
Take the Highway: Design for Embedded NoCs on FPGAs

Mohamed S. Abdelfattah, Andrew Bitar, Vaughn Betz
Department of Electrical and Computer Engineering

University of Toronto, Toronto, ON, Canada
{mohamed, bitar, vaughn}@eecg.utoronto.ca

ABSTRACT
We explore the addition of a fast embedded network-on-chip
(NoC) to augment the FPGA’s existing wires and switches,
and help interconnect large applications. A flexible inter-
face between the FPGA fabric and the embedded NoC al-
lows modules of varying widths and frequencies to transport
data over the NoC. We study both latency-insensitive and
latency-sensitive design styles and present the constraints for
implementing each type of communication on the embedded
NoC. Our application case study with image compression
shows that an embedded NoC improves frequency by 10–80%,
reduces utilization of scarce long wires by 40% and makes
design easier and more predictable. Additionally, we leverage
the embedded NoC in creating a programmable Ethernet
switch that can support up to 819 Gb/s on FPGAs.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communications]: In-
terconnections (Subsystems)

1. INTRODUCTION
Field-programmable gate-arrays (FPGAs) are increasing in

both capacity and heterogeneity. Over the past two decades,
FPGAs have evolved from a chip with thousands of logic
elements (and not much else) to a much larger chip that has
millions of logic elements, embedded memory, multipliers,
processors, memory controllers, PCIe controllers and high-
speed transceivers [26]. This incredible increase in size and
functionality has pushed FPGAs into new markets and larger
and more complex systems [24].

Both the FPGA’s logic and I/Os have had efficient em-
bedded units added to enhance their performance; however,
the FPGA’s interconnect is still basically the same. Using a
combination of wire segments and multiplexers, a single-bit
connection can be made between any two points on the FPGA
chip. While this traditional interconnect is very flexible, it
is becoming ever-more challenging to use in connecting large
systems. Wire-speed is scaling poorly compared to transistor
speed [19], and a larger FPGA device means that a connec-
tion often consists of multiple wire segments and multiplexers
thus increasing overall delay. This makes it difficult to esti-
mate the delay of a connection before placement and routing,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA ’15, February 22–24 2015, Monterey, CA, USA
Copyright 2015 ACM 978-1-4503-3315-3/15/02
http://dx.doi.org/10.1145/2684746.2689074 ...$15.00.

Router

Fabric
Module

Links
(Hard)

FPGA

D
D

R
x

C
o

n
tr

o
lle

r
P

C
Ie

 C
o

n
tr

o
lle

r

(Hard)

Figure 1: Embedded hard NoC connects to the FPGA fabric and
hard I/O interfaces.

forcing FPGA designers to wait until design compilation is
completed, then identify the critical path and manually add
pipeline registers in an attempt to improve frequency – a
time-consuming process. Furthermore, the high bandwidth
of embedded I/O interfaces requires fast and very wide con-
nections that distribute data across the whole chip. This
utilizes much FPGA logic and a multitude of its single-bit
wires and multiplexers; consequently, it is difficult to run
these wide connections fast enough to satisfy the stringent
delay constraints of interfaces like DDR3.

System-level interconnect has been proposed to augment
the FPGA’s bit-level interconnect to better integrate large
systems. Some have suggested the use of bus-based FPGA
interconnect to save area [27], while others have investigated
embedded NoCs [5, 15, 17]. In this work we focus on the
latter; specifically, how to interface the FPGA fabric to
an embedded NoC, and how to use an embedded NoC for
different design styles that are common to FPGAs. Previous
work has investigated how to use an embedded NoC to create
a multiprocessor-like memory abstraction for FPGAs [9]. In
contrast, we focus on adapting an embedded NoC to the
currently used FPGA design styles. To this end, we make
the following contributions:

1. Present the FabricPort: a flexible interface between the
FPGA fabric and a packet-switched embedded NoC.

2. Investigate the requirements of mapping the communi-
cation of different design styles (latency-insensitive and
latency-sensitive) onto an embedded NoC.

3. Analyze latency-sensitive parallel JPEG compression both
with and without an embedded NoC.

4. Design an Ethernet switch capable of 819 Gb/s using
the embedded NoC; 5× more switching than previously
demonstrated on FPGAs.

98

Table 1: NoC parameters and properties for 28 nm FPGAs.

NoC Link Width # VCs Buffer Depth # Nodes Topology

150 bits 2 10 flits/VC 16 nodes Mesh

Area† Area Fraction∗ Frequency

528 LABs 1.3% 1.2 GHz
†LAB: Area equivalent to a Stratix V logic cluster.
∗Percentage of core area of a large Stratix V FPGA.

2. EMBEDDED HARD NOC
Before presenting our embedded NoC, we define some of

the NoC terminology [12] that may be unfamiliar to the
reader:

• Flit: The smallest unit of data that can be transported on
the NoC; it is equivalent to the NoC link width.

• Packet: One or more related flits that together form a
logical meaning.

• Virtual channels (VCs): Separate FIFO buffers at a NoC
router input port; if we use 2 VCs in our NoC, then each
router input can store incoming flits in one of two possible
FIFO buffers.

• Credit-based flow control: A backpressure mechanism in
which each NoC router keeps track of the number of avail-
able buffer spaces (credits) downstream, and only sends a
flit downstream if it has available credits.

Our embedded packet-switched NoC targets a large 28 nm
FPGA device. The NoC presented in this section is used
throughout this paper in our design and evaluation sections.
Fig. 1 displays a high-level view of an NoC embedded on
an FPGA. We base our router design on a state-of-the-art
full-featured packet-switched router [10].

In designing the embedded NoC, we must over-provision its
resources, much like other FPGA interconnect resources, so
that it can be used in connecting any application. We there-
fore look at high bandwidth I/Os to determine the required
NoC link bandwidth. The highest-bandwidth interface on
FPGAs is usually a DDR3 interface, capable of transporting
64 bits of data at a speed of 1067 MHz at double-data rate
(~17 GB/s). We design the NoC such that it can transport
the entire bandwidth of a DDR3 interface on one of its links;
therefore, we can connect to DDR3, or to one of the masters
accessing it using a single router port. Additionally, we must
be able to transport the control data of DDR3 transfers, such
as the address, alongside the data. We therefore choose a
width of 150 bits for our NoC links and router ports, and
we are able to run the NoC at 1.2 GHz1 [1]. By multiplying
our width and frequency, we find that our NoC is able to
transport a bandwidth of 22.5 GB/s on each of its links.

Table 1 summarizes the NoC parameters and properties.
We use 2 VCs in our NoC. Previous work has shown that a
second VC reduces congestion by ~30% [3]. We also leverage
VCs to avoid deadlock, and merge data streams as we dis-
cuss in Sections 3 and 4. Additionally, we believe that the
capabilities offered by VCs – such as assigning priorities to
different messages types – would be useful in future FPGA
designs. The buffer depth per VC is provisioned such that it
is not a cause for throughput degradation (see Section 4.3.1).
With the given parameters, each embedded router occupies
an area equivalent to 35 logic clusters (Stratix-V LABs),

1We implement the NoC in 65 nm standard cells and scale
the frequency obtained by 1.35× to match the speed scaling
of Xilinx’s (also standard cell) DSP blocks from Virtex5
(65 nm) to Virtex7 (28 nm) [26].

