the critical
path delay for each circuit for each of the different values of
delay increase. Once again the results for individual circuits
closely parallel the overall averages.

Figure 12: Critical path delay vs. % wires cut for 3
cuts and 0.0, 0.5, 1.0 and 1.5ns of delay increase.

5.3 Impact of Number of Dice
To examine the impact of the number of die used to con-

struct an interposer-based FPGA, we varied the number of
cuts from 1 to 3 (which varies the number of die from 2 to 4).
In these experiments, the delay increase was kept constant
at 1ns.

As shown in Figure 13, the number of cuts does have
an impact on the minimum channel width, but not a very
large or constant one. At 80% of wires cut the experiments
with 2 and 3 cuts had the minimum channel width only 8%
and 10%, respectively, greater than the scenario with only 1

% wires cut 0 20 40 60 70 80

bgm 25.9 26.3 25.8 26.1 25.8 26.7
LU32PEEng 113 113 117 118 113 114
LU8PEEng 115 114 116 115 118 115
mcml 77.2 78.7 79.5 80.5 77.3 76.7
mkDelayWorker32B 7.8 7.6 7.5 7.7 7.5 7.6
stereovision0 4.5 4.3 4.5 4.5 4.5 4.5
stereovision1 6.0 6.2 5.9 6.3 6.2 6.2
stereovision2 18.0 17.1 17.1 17.5 17.6 17.7
Geometric mean 23.7 23.5 23.6 23.9 23.6 23.7

Table 4: Critical path delay (in ns) when number of
cuts = 3 and increased delay = 0ns.

% wires cut 0 20 40 60 70 80

bgm 31.6 30.3 29.2 29.2 29.9 31.6
LU32PEEng 119 114 115 114 115 115
LU8PEEng 118 116 119 117 114 115
mcml 82.6 82.7 79.6 81.9 84.5 82.6
mkDelayWorker32B 9.8 10.6 10.4 9.6 10.2 9.1
stereovision0 5.7 5.3 4.8 4.9 4.9 4.8
stereovision1 8.0 7.5 7.4 8.2 7.9 8.0
stereovision2 20.1 19.7 20.3 19.9 20.2 21.6
Geometric mean 27.5 26.9 26.4 26.5 26.7 26.8

Table 5: Critical path delay (in ns) when number of
cuts = 3 and increased delay = 0.5ns.

% wires cut 0 20 40 60 70 80

bgm 47.2 52.4 43.1 42.7 44.8 48.3
LU32PEEng 115 112 117 114 116 113
LU8PEEng 161 159 122 146 118 129
mcml 94.0 86.0 93.9 88.7 77.3 87.5
mkDelayWorker32B 15.3 13.8 14.3 15.3 17.9 15.4
stereovision0 7.5 9.4 8.9 7.8 9.6 8.3
stereovision1 14.6 12.0 13.1 12.7 14.6 14.8
stereovision2 29.9 30.3 28.7 30.3 30.1 29.8
Geometric mean 37.7 37.3 35.9 36.1 37.0 36.9

Table 6: Critical path delay (in ns) when number of
cuts = 3 and increased delay = 1.5ns.

cut. At lower values of % wires cut the difference was even
smaller.

Figure 14 shows that the number of dice in an interposer-
based FPGA impacts circuit speed significantly, as the crit-
ical path delay rises significantly as systems have more cuts.
Recall that a monolithic FPGA has a geometric average crit-
ical path delay of 23.7ns for our test architecture. With
number of cuts = 1 the critical path delay increases by 3 to
4 ns, while with number of cuts = 2 the critical path delay
increases by 5 to 6 ns. With number of cuts = 3, the critical
path delay is typically 7 ns higher than that of a monolithic
FPGA.

Tables 7, 8, 9, 10, 2 and 3 show the minimum channel
width and critical path delay for each circuit for each of
the different scenarios. The critical path results for indi-
vidual circuits again follow the overall averages well. Some
of the minimum channel widths for individual circuits show
anomalous trends as the number of cutlines increase, how-
ever. For example, mcml often has a smaller minimum chan-
nel width with 2 cuts than with 1 cut. This may be due to
a circuit structure that leads to easier division into thirds
than halves, but also likely indicates room for further CAD
optimization.

Figure 13: Minimum channel width vs. % wires cut
for 1, 2 and 3 cuts and 1ns of delay increase.

