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ABSTRACT
Pass-transistors have been the key building block for field-
programmable gate array (FPGA) circuitry for many years
due to the very small switch they enable. However, pass-
transistor performance and reliability have been degrading
with technology scaling. Transmission gates are an alterna-
tive to pass-transistors; while larger, they are more robust.
We develop a new FPGA circuit optimization flow and use
it to investigate the area, delay and power impact of building
FPGAs out of transmission gates instead of pass-transistors
in a 22nm process. Our results show that transmission gate
FPGAs are 15% larger than pass-transistor FPGAs but are
10-25% faster depending on the allowable level of “gate
boosting”. Without gate boosting, transmission gate FPGAs
are the better option with 14% lower area-delay product. If
200mV of gate boosting is possible however, pass-transistor
FPGAs remain the slightly better choice with a 2% better
area-delay product. We also show that transmission gates
with a separate power supply for their gate