Valid Head Tail VC ID Destination Data

149 148 147 146 145 141 0

Valid Head Tail VC ID Data

149 148 147 146 145 0

8 bits 142 bits

4 bits 146 bits

Head Flit:

Body/Tail Flit:

Figure 2: NoC packets consist of a head flit and zero-or-more body
flits. The figure shows flits for a 16-node 150-bit-width NoC with
2 VCs. Each flit has control data to indicate whether this flit is
valid, and if it is the head or tail flit (or both for a 1-flit packet).
Additionally each flit must have the VC number to which it is
assigned and a head flit must contain the destination address.

Fl
it

 0
[F

lit
 1

]
[F

lit
 2

]
[F

lit
 3

]

Fl
it

 0

[F
lit

 1
]

[F
lit

 2
]

[F
lit

 3
]

FNoC

(1.2 GHz)

Fabric Port

Simple soft
logic can set

flit control bits

D
at

a
in Translator

Embedded hard
logic bridges width

and frequency

Ffabric1
(any FPGA
frequency)

Soft Hard (embedded)

NoC

Fl
it

 0
[F

lit
 1

]
[F

lit
 2

]
[F

lit
 3

]

D
at

a
o

ut

Soft

Fabric Port

Embedded hard
logic bridges width

and frequency

Simple soft
logic can set

flit control bits

Translator

Ffabric2
(any FPGA
frequency)

Figure 3: Data on the FPGA with any protocol can be translated
into NoC flits using application-dependent soft logic (translator).
A FabricPort then adapts width (1-4 flit width on fabric side and
1 flit width on NoC) and frequency (any frequency on fabric side
and 1.2 GHz on NoC side) to inject flits into the NoC.

including the interface between the router and the FPGA
fabric, and including the wire drivers necessary for the hard
NoC links [4]. As Table 1 shows, the whole 16-node NoC
occupies 528 LABs, a mere 1.3% of a large 28 nm Stratix-V
FPGA core area (excluding I/Os).

3. FABRICPORT: INTERFACE BETWEEN
FPGA AND NOC

3.1 Packet Format
Fig. 2 shows the format of flits on the NoC; each flit is

150 bits making flit width and NoC link width equivalent
(as most on-chip networks do) [12]. One flit is the smallest
unit that can be sent over the NoC, indicating that the NoC
will be used for coarse-grained wide datapath transfers. This
packet format puts no restriction on the number of flits that
form a packet; each flit has two bits for “head” and “tail” to
indicate the flit at the start of a packet, and the flit at the
end of a packet. The VC identifier is required for proper
virtual-channel flow control, and finally, the head flit must
also contain the destination address so that the NoC knows
where to send the packet. The remaining bits are data,
making the control overhead quite small in comparison; for
a 4-flit packet, control bits make up 3% of transported data.

3.2 FabricPort Functionality
Each NoC port can sustain a maximum input bandwidth

of 22.5 GB/s; however, this is done at the high frequency
of 1.2 GHz for our NoC. The main purpose of the Fabric-
Port is therefore to give the FPGA fabric access to that
communication bandwidth, at the range of frequencies at
which FPGAs normally operate. How does one connect a
module configured from the FPGA fabric to the embedded
NoC running at a different width and frequency?

Fig. 3 illustrates the process of conditioning data from any
FPGA module to NoC flits, and vice versa. A very simple
translator takes incoming data and appends to it the neces-

99

data 0 data 1 data 2 data 3 data 4

clock

ready_out

data_valid_in

data_in

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Figure 4: Waveform of ready/valid signals between soft module
→ FabricPort input, or FabricPort output → soft module. After
“ready”signal becomes low, the receiver must accept one more cycle
of valid data (data 2) after which the sender will have processed
the “ready” signal and stopped sending more valid data.

sary flit control information. For most cases, this translator
consists only of wires that pack the data in the correct posi-
tion and sets the valid/head/tail bits from constants. Once
data is formatted into flits, we can send between 0 and 4 flits
in each fabric cycle, this is indicated by the valid bit on each
flit. The FabricPort will then serialize the flits, one after the
other, and inject the valid ones into the NoC at the NoC’s
frequency. When flits are received at the other end of the
NoC, the frequency is again bridged, and the width adapted
using a FabricPort; then a translator strips control bits and
injects the data into the receiving fabric module.

This FabricPort plays a pivotal role in adapting an em-
bedded NoC to function on an FPGA. We must bridge the
width and frequency while making sure that the FabricPort
is never a source of throughput reduction; furthermore, the
FabricPort must be able to interface to different VCs on the
NoC, send/receive different-length packets and respond to
backpressure coming from either the NoC or FPGA fabric.
We enumerate the essential properties that this component
must have:

1. Rate Conversion: Match the NoC bandwidth to the
fabric bandwidth. Because the NoC is embedded, it can
run ~4× faster than the FPGA fabric [2, 4]. We leverage
that speed advantage to build a narrow-link-width NoC
that connects to a wider but slower FPGA fabric.

2. Stallability: Accept/send data on every NoC cycle in
the absence of stalls, and stall for the exact number of
cycles when the fabric/NoC isn’t ready to send/receive
data (as Fig. 4 shows). The FabricPort itself should never
be the source of throughput reduction.

3. Virtual Channels: Read/write data from/to multiple
virtual channels in the NoC such that the FabricPort is
never the cause for deadlock.

4. Packet Length: Send/receive packets of different
lengths.

5. Backpressure Translation: Convert the NoC’s credit-
based flow-control system into the more FPGA-familiar
ready/valid signals.

3.3 FabricPort Circuitry

3.3.1 FabricPort Input: Fabric→NoC
Fig. 5 shows a schematic of the FabricPort with important

control signals annotated. The FabricPort input (Fig. 5a)
connects the output of a module in the FPGA fabric to
an embedded NoC input. Following the diagram from left
to right: data is input to the time-domain multiplexing
(TDM) circuitry on each fabric clock cycle and is buffered in
the “main” register. The “aux” register is added to provide
elasticity. Whenever the output of the TDM must stall there
is a clock cycle before the stall signal is processed by the
fabric module. In that cycle, the incoming datum may still

be valid, and is therefore buffered in the “aux” registers.
To clarify this ready-valid behavior, example waveforms are
illustrated in Fig. 4. Importantly, this stall protocol ensures
that every stall (ready = 0) cycle only stops the input for
exactly one cycle ensuring that the FabricPort input does
not reduce throughput.

The TDM unit takes four flits input on a slow fabric clock
and outputs one flit at a time on a faster clock that is 4×
as fast as the FPGA fabric – we call this the intermediate
clock. This intermediate clock is only used in the FabricPort
between the TDM unit and the asynchronous FIFO (aFIFO)
buffer. Because it is used only in this very localized region,
this clock may be derived locally from the fabric clock by
careful design of circuitry that multiplies the frequency of
the clock by four. This is better than generating 16 different
clocks globally through phase-locked loops, then building a
different clock tree for each router’s intermediate clock (a
viable but more costly alternative).

