

FPGA Challenges and Opportunities at 40 nm and Beyond

Vaughn Betz Senior Director, Software Engineering Altera

Scaling FPGAs: The Opportunity

~2X logic, RAM, etc. density

- More processing on one chip
- → Lower system cost & power
- → Enable higher performance systems

New features

- Block RAM, DSP, serial interfaces, ...
- → Enable new systems *or* fewer chips

(Maybe) Higher speed fabric

 Higher performance system or smaller & cheaper system (narrower datapath)

ASICs & Scaling

Standard cell ASIC @ 40 nm

- ~\$4 M / mask set * 2 spins = \$8 M
- Test & product engineering ~\$7 M
- Design, verification, software ~\$25 M

Economics

- \$40 M development cost
- − 20% of revenue on R & D \rightarrow need \$200 M revenue
- 10% market share \rightarrow Need a \$2 B market

Result

- Falling ASIC starts
- Most still in 130 nm and above
- Structured ASICs
- ASICs increasing programmability \rightarrow try to increase market size

Time-to-Market Economics

FPGAs: Process Leaders

Stratix IV

- Shipped in 2008
- First 40 nm FPGA & one of the first 40 nm chips
 - FPGA designed simultaneously with 40 nm process
- 3 years & >\$200 million to develop hardware + software + IP
- Process driver: large & regular; contains logic & RAM
- 40 nm allows integration of new hard ("ASIC") functions
- Pipelined development
 - 28 nm underway for two years

Stratix IVGX 230 (Mid-Size Device)

Digital Signal Processing

General I/O

Clock Management

Serial Interfaces

Stratix IV Overview

Feature	Stratix III (65 nm)	Stratix IV (40 nm)			
Logic Elements	340k	820k			
RAM bits	16 Mb + 4 Mb	33 Mb + 8.5 Mb			
18x18 multipliers	768	1360			
General I/O	1104	1104			
High-speed serial links	0	48 transmit + 48 receive @ 11.3 Gb/s			
Hard PCIe blocks	0	4			
Clock generation	12 PLL(x10)	12 PLL(x10) + 32 serial recovered + + 24 serial transmit			
Clock distribution	16 Global + 88 Quadrant + 132 PCLK	16 Global + 88 Quadrant + 132 PCLK			

FPGA Fabric: Converging Technologies

- Huge space \rightarrow no one can optimize by instinct
- \$250 M + 3 years to implement your ideas
 - Risk of over-conservatism

Architect via Virtual Prototyping

Major Innovations

Family	Major Innovation	Benefit
Stratix	100% Direct-drive, Optimized segmented routing	+40% Fmax, -40% area vs. APEX <i>(not including process adv.)</i> Redundant and repairable
Stratix II	Adaptive Logic Module	+26% Fmax, -7% area vs. Stratix <i>(not including process adv.)</i>
Stratix III	Programmable Power	Full speed of 65 nm process, ½ leakage of 90 nm

I/O Bandwidth

- Processing elements scale
 - ~2X more logic, RAM, DSP each generation
 - Stratix IV on-chip RAM bandwidth ~10 TB/s!
- I/O transistors, PCB traces, package balls don't scale
 - Roughly same number of I/Os per device
- Need: higher speed I/Os to keep datapath fed
 - 8.5 (SIVGX) to 11.3 (SIVGT) Gb/s serial transceivers
 - 1.067 Gb/s (533 MHz) memory interfaces
 - Total: ~150 GB/s bandwidth
- Challenges
 - Circuit speed & timing closure
 - Signal integrity

Stratix IV GX Embedded Transceivers

- Up to 48 receive + 48 transmit transceivers
 - 3 Gb/s to 11.3 Gb/s
 - Clock recovered from data stream
- Very high speed analog
- Many protocols \rightarrow highly configurable analog & digital logic

Hard PCIe Block

Build hard PCIe?

- ✓ Soft logic size: tens of thousands of LEs
- ✓ Standard cells: smaller
- ✓ Hard logic faster: can narrow datapath (smaller)
- ✓ Protocol fixed and widely used
- Add muxing and always build all options (Gen1, Gen2, ...)

Memory Interfaces (DDR2, DDR3, ...)

- Strobe (DQS) sent with several bits of data (DQ)
- Challenge: narrow data-valid window
- Solution:
 - Minimize jitter
 - Harden data capture logic, carefully match delays
 - Calibrate by modifying programmable delays for each DQ bit & DQS

De-skew maximizes valid capture window

DQ7

Memory Interface Stack: Hard vs. Soft

- Some PHY circuitry very high speed, needs carefully matched delays
 Hard circuitry
- PHY calibration: logic
 frequently changes
 Soft logic
- Memory controller, multiport interface
 - Relatively small (low thousands of LEs)
 - Many algorithms and needs
 - Soft logic

Device Modeling Challenges

Smaller transistors

 \rightarrow More process variation

Lower operating voltage, with little V_{th} scaling

→ Increased sensitivity to power supply noise

- 2nd-order transistor effects increasing
 - → More timing corners
- Faster clock speeds and edge rates
 - \rightarrow Less ability to guardband
 - → Increased importance of jitter & signal integrity models
- Still need fast, easy-to-interpret analysis

ASIC Class Timing Analysis (Timequest)

- Model rise-rise, rise-fall, fall-rise, fall-fall delays
 - Propogate rise and fall delays through circuit
 - *unateness* aware ignores impossible transitions

- Each delay is a min-max range
 - Covers on-die variation, transistor aging effects

- Analyze and optimize at 3 corners
 - A corner is a combination of process, temperature, voltage

Interconnect Timing: Leading ASICs

FPGA routing: too many combinations for tables

✓ Quartus circuit simulates each route

- Non-linear models for transistors
- Extracted R & C for wires
- Specialized to FPGA circuitry: 10,000x faster than HSPICE