Figure 14: Critical path delay vs. % wires cut for 1,
2 and 3 cuts and 1ns of delay increase.

6. CONCLUSIONS AND FUTURE WORK
We have extended VPR to model and optimize for interposer-

based multi-FPGA systems. While such systems are now
a commercial reality, we do not know of any prior study
of their key architectural parameters. We found that by

% wires cut 0 20 40 60 70 80

bgm 114 114 122 126 142 156
LU32PEEng 170 176 182 206 318 396
LU8PEEng 110 114 116 138 164 236
mcml 108 114 106 124 150 238
mkDelayWorker32B 74 78 80 88 98 138
stereovision0 62 60 62 76 132 146
stereovision1 102 104 106 108 144 186
stereovision2 160 158 164 200 264 432
Geometric mean 107 109 111 126 165 221

Table 7: Minimum channel width when number of
cuts = 1 and increased delay = 1ns.

% wires cut 0 20 40 60 70 80

bgm 26.5 32.1 28.3 30.2 27.5 30.0
LU32PEEng 113 113 113 115 114 111
LU8PEEng 117 118 116 114 114 116
mcml 82.5 82.0 83.0 84.5 83.2 77.9
mkDelayWorker32B 11.2 11.4 11.2 9.9 10.6 11.5
stereovision0 4.5 5.1 5.0 4.9 4.9 5.4
stereovision1 7.4 8.2 8.4 7.2 7.2 7.9
stereovision2 21.3 23.1 20.9 22.3 21.6 20.9
Geometric mean 26.3 28.1 27.2 26.8 26.5 27.3

Table 8: Critical path delay (in ns) when number of
cuts = 1 and increased delay = 1ns.

% wires cut 0 20 40 60 70 80

bgm 114 116 130 140 172 272
LU32PEEng 170 180 186 198 264 426
LU8PEEng 110 114 116 124 158 246
mcml 108 110 126 138 114 150
mkDelayWorker32B 76 80 82 88 100 132
stereovision0 62 58 60 88 114 166
stereovision1 104 108 116 136 184 296
stereovision2 160 156 162 188 246 362
Geometric mean 108 109 116 132 160 237

Table 9: Minimum channel width when number of
cuts = 2 and increased delay = 1ns.

% wires cut 0 20 40 60 70 80

bgm 31.0 30.3 28.3 36.1 35.9 37.5
LU32PEEng 113 113 119 113 117 112
LU8PEEng 118 118 117 116 118 114
mcml 82.9 86.3 81.3 80.9 82.4 82.8
mkDelayWorker32B 12.3 12.1 9.8 11.1 13.5 11.3
stereovision0 6.4 5.7 6.3 5.3 5.3 5.9
stereovision1 9.3 10.4 9.5 9.6 10.2 9.9
stereovision2 22.9 24.2 24.0 21.6 24.2 25.5
Geometric mean 29.5 29.7 28.6 28.8 30.4 30.1

Table 10: Critical path delay (in ns) when number
of cuts = 2 and increased delay = 1ns.

modifying VPR’s placement cost function we could improve
the routability (reduce minW) by 18%, while simultane-
ously improving speed by 2%. Interestingly, we found that
a smooth cost function that less precisely models the inter-
posing wiring demand outperformed direct monitoring of the
number of required interposer connections during annealing.

We defined three key architecture parameters for interposer-
based FPGAs, and used this extended VPR to analyze their
impact on minimum channel width and critical path delay.
We found that the minimum channel width increases steeply
after more than 60% of the within-die wires are cut at the
interposer, and when 80% of wires are cut the minimum
channel width is more than double that required by a mono-
lithic FPGA. The Xilinx XC7V2000T FPGA has 77% of the
normal wiring cut at the interposer, indicating that commer-
cial interposer-based FPGAs will require high-quality CAD
optimization to maintain good routability. The critical path
delay is not strongly influenced by the % wires cut but is
strongly influenced by the interposer delay and the num-
ber of cuts. Our results show that the critical path usually
crosses the interposer cutline more than once, as the critical
path delay is increased by more than the interposer delay in-
crease. Increasing the number of dice in an interposer-based
FPGA does not significantly impact the minimum channel
width, but does lead to a larger critical path delay.