The output of the TDM unit is a new flit on each inter-
mediate clock cycle. Because each flit has a valid bit, only
those flits that are valid will actually be written in the aFIFO
thus ensuring that no invalid data propagates downstream,
unnecessarily consuming power and bandwidth. The aFIFO
bridges the frequency between the intermediate clock and the
NoC clock ensuring that the fabric clock can be completely
independent from the NoC clock frequency and phase.

The final component in the FabricPort input is the “NoC
Writer”. This unit reads flits from the aFIFO and writes
them to the downstream NoC router. The NoC Writer keeps
track of the number of credits in the downstream router
to interface to the credit-based backpressure system in the
embedded NoC, and only sends flits when there are available
credits. Note that credit-based flow control is by far the
most-widely-used backpressure mechanism in NoCs because
of its superior performance with limited buffering [12].

3.3.2 FabricPort Output: NoC→Fabric
Fig. 5b details a FabricPort output; the connection from

an NoC output port to the input of a module on the FPGA
fabric. Following the diagram from right to left: the first
component is the “NoC Reader”. This unit is responsible for
reading flits from an NoC router output port and writing to
the aFIFO. Note that separate FIFO queues must be kept for
each VC; this is very important as it avoids scrambling data
from two packets. Fig. 6 clarifies this point; the upstream
router may interleave flits from different packets if they are
on different VCs. By maintaining separate queues in the
NoC reader, we can rearrange flits such that flits of the same
packet are organized one after the other.

The NoC reader is then responsible for arbitrating between
the FIFO queues and forwarding one (entire) packet – one flit
at a time – from each VC. We currently implement fair round-
robin arbitration and make sure that there are no “dead”
arbitration cycles. That means that as soon as the NoC
reader sees a tail flit of one packet, it has already computed
the VC from which it will read next. The packet then enters
the aFIFO where it crosses clock domains between the NoC
clock and the intermediate clock.

The final step in the FabricPort output is the time-domain
demultiplexing (DEMUX). This unit reassembles packets
(or packet fragments if a packet is longer than 4 flits) by
combining 1-4 flits into the wide output port. In doing so,
the DEMUX does not combine flits of different packets and
will instead insert invalid zero flits to pad the end of a packet
that doesn’t have a number of flits divisible by 4 (see Fig. 6).
This is very much necessary to present a simple interface for
designers allowing them to connect design modules to the
FabricPort with minimal soft logic.

100

Credit
Counters

VC2

VC1

va
lid
_b
it

co
u
n
t(
s)

re
a
d
_e
n
a
b
le

w
ri
te
_e
n
a
b
le

m
ux
_c
tr
l

a
lm

o
st
_f
u
ll

d
e
m
u
x_
ct
rl

m
ux
_c
tr
l

e
m
p
ty

NoC Writer
State Machine

main Asynchronous FIFO

aux

data_in

ready_out
TDM Control

State Machine

credits_in

flit_out
wnocwnoc4·wnoc

4·wnoc

4·wnoc

Time-Domain Multiplexing NoC Writer

ffabric

fintermediate

(4·ffabric) fNoC

ffabric

e
n
a
b
le

enable

From Module To NoC

(a) FabricPort input: from the FPGA fabric to the embedded NoC.

main

aux

fintermediate

(4·ffabric)
ffabric

fintermediate

(4·ffabric) fNoC
VC Buffers

fNoC

ffabric

write_en

w
ri

te
_e

na
bl

e(
s)

em
p

ty
(s

)

vc
_

id

re
a

d
_e

na
b

le
(s

)

m
ux

_c
tr

l

Arbiter

re
a

d
_e

na
bl

e

a
lm

o
st

_f
u

ll

credits_out

flit_in

w
ri

te
_e

na
bl

e

d
e

m
u

x_
ct

rl

em
p

ty

de
m

ux
_

ct
rl

m
u

x_
ct

rl

data_out

ready_ in

Time-Domain Demultiplexing NoC Reader

Asynchronous FIFO
wnocwnoc4·wnoc4·wnoc

DEMUX Control
State Machine

en
ab

le
sTo Module From NoC

(b) FabricPort output: from the embedded NoC to the FPGA fabric.

Figure 5: The FabricPort interfaces the FPGA fabric to an embedded NoC in a flexible way by bridging the different frequencies and
widths as well as handling backpressure from both the FPGA fabric and the NoC.

10

NoC Reader

0 1

0 1

i Flit from VC 0

i Flit from VC 1

Packet 1 Packet 2
0

1

2

0

1

X

X

X

DEMUX

0 1 2

0 1 2

0 1 2

[Data to FPGA]

[Flits from NoC]aFIFO

Figure 6: “NoC Reader” sorts flits from each VC into a separate
queue thereby ensuring that flits of each packet are contiguous.
The DEMUX then packs up to four flits together and writes them
to the wide output port but never mixes flits of two packets.

3.4 FabricPort Discussion
3.4.1 Module Connectivity

The FabricPort converts 22.5 GB/s of NoC link data band-
width (150 bits, 1.2 GHz) to 600 bits and any fabric frequency
on the fabric side. An FPGA designer can then use any frac-
tion of that port width to send data across the NoC. However,
the smallest NoC unit is the flit; so we can either send 1, 2, 3
or 4 flits each cycle. If the designer connects data that fits in
one flit (150 bits or less), all the data transported by the NoC

is useful data. However, if the designer want to send data
that fits in one-and-a-half flits (225 bits for example), then
the FabricPort will send two flits, and half of the second flit is
overhead that adds to power consumption and worsens NoC
congestion unnecessarily. Efficient “translator” modules (see
Fig. 3) will therefore try to take the flit width into account
when injecting data to the NoC.

A limitation of the FabricPort output is observed when
connecting two modules. Even if each module only uses
half the FabricPort’s width (2 flits), only one module can
receive data each cycle because the DEMUX only outputs
one packet at a time by default as Fig. 6 shows. To overcome
this limitation, we create a combine-data mode as shown
in Fig. 7. For this combine-data mode, when there are two
modules connected to one FabricPort, data for each module
must arrive on a different VC. The NoC Reader arbiter must
strictly alternate between VCs, and then the DEMUX will
be able to group two packets (one from each VC) before
data output to the FPGA. This allows merging two streams
without incurring serialization latency in the FabricPort.

Condition 1. To combine packets at a FabricPort output,
each packet must arrive on a different VC.

101

10

NoC Reader

0 1

0 1

Packet 1 Packet 2
0

1

0

1

DEMUX

0 1

0 1

0 1

[Flits from NoC]

combine_data

Module
1

Module
2

combine_data

aFIFO

Figure 7: FabricPort output merging two packets from separate
VCs in combine-data mode, to be able to output data for two
modules in the same clock cycle.

Note that we are limited to the merging of two packets with 2
VCs but we can merge up to four 1-flit packets if we increase
the number of VCs to four in the embedded NoC.