Calibrated I/O Interfaces

- Calibrated interfaces (e.g. DDR3): timing is not static
- But can't simply assume calibration works
 - Need to analyze assuming worst-case devices, V, T, & P variation to ensure robust system
- Solution: extend TimeQuest timing analyzer
 - Calibration algorithm modeled
 - Ability to recapture margin explicitly included in timing analysis

• Report ×	d	dr3_hp_phy_timing_test_sweep_siv_all_ddr3_10_in	st ddr3_hp_	phy_timing_t
		Operation	Setup Slack	Hold Slack
	1	😑 Before Calibration Write	-0.087	-0.048
	2	Deskew Write and/or more clock pessimism removal	0.204	0.165
	3	Quantization error	-0.025	-0.025
	4	Calibration uncertainty	-0.016	-0.016
all ddr3 10 phy Write	5	Duty cycle correction	0.04	0.04
all_ddr3_10_phy Write (Before Calibration) (setup)	6	Duty cycle correction quantization error	-0.05	-0.05
all_ddr3_10_phy Write (Before Calibration) (hold)	7	Duty cycle correction calibration uncertainity	-0.01	-0.01
all_ddr3_10_phy Address Command (setup)	8	After Calibration Write	0.056	0.056
all_ddr3_10_phy Address Command (hold)				

Simultaneous switching noise (SSN)

Noise induced on victim I/O due to switching of other aggressor I/Os

- Faster edge rates & higher I/O density worsen
- Reduce with FPGA & package design
- But cannot eliminate failures for all designs, on all boards

Quartus II SSN Analyzer

Models FPGA, package and board

- Signal paths and power-distribution network

- HSPICE (full design): 1 week
- SSN Analyzer: 30 minutes
- Displays signal margin & problem pins
- Enables analysis of mitigation techniques

Power Integrity

- 0.9 V operating voltage can only afford tens of mV drop
- Hard & expensive: low-impedence for all freq.
- But design could go from 2 A 12 A in one cycle!
- Over-engineer or analyze and forbid?

Power

- Twice as many transistors
- Naturally more leaky
- But power budget per device fixed
 - About 2 20 W for high-end FPGAs
- → Innovate to control power while sacrificing minimum performance

Can We Do Better than the 'Universal Curve'?

- Optimizing along the curve gives <u>fixed</u> choices
- Choose different values for each transistor
 - Helps for some transistors which are never speed critical (e.g. CRAM)
 - But most transistors will need to compromise between speed & power

Design-Specific Power Optimization

Only a small fraction of logic is performance critical

Slack Histogram

Altera, Quartus & Stratix are Reg. U.S. Pat. & Tm. Off. and Altera marks in and outside the U.S.

Note: A simple "model" showing Programmable Power Technology. Actual implementation varies and is patented.

Tradeoff 1: How Much Back-Bias?

Power minimum at LP ~20% slower than HS

- Low Power logic has 40% the static power of HS at that point

Altera, Quartus & Stratix are Reg. U.S. Pat. & Tm. Off. and Altera marks in and outside the U.S.

Tradeoff 2: Control Granularity

Finer grain control

- Can set more transistors to low-power state
- But costs area (well spacing, CRAM, pass gate)
- Critical paths naturally cluster
 - OK for many transistors to be grouped into a *tile*
- Controlling logic and routing with a single setting
 - Small increase in power, larger area reduction
- Controlling pairs of LABs together: also good
- Stratix IV tile: LAB pair, DSP or RAM block

Most Tiles Are Low Power

All Clocks at Maximum Speed (Worst Case)

Designer Productivity

FPGA density doubles

- → CAD problem size doubles
- Designers need to create 2X the logic in the same time

But CPU speed increase << 2X</p>

- Faster algorithms
- Parallel CAD
- Incremental compile

Designer typing, debug speed increase << 2X</p>

- − High quality CAD \rightarrow reduce designer intervention
- Higher levels of design abstraction

The Compile Time Challenge

on Altera, Quartus & Stratix are Reg. U.S. Pat. & Tm. Off. and Altera marks in and outside the U.S.

Improvements More than Bridge the Gap

Incremental Compilation

Define partitions

- CAD will not optimize across partitions
- Can re-synthesize, place and route one partition alone
- Faster compile time
- Fewer iterations because other logic unchanged

Work in progress

- Incremental compile without the designer identifying partitions?
- Challenge: global optimizations

Efficiency & Programming Ease

The Past (1984): Editing Switches

The Future: SOPC Builder Switch Fabric

- Focus on your unique functions
- Re-use IP and let SOPC Builder integrate the system

The Future: DSP Builder Design Flow

51

DSP Builder Advanced Blockset

2 Antenna WiMax Digital Up Converter

- Fixed frequency design for high throughput
 - > 400 MHz for huge designs
- Automatic datapath widen/narrow to match data rate
- Automatic register insertion & pipeline balancing
- Automatic time-domain multiplexing of hardware

The Future: High-Level Languages to HW

Incremental

- SystemVerilog
- Bigger gains
 - Catapult C, C2H, ImpulseC, AutoPilot
 - RapidMind for FPGAs?
 - Others?
- Co-develop target applications and tool
- Plus novel debug tools

Summary

- Scaling favours the programmable
 - FPGAs
 - Processors
 - Can ASICs embed enough programmability?

Challenges

- 1. Architecture: fabric and configurable hard blocks
- 2. I/O bandwidth
- 3. Device modeling
- 4. Power & power integrity
- 5. Keeping designers productive: compile time, new design & debug tools

Thank You

Stratix IV GX (EP4SGX230) 1 Billion Transistors

GX530: 2 billion transistors