There are many interesting CAD and architecture ques-
tions for interposer-based FPGAs which we plan to investi-
gate. Currently the wires that cross the interposer are ac-
cessed with the same switch structure as other wires in the
FPGA. Since interposer wires are more scarce, possibly these
wires should have larger multiplexers feeding them, which
would make them easier to use; this may help routability of
the system. Such changes will have to be carefully consid-
ered however, to make sure the FPGA can still be laid out as
an array of regular tiles. Alternative CAD flows to improve
the interposer routability are also possible. For example, in-
stead of following the synthesize, place and route CAD flow
of a conventional FPGA, we could add a partitioning step
before placement which would divide the circuit into one
partition per die. Such a flow may improve routability, as
a partitioner’s main focus is minimizing the number of cut
signals. Enhanced partitioners will be required, as current
partitioners such as hMetis [7] cannot model the heteroge-
neous balance constraint (i.e. use no more than the available
device logic, RAM, DSP and I/O blocks in any die) present
in FPGAs. Additionally, by dividing the placement prob-
lem into two pieces – partitioning and within-die placement
– we may increase the critical path delay as we can no longer
globally optimize the placement of timing critical paths in
one unified placement step. Nonetheless, this is a viable al-
ternative approach and a comparison to the approach taken
in this paper would be very interesting.

7. ACKNOWLEDGMENTS
This work was supported by a Ciência sem Fronteiras

scholarship from CNPq - Brazil and the NSERC/Altera In-
dustrial Research Chair in Programmable Silicon.

8. REFERENCES
[1] M. Alexander, J. Cohoon, J. Colflesh, J. Karro, and

G. Robins. Three-Dimensional Field-Programmable
Gate Arrays. In IEEE Int. ASIC Conference and
Exhibit, pages 253–256, 1995.

[2] Altera. Stratix V Device Overview. www.altera.com,
2013.

[3] V. Betz and J. Rose. VPR: A New Packing,
Placement and Routing Tool for FPGA Research. In
Int. Workshp on Field-Programmable Logic and
Applications, pages 213–222. Springer, 1997.

[4] R. Chaware, K. Nagarajan, and S. Ramalingam.
Assembly and Reliability Challenges in 3D Integration
of 28nm FPGA Die on a Large High Density 65nm
Passive Interposer. In IEEE Electronic Components
and Technology Conference (ECTC), pages 279–283,
2012.

[5] C. Cheng. RISA: Accurate and Efficient Placement
Routability Modeling. In IEEE/ACM Int. Conf. on
Computer-Aided Design, pages 690–695, 1994.

[6] J. Cunningham. The Use and Evaluation of Yield
Models in Integrated Circuit Manufacturing. IEEE
Trans. on Semiconductor Manufacturing, 3(2):60–71,
1990.

[7] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel Hypergraph Partitioning: Applications in
VLSI Domain. IEEE Trans. on VLSI, 7(1):69–79,
1999.

[8] M. L., A. El Gamal, Y. Lu, and S. Wong. Performance
Benefits of Monolithically Stacked 3-D FPGA. IEEE
Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 26(2):216–229, 2007.

[9] G. Lemieux, E. Lee, M. Tom, and A. Yu. Directional
and Single-Driver Wires in FPGA Interconnect. In
IEEE Int. Conf. on Field Programmable Technology,
pages 41–48, 2004.

[10] A. Marquardt, V. Betz, and J. Rose. Timing-Driven
Placement for FPGAs. In ACM/SIGDA Int. Symp. on
Field Programmable Gate Arrays, pages 203–213, 2000.

[11] K. Namhoon, D. Wu, D. Kim, A. Rahman, and
P. Wu. Interposer Design Optimization for High
Frequency Signal Transmission in Passive and Active
Interposer using Through Silicon Via (TSV). In IEEE
Electronic Components and Technology Conference
(ECTC), pages 1160–1167, 2011.

[12] J. Rose, J. Luu, C. Yu, O. Densmore, J. Goeders,
A. Somerville, K. Kent, P. Jamieson, and J. Anderson.
The VTR Project: Architecture and CAD for FPGAs
from Verilog to Routing. In ACM/SIGDA Int.
Symposium on Field-Programmable Gate Arrays,
pages 77–86, 2012.

[13] Xilinx. Xilinx Stacked Silicon Interconnect Technology
Delivers Breakthrough FPGA Capacity, Bandwidth,
and Power Efficiency. www.xilinx.com, 2012.

[14] Xilinx. 7 Series FPGA Overview. www.xilinx.com,
2013.