3.4.2 Frequency and Latency
Fig. 8 plots the zero-load latency of the NoC (running

at 1.2 GHz) for different fabric frequencies that are typical
of FPGAs. We measure latency by sending a single 4-flit
packet through the FabricPort input→NoC→FabricPort out-
put. The NoC itself is running at a very fast speed, so even
if each NoC hop incurs 4 cycles of NoC clocks, this trans-
lates to approximately 1 fabric clock cycle. However, the
FabricPort latency is a major portion of the total latency
of data transfers on the NoC; it accounts for 40%–85% of
latency in an unloaded embedded NoC. The reason for this
latency is the flexibility offered by the FabricPort – we can
connect a module of any operating frequency but that incurs
TDM, DEMUX and clock-crossing latency. Careful inspec-
tion of Fig. 8 reveals that the FabricPort input always has a
fixed latency for a given frequency, while the latency of the
FabricPort output varies by one cycle sometimes – this is
an artifact of having to wait for the next fabric (slow) clock
cycle on which we can output data in the DEMUX unit.

4. FPGA-DICTATED NOC DESIGN
Fig. 9 shows the two possibilities of synchronous design

styles, as well as two communication protocols that are com-
mon in FPGA designs. In a latency-insensitive system, the
design consists of patient modules that can be stalled, thus
allowing the interconnect between those modules to have
arbitrary delay [8]. Latency-sensitive design, on the other
hand, does not tolerate variable latency on its connections,
and assumes that its interconnect always has a fixed latency.
In this section we investigate how to map applications that
belong to either design style (and any communication proto-
col) onto the NoC; Fig. 10 illustrates this. We are effectively
augmenting the FPGA with a wide stallable network of
buffered interconnect that can do flexible switching – how
can we best leverage that new interconnection resource for
different design styles? And can this embedded NoC be used
for both latency insensitive/sensitive design styles, and both
communication protocols?

4.1 Packet Ordering and Dependencies

4.1.1 Ordering
Packet-switched NoCs like the one we are using were orig-

inally built for chip multiprocessors (CMPs). CMPs only
perform memory-mapped communication; most transfers
are cache lines or coherency messages. Furthermore, proces-
sors have built-in mechanisms for reordering received data,
and NoCs are typically allowed to reorder packets.

With FPGAs, memory-mapped communication can be one
of two main things: (1) Control data from a soft processor
that is low-bandwidth and latency-critical – a poor target
for embedded NoCs, or (2) Communication between design
modules and on-chip or off-chip memory, or PCIe links – high

0 2 4 6 8 10 12 14

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
0

0
 M

H
z

2
0

0
 M

H
z

3
0

0
 M

H
z

4
0

0
 M

H
z

Zero-Load Latency [cycles]

Fa
b

ri
c

Fr
eq

u
en

cy
 [

M
H

z]

(N
u

m
b

er
 o

f
h

o
p

s)

Fabric Port Input NoC Traversal Fabric Port Output

Figure 8: Zero-load latency of the embedded NoC (including
FabricPorts) at different fabric frequencies. Latency is reported as
the number of cycles at each frequency. The number of hops varies
from 1 hop (minimum) to 7 hops (maximum – chip diagonal).

Communication Protocol

Streaming
(data-flow)

(point-to-point)

Memory-mapped
(request/reply)

Design Style

Latency-Insensitive
(latency-tolerant)

(stallable modules)

Latency-Sensitive
(unstallable modules)

Figure 9: Design styles and communication protocols.

Wrapper

A B C

F

Permapaths

Wrapper

D
Wrapper

E

A B C

Latency-sensitive system

D E

F

Latency-insensitive system

FPGA

Figure 10: Mapping latency-sensitive and latency-insensitive sys-
tems onto an embedded NoC. We reserve Permapaths on the NoC
to guarantee a fixed latency and perfect throughput for a latency-
sensitive application. For latency-insensitive systems, modules
must be encapsulated with wrappers to add stall functionality.

bandwidth data suitable for our proposed NoC. Additionally,
FPGAs are very good at implementing streaming, or data-
flow applications such as packet switching, video processing,
compression and encryption. These streams of data are also
prime targets for using our high-bandwidth embedded NoC.
Crucially, neither memory-mapped nor streaming applica-
tions tolerate packet reordering on FPGAs, nor do FPGAs
natively support it. While it may be possible to design re-
ordering logic for simple memory-mapped applications, it
becomes impossible to build such logic for streaming applica-
tions without hurting performance – we therefore choose to
restrict the embedded NoC to perform in-order data transfers
only. Specifically, an NoC is not allowed to reorder packets
on a single connection.

Definition 1. A connection (s, d) exists between a sin-
gle source (s) and its downstream destination (d) to which it
sends data.

Definition 2. A path is the sequence of links from s to
d that a flit takes in traversing an NoC.

102

Module

FabricPort Output

1 2 From NoC3

1. Module cannot accept packet 1
until it has processed packet 2

stall

data

2. Module stalled Packet 2
queued behind packet 1 forever

(a) Standard FabricPort output.

Module From NoC

1. Module stalls packet 1 until it
processes packet 2

stall VC0

data

2. Each packet type is in separate VC packet
2 may progress even if packet 1 is waiting

Deadlock-free FabricPort Output

1

2

3 VC0

VC1ready VC1

(b) Deadlock-free FabricPort output.

Figure 11: Deadlock can occur if a dependency exists between two
message types going to the same port. By using separate VCs for
each message type, this deadlock can be broken thus allowing two
dependent message types to share a FabricPort output.

There are two causes of packet reordering. Firstly, an
adaptive route-selection algorithm would always attempt to
choose a path of least contention through the NoC; there-
fore two packets of the same source and destination (same
connection) may take different paths and arrive out of order.
Secondly, when sending packets (on the same connection)
but different VCs, two packets may get reordered even if
they are both taking the same path through the NoC.

To solve the first problem, we only use routing algorithms,
in which routes are the same for all packets that belong to a
connection.

Condition 2. The same path must be taken by all packets
that belong to the same connection.

Deterministic routing algorithms such as dimension-ordered
routing [12] fulfill Condition 2 as they always select the same
route for packets on the same connection.

Eliminating VCs altogether would fix the second ordering
problem; however, this is not necessary. VCs can be used
to break message deadlock, merge data streams (Fig. 7),
alleviate NoC congestion and may be also used to assign
packet priorities thus adding extra configurability to our
NoC – these properties are desirable. We therefore impose
more specific constraints on VCs such that they may still be
used on FPGA NoCs.

Condition 3. All packets belonging to the same connec-
tion must use the same VC.

To do this in NoC routers is simple. Normally, a packet
may change VCs at every router hop – VC selection is done
in a VC allocator [12]. We replace this VC allocator with
a lightweight VC facilitator that cannot switch a packet
between VCs; instead, it inspects a packet’s input VC and
stalls that packet until the downstream VC buffer is available.
At the same time, other connections may use other VCs in
that router thus taking advantage of multiple VCs.

4.1.2 Dependencies and Deadlock
Two message types may not share a standard FabricPort

output (Fig. 5b) if a dependency exists between the two
message types. An example of dependent message types can
be seen in video processing IP cores: both control messages
(that configure the IP to the correct resolution for example)
and data messages (pixels of a video stream) are received on
the same port [6]. An IP core may not be able to process the
data messages correctly until it receives a control message.

0

100

200

300

400

500

600

700

800

900

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700

Fr
eq

u
e

n
cy

 [
M

H
z]

A
re

a
[E

q
u

iv
al

en
t

 L
A

B
s]

Port Width [bits]

Area (Original)

Area (NoC-compatible)

Freq. (Original)

Freq. (NoC-compatible)

Figure 12: Area and frequency of latency-insensitive wrappers
from [23] (original), and optimized wrappers that take advantage
of NoC buffering (NoC-compatible).

Consider the deadlock scenario in Fig. 11a. The module
is expecting to receive packet 2 but gets packet 1 instead;
therefore it stalls the FabricPort output and packet 2 remains
queued behind packet 1 forever. To avoid this deadlock, we
can send each message type in a different VC [25]. Addi-
tionally, we created a deadlock-free FabricPort output that
maintains separate paths for each VC – this means we du-
plicate the aFIFO and DEMUX units for each VC we have.
There are now two separate “ready” signals; one for each VC,
but there is still only one data bus feeding the module. The
module can therefore either read from VC0 or VC1. Fig. 11b
shows that even if there is a dependency between different
messages, they can share a FabricPort output provided each
uses a different VC.

Condition 4. When multiple message types can be sent
to a FabricPort, and a dependency exists between the message
types, each type must use a different VC.

4.2 Latency-Insensitive Design with NoC
Latency-insensitive design is a design methodology that

decouples design modules from their interconnect by forcing
each module to be patient ; that is, to tolerate variable latency
on its inputs [8]. This is typically done by encapsulating
design modules with wrappers that can stall a module until
its input data arrives. This means that a design remains
functionally correct, by construction, regardless of the latency
of data arriving at each module. The consequence of this
latency tolerance is that a CAD tool can automatically add
pipeline stages (called relay stations) invisibly to the circuit
designer, late in the design compilation and thus improve
frequency without extra effort from the designer [8].

Our embedded NoC is effectively a form of latency-
insensitive interconnect; it is heavily pipelined and buffered
and supports stalling. We can therefore leverage such an
NoC to interconnect patient modules of a latency-insensitive
system as illustrated in Fig. 10. Furthermore, we no longer
need to add relay stations on connections that are mapped
to NoC links, avoiding their overhead.

Previous work that investigated the overhead of latency-
insensitive design on FPGAs used FIFOs at the inputs of
modules in the stall-wrappers to avoid throughput degrada-
tion whenever a stall occurs [23]. When the interconnect
is an embedded NoC; however, we already have sufficient
buffering in the NoC itself (and the FabricPorts) to avoid
this throughput degradation, thus allowing us to replace this
FIFO – which is a major portion of the wrapper area – by a
single stage of registers. We compare the area and frequency
of the original latency-insensitive wrappers evaluated in [23],
and the NoC-compatible wrappers in Fig. 12 for wrappers
that support one input and one output and a width between

103

100 bits and 600 bits. As Fig. 12 shows, the lightweight
NoC-compatible wrappers are 87% smaller and 47% faster.

We envision a future latency-insensitive design flow tar-
geting embedded NoCs on FPGAs. Given a set of modules
that make up an application, they would first be encapsu-
lated with wrappers, then mapped onto an NoC such that
performance of the system is maximized.

4.3 Latency-Sensitive Design with NoC
(Permapaths)

Latency-sensitive design requires predictable latency on
the connections between modules. That means that the inter-
connect is not allowed to insert/remove any cycles between
successive data. Prior NoC literature has largely focused on
using circuit-switching to achieve quality-of-service guaran-
tees but could only provide a bound on latency rather than
a guarantee of fixed latency [16]. We analyze the latency
and throughput guarantees that can be attained from an
NoC, and use those guarantees to determine the conditions
under which a latency-sensitive system can be mapped onto
a packet-switched embedded NoC. Effectively, our method-
ology creates permanent paths with predictable latencies
(Permapaths) on our packet-switched embedded NoC.

4.3.1 Latency and Throughput Guarantees
To ensure that the NoC doesn’t stall due to unavailable

buffering, we size NoC buffers for maximum throughput, so
that we never stall while waiting for backpressure signals
within the NoC. This is well-studied in the literature and is
done by sizing our router buffers to cover the credit round-trip
latency [12] – for our system, a buffer depth of 10 suffices.

Fig. 13 plots the throughput between any source and des-
tination on our NoC in the absence of contention. The NoC
is running at 1.2 GHz with 1-flit width; therefore, if we send
1 flit each cycle at a frequency lower than 1.2 GHz, our
throughput is always perfect – we’ll receive data at the same
input rate (one flit per cycle) on the other end of the NoC
path. In fact, the NoC connection acts as a simple pipelined
wire; the number of pipeline stages are equivalent to the zero-
load latency of an NoC path; however, it is irrelevant because
that latency is only incurred once at the very beginning of
data transmission after which data arrives on each fabric
clock cycle. We call this a Permapath through the NoC: a
path that is free of contention and has perfect throughput.
As Fig. 13 shows, we can create Permapaths of larger widths
provided that the input bandwidth of our connection does
not exceed the NoC port bandwidth of 22.5 GB/s. This
is why throughput is still perfect with 4 flits×300 MHz for
instance. To create those Permapaths we must therefore
ensure two things:

Condition 5. (Permapaths) The sending module data
bandwidth must be less than or equal to the maximum Fab-
ricPort input bandwidth.

Condition 6. (Permapaths) No other data traffic may
overlap the NoC links reserved for a Permapath to avoid
congestion delays on those links.

Condition 6 be determined statically since our routing algo-
rithm is deterministic; therefore, the mapping of modules
onto NoC routers is sufficient to identify which NoC links
will be used by each module.

4.4 Multicast, Reconvergence and Feedback
A complex FPGA application may include multicast, re-

convergence and feedback as shown in Fig. 14 – we discuss
these aspects briefly here but leave the in-depth analysis

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

Ze
ro

-l
o

ad
 T

h
ro

u
gh

p
u

t

Fabric frequency [MHz]

1 flit/cycle (150 bits)

2 flits/cycle (300 bits)

3 flits/cycle (450 bits)

4 flits/cycle (600 bits)

Reasonable
Fabric Frequencies

Figure 13: Zero-load throughput of embedded NoC path between
any two nodes, normalized to sent data. A throughput of “1” is
the maximum; it means that we receive i flits per cycle, where i
is the number of flits we insert in the FabricPort each cycle.

Multicast

Reconvergence Feedback

Figure 14: Aspects of complex FPGA applications.

for future work. Prior NoC research has shown that packet-
switched routers can be augmented with multicast capability
at very low area overhead [14]. As for reconvergence, the
two branches of a reconvergent path may have different la-
tencies on the embedded NoC with different implications for
latency-sensitive and latency-insensitive systems. A latency-
sensitive system may become functionally incorrect in that
case; the designer must therefore ensure that the paths are
balanced. For a latency-insensitive system functional correct-
ness is guaranteed but throughput degradation may occur
if latencies of the two paths differ by a large amount; prior
work has investigated path balancing for latency-insensitive
systems [22]. Balancing can be done by selecting two paths of
the same length through the NoC (hence same latency) and
using registers in the FPGA fabric for fine-grained latency
adjustment. Feedback paths are also tricky to implement
on embedded NoCs; this stems from the fact that these con-
nections are typically latency-critical and require very low
latency so as not to impede throughput.

While some of these connections can be mapped onto
the NoC, not all of them have to be; the embedded NoC
is not meant to be an interconnect capable of connecting
everything on the FPGA; rather a flexible low-cost (but
high bandwidth) interconnect resource that augments the
current FPGA traditional interconnect. Remember that the
embedded NoC is 1.3% of FPGA core area while the FPGA’s
traditional interconnect accounts for ~50% [21]. Traditional
interconnect can still be used for latency-critical connections
while the embedded NoC can be leveraged for connections
on which timing closure is difficult or those that require
buffering, stallability, or heavy switching.

5. APPLICATION CASE STUDIES
5.1 Simulator

To evaluate the performance of embedded NoCs, we created
RTL2Booksim2: a simulation framework which allows the co-
simulation of hardware description languages (HDL) such as
Verilog and VHDL, and a widely-used cycle-accurate NoC
simulator called Booksim [20].

2RTL2Booksim is available for download at
www.eecg.utoronto.ca/~mohamed/rtl2booksim.html

104

www.eecg.utoronto.ca/~mohamed/rtl2booksim.html

DCT QNR RLE
strobe

pixel_in 8 12 12
out_valid

code_out

strobe strobe

Figure 15: Single-stream JPEG block diagram.

5.2 JPEG Compression
(Latency-sensitive, streaming)

We use a streaming JPEG compression design from [18].
The application consists of three modules as shown in Fig. 15;
discrete cosine transform (DCT), quantizer (QNR) and run-
length encoding (RLE). The single pipeline shown in Fig. 15
can accept one pixel per cycle and a data strobe that indicates
the start of 64 consecutive pixels forming one (8×8) block
on which the algorithm operates [18]. The components of
this system are therefore latency-sensitive as they rely on
pixels arriving every cycle, and the modules do not respond
to backpressure.

We parallelize this application by instantiating multiple
(10–40) JPEG pipelines in parallel; which means that the
connection width between the DCT, QNR and RLE mod-
ules varies between 130 bits and 520 bits. Parallel JPEG
compression is an important data-center application as mul-
tiple images are often required to be compressed at multiple
resolutions before being stored in data-center disk drives;
the back-end of large social networking websites and search
engines. We implemented this parallel JPEG application
using direct point-to-point links, then mapped the same de-
sign to use the embedded NoC between the modules using
Permapaths similarly to Fig. 10. Using the RTL2Booksim
simulator, we connected the JPEG design modules through
the FabricPorts to the embedded NoC and verified functional
correctness of the NoC-based JPEG. Additionally, we verified
that throughput (in number of cycles) was the same for both
the original and NoC versions; however, there are ~8 wasted
cycles (equivalent to the zero-load latency of three hops) at
the very beginning in the NoC version while the NoC link
pipeline is getting populated with valid output data – these
8 cycles are of no consequence.

5.2.1 Frequency
To model the physical design repercussions (placement,

routing, critical path delay) of using an embedded NoC, we
emulated embedded NoC routers on FPGAs by creating
16 design partitions in Quartus II that are of size 7×5=35
logic clusters – each one of those partitions represents an
embedded hard NoC router with its FabricPorts and interface
to FPGA (see Fig. 18 for chip plan). We then connected the
JPEG design modules to this emulated NoC. Additionally,
we varied the physical location of the QNR and RLE modules
(through location constraints) from “close” together on the
FPGA chip to “far” on opposite ends of the chip. Note that
the DCT module wasn’t placed in a partition as it was a very
large module and used most of the FPGA’s DSP blocks.

Using location constraints, we investigated the result of a
stretched critical path in an FPGA application. This could
occur if the FPGA is highly utilized and it is difficult for the
CAD tools to optimize the critical path as its endpoints are
forced to be placed far apart, or when application modules
connect to I/O interfaces and are therefore physically con-
strained far from one another. Fig. 16 plots the frequency
of the original parallel JPEG and the NoC version. In the
“close” configuration, the frequency of the original JPEG is
higher than that of the NoC version by ~5%. This is because
the JPEG pipeline is well-suited to the FPGA’s traditional
row/column interconnect. With the NoC version, the wide
point-to-point links must be connected to the smaller area of
7×5 logic clusters (area of an embedded router); making the

100

150

200

250

300

0 10 20 30 40 50 60

Fr
eq

u
e

n
cy

 [
M

H
Z]

Number of Parallel JPEG Streams (Design Size)

with NoC
original [close]
original [far]

Average

Average
frequency
loss

Average
frequency
gain

Figure 16: Frequency of the parallel JPEG compression application
with and without an NoC. The plot “with NoC” is averaged for the
two cases when it’s “close” and “far” with the standard deviation
plotted as error bars. Results are averaged over 3 seeds.

140

150

160

170

180

190

200

210

220

230

0 1 2 3 4

Fr
eq

u
e

n
cy

 [
M

H
z]

Number of Extra Pipeline Stages on Critical Path

with register retiming

without register retiming

JPEG Frequency when using NoC (no extra pipelining)

20 MHz
(10%)

Figure 17: Frequency of parallel JPEG with 40 streams when we
add 1-4 pipeline stages on the critical path. Frequency of the same
application when connected to the NoC is plotted for comparison.
Results are averaged over 3 seeds.

placement less regular and on average slightly lengthening
the critical path.

The advantage of the NoC is highlighted in the “far” con-
figuration when the QNR and RLE modules are placed far
apart thus stretching the critical path across the chip diag-
onal. In the NoC version, we connect to the closest NoC
router as shown in Fig. 18 – on average, the frequency im-
proved by ~80%. Whether in the “far” or “close” setups,
the NoC-version’s frequency only varies by ~6% as the error
bars show in Fig. 16. By relying on the NoC’s predictable
frequency in connecting modules together, the effects of the
FPGA’s utilization level and the modules’ physical placement
constraints become localized to each module instead of being
a global effect over the entire design. Modules connected
through the NoC become timing-independent making for an
easier CAD problem and allowing parallel compilation.

With additional design effort, a designer of the original
(without NoC) system would identify the critical path and
attempt to pipeline it so as to improve the design’s frequency.
This design→compile→repipeline cycle hurts designer pro-
ductivity as it can be unpredictable and compilation could
take days for a large design [23]. We plot the frequency of
our original JPEG with 40 streams in the “far” configuration
after adding 1, 2, 3, and 4 pipeline registers on the critical
path, both with and without register retiming optimizations,
and we compare to the NoC version frequency in Fig. 17.
The plot shows that the frequency of the pipelined version
never becomes as good as that of the NoC version even with 4
pipeline stages – the NoC version is 10% better than original
JPEG with pipelining.

105

Table 2: Interconnect utilization for JPEG with 40 streams in
“far” configuration. Relative difference between NoC version and
the original version is reported.

Interconnect Resource Difference Geomean

Short
Vertical (C4) +13.2%

+10.2%
Horizontal (R3,R6) +7.8%

Long
Vertical (C14) -47.2%

-38.6%
Horizontal (R24) -31.6%

Wire naming convention: C=column, R=row,
followed by number of logic clusters of wire length.

QNR

RLE

QNR

RLE

100%

75%

50%

25%

0%

NoC Version (all wires) Original (long wires)

DCT DCT

Figure 18: Heat map showing total wire utilization for the NoC
version, and only long-wire utilization for the original version of
the JPEG application with 40 streams when modules are spaced
out in the “far” configuration. In hot spots, utilization of scarce
long wires in the original version goes up to 100%, while total
wire utilization never exceeds 40% for the NoC version.

5.2.2 Interconnect Utilization
Table 2 quantifies the FPGA interconnect utilization differ-

ence for the two versions of 40-stream “far” JPEG. The NoC
version reduces long wire utilization by ~40% but increases
short wire utilization by ~10%. Note that long wires are
scarce on FPGAs, for the Stratix V device we use, there
are 25× more short wires than there are long wires. By
offloading long connections onto an NoC, we conserve much
of the valuable long wires.

Fig. 18 shows wire utilization for the two versions of 40-
stream “far” JPEG and highlights that using the NoC does
not produce any routing hot spots around the embedded
routers. As the heat map shows, FPGA interconnect uti-
lization does not exceed 40% in that case. Conversely, the
original version utilizes long wires heavily on the long con-
nection between QNR→RLE, with utilization going up to
100% in hot spots at the terminals of the long connection as
shown in Fig. 18.

5.3 Ethernet Switch (Latency-insensitive, streaming)

One of the most important and prevalent building blocks
of communication networks is the Ethernet switch. The
embedded NoC provides a natural back-bone for an Ethernet
switch design, as it includes (1) switching and (2) buffering
within the NoC routers, and (3) a built-in backpressure
mechanism for flow control. Recent work has revealed that
an Ethernet switch achieves significant area and performance
improvements when it leverages an NoC-enhanced FPGA [7].
We describe here how such an Ethernet switch can take full
advantage of the embedded NoC, while demonstrating that
it considerably outperforms the best previously proposed
FPGA switch fabric design [11].

Table 3: Hardware cost breakdown of an NoC-based 10-Gb Ether-
net switch on a Stratix V device.

10GbE I/O Translators Total
MACs Queues

ALMs 24000 3707 3504 31211
M20Ks 0 192 0 192

The embedded NoC is used in place of the switch’s crossbar.
For a 16×16 switch, each of the 16 transceiver nodes are
connected to one of the 16 NoC routers via the FPGA’s
soft fabric. Fig. 19 shows the path between transceiver 1
and transceiver 2; in our 16×16 switch there are 256 such
paths from each input to each output. On the receive path
(Rx), Ethernet data is packed into NoC flits before being
brought to the FabricPort input. The translator sets NoC
control bits such that one NoC packet corresponds to one
Ethernet frame. For example, a 512-byte Ethernet frame is
converted into 32 NoC flits. After the NoC receives the flit
from the FabricPort, it steers the flit to its destination, using
dimension-order XY routing. On the transmit path (Tx),
the NoC can output up to four flits (600 bits) from a packet
in a single system clock cycle – this is demultiplexed in the
output translator to the output queue width (150 bits). This
demultiplexing accounts for most of the translators area in
Table 3. The translator also strips away the NoC control bits
before inserting the Ethernet data into the output queue. The
design is synthesized on a Stratix V device. A breakdown of
its FPGA resource utilization is shown in Table 3. Because
we take advantage of the NoC’s switching and buffering
our switch is ~3× more area efficient than previous FPGA
Ethernet switches [11].

Two important performance metrics for Ethernet switch
design are bandwidth and latency [13]. The bandwidth of
our NoC-based Ethernet switch is limited by the supported
bandwidth of the embedded NoC. As described in Section 2,
the NoC’s links have a bandwidth capacity of 22.5 GB/s
(180 Gb/s). Since some of this bandwidth is used to trans-
port packet control information, the NoC’s links can support
up to 153.6 Gb/s of Ethernet data. Analysis of the worst case
traffic in a 16-node mesh shows that the NoC can support
a line rate of one third its link capacity, i.e. 51.2 Gb/s [7].
While previous work on FPGA switch design has achieved up
to 160 Gb/s of aggregate bandwidth [11], our switch design
can achieve 51.2×16 = 819.2 Gb/s by leveraging the embed-
ded NoC. We have therefore implemented a programmable
Ethernet switch with 16 inputs/outputs that is capable of
either 10 Gb/s, 25 Gb/s or 40 Gb/s – three widely used
Ethernet standards.

The average latency of our Ethernet switch design is mea-
sured using the RTL2Booksim simulator. An ON/OFF injec-
tion process is used to model bursty, uniform random traffic,
with a fixed Ethernet frame size of 512 bytes (as was used
in [11]). Latency is measured as the time between a packet
head being injected into the input queue and it arriving out
of the output queue. Fig. 20 plots the latency of our Ethernet
switch at its supported line rates of 10 Gb/s, 25 Gb/s and
40 Gb/s. Surprisingly, the latency of a 512 byte packet im-
proves at higher line rates. This is because a higher line rate
means a faster rate of injecting NoC flits, and the NoC can
handle the extra switching without a large latency penalty
thus resulting in an improved overall latency. No matter what
the injection bandwidth, the NoC-based switch considerably
outperforms the Dai/Zhu switch [11] for all injection rates.
By supporting these high line rates, our results show that an
embedded NoC can push FPGAs into new communication
network markets that are currently dominated by ASICs.

106

Input Queue
(FIFO)

Tr
an

sl
a

to
r

FabricPort
Input

FabricPort
Output avalon_stavalon_st noc_flit 4×noc_flit

150 600 Output Queue
(FIFO)

Transceiver
Input 1

Transceiver
Output 2

NoC
Router
Node A

NoC
Router
Node B

O
u

tp
u

t
Tran

sla
to

r

Rx NoC Tx

Figure 19: Functional block diagram of one path through our NoC Ethernet switch.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Injection Rate (as fraction of line rate)

La
te

n
cy

 [
n

s]

Dai-Zhu 10 Gb/s

10 Gb/s

25 Gb/s

40 Gb/s

Figure 20: Latency vs. injection rate of the NoC-based Ethernet
switch design given line rates of 10, 25, and 40 Gb/s, and compared
to the Dai/Zhu 16×16 10 Gb/s FPGA switch fabric design [11].
Our switch queues and Dai/Zhu’s switch queues are of size 60kb
and 16kb, respectively.

6. CONCLUSION
We proposed augmenting FPGAs with an embedded NoC

and focused on how to use the NoC for transporting data
in FPGA applications of different design styles. The Fab-
ricPort is a flexible interface between the embedded NoC
and the FPGA’s core; it can bridge any fabric frequency
and data width up to 600 bits to the faster but narrower
NoC at 1.2 GHz and 150 bits. We have shown that latency-
insensitive systems can be interconnected using an embedded
NoC with lower hardware overhead by taking advantage of
the NoC’s built-in buffering. Additionally, we showed how
latency-sensitive systems can be guaranteed fixed delay and
throughput through the NoC by using Permapaths.

We investigated two streaming applications; latency-
sensitive JPEG that only requires wires between modules,
and a latency-insensitive Ethernet switch that requires heavy
arbitration and switching between its transceiver modules.
With an embedded NoC, JPEG’s frequency can be improved
by 10–80%. Wire utilization is also improved, as the em-
bedded NoC avoids wiring hotspots and reduces the use of
scarce long wires by 40% at the expense of a 10% increase
of the much more plentiful short wires. Finally, we showed
that high-bandwidth Ethernet switches can be efficiently
constructed on the FPGA; by leveraging an embedded NoC
we created an 819 Gb/s programmable Ethernet switch –
a major improvement over the 160 Gb/s achieved by prior
work in a traditional FPGA.

7. ACKNOWLEDGMENTS
We are indebted to Prof. Natalie Enright-Jerger and her

research team (Shehab Elsayed, Mario Badr and Robert
Hesse) for NoC discussions and for providing some of the
code used to build RTL2Booksim. We would also like to thank
David Lewis, Mike Hutton, Dana How and Desh Singh for
feedback on FPGAs, and Kevin Murray for feedback on
latency-insensitive design. This work is funded by Altera,
NSERC and Vanier CGS.

8. REFERENCES
[1] M. S. Abdelfattah. FPGA NoC Designer.

www.eecg.utoronto.ca/~mohamed/noc_designer.html.
[2] M. S. Abdelfattah and V. Betz. Design Tradeoffs for Hard

and Soft FPGA-based Networks-on-Chip. In FPT, pages
95–103, 2012.

[3] M. S. Abdelfattah and V. Betz. The Power of
Communication: Energy-Efficient NoCs for FPGAs. In FPL,
pages 1–8, 2013.

[4] M. S. Abdelfattah and V. Betz. Networks-on-Chip for
FPGAs: Hard, Soft or Mixed? TRETS, 7(3):20:1–20:22,
2014.

[5] M. S. Abdelfattah and V. Betz. The Case for Embedded
Networks-on-Chip on Field-Programmable Gate Arrays.
IEEE Micro, 34(1):80–89, 2014.

[6] Altera Corp. Video and Image Processing Suite, 2014.
[7] A. Bitar et al. Efficient and programmable Ethernet

switching with a NoC-enhanced FPGA. In ANCS, 2014.
[8] L. Carloni and A. Sangiovanni-Vincentelli. Coping with

latency in SOC design. IEEE Micro, 22(5):24–35, 2002.
[9] E. S. Chung, J. C. Hoe, and K. Mai. CoRAM: An In-Fabric

Memory Architecture for FPGA-based Computing. In
FPGA, pages 97–106, 2011.

[10] D. U. Becker. Efficient Microarchitecture for Network on
Chip Routers. PhD thesis, Stanford University, 2012.

[11] Z. Dai and J. Zhu. Saturating the Transceiver BW: Switch
Fabric Design on FPGAs. In FPGA, pages 67–75, 2012.

[12] W. J. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers,
Boston, MA, 2004.

[13] I. Elhanany et al. The network processing forum switch
fabric benchmark specifications: An overview. IEEE
Network, 19(2):5–9, 2005.

[14] N. Enright Jerger, L.-S. Peh, and M. Lipasti. Virtual circuit
tree multicasting: A case for on-chip hardware multicast
support. In ISCA, pages 229–240, 2008.

[15] R. Francis and S. Moore. Exploring Hard and Soft
Networks-on-Chip for FPGAs. In FPT, pages 261–264, 2008.

[16] K. Goossens, J. Dielissen, and A. Radulescu. Aethereal
network on chip: Concepts, architectures, and
implementations. IEEE Design and Test, 22(5), 2005.

[17] K. Goossens et al. Hardwired Networks on Chip in FPGAs
to Unify Functional and Configuration Interconnects. In
NOCS, pages 45–54, 2008.

[18] A. Henson and R. Herveille. Video Compression Systems.
www.opencores.org/project,video_systems, 2008.

[19] R. Ho, K. W. Mai, and M. A. Horowitz. The Future of
Wires. Proceedings of the IEEE, 89(4):490–504, 2001.

[20] N. Jiang et al. A Detailed and Flexible Cycle-Accurate
Network-on-Chip Simulator. In ISPASS, pages 86–96, 2013.

[21] D. Lewis et al. Architectural Enhancements in Stratix V. In
FPGA, pages 147–156, 2013.

[22] R. Lu and C.-K. Koh. Performance optimization of latency
insensitive systems through buffer queue sizing of
communication channels. In ICCAD, pages 227–231, 2003.

[23] K. E. Murray and V. Betz. Quantifying the Cost and Benefit
of Latency Insensitive Communication on FPGAs. In FPGA,
pages 223–232, 2014.

[24] A. Putnam et al. A reconfigurable fabric for accelerating
large-scale datacenter services. In ISCA, pages 13–24, 2014.

[25] D. J. Sorin et al. A Primer on Memory Consistency and
Cache Coherence. Synthesis Lectures on Computer
Architecture, 6(3):1–212, 2011.

[26] Xilinx Inc. Virtex-5,6,7 Family Overview, 2009-2014.
[27] A. Ye and J. Rose. Using Bus-based Connections to Improve

Field-programmable Gate-array Density for Implementing
Datapath Circuits. TVLSI, 14(5):462–473, 2006.

107

www.eecg.utoronto.ca/~mohamed/noc_designer.html
www.opencores.org/project,video_systems

	Introduction
	Embedded Hard NoC
	FabricPort: Interface between FPGA and NoC
	Packet Format
	FabricPort Functionality
	FabricPort Circuitry
	FabricPort Input: FabricNoC
	FabricPort Output: NoCFabric

	FabricPort Discussion
	Module Connectivity
	Frequency and Latency

	FPGA-dictated NoC Design
	Packet Ordering and Dependencies
	Ordering
	Dependencies and Deadlock

	Latency-Insensitive Design with NoC
	Latency-Sensitive Design with NoC(Permapaths)
	Latency and Throughput Guarantees

	Multicast, Reconvergence and Feedback

	Application Case Studies
	Simulator
	JPEG Compression(Latency-sensitive, streaming)
	Frequency
	Interconnect Utilization

	Ethernet Switch (Latency-insensitive, streaming)

	Conclusion
	Acknowledgments
	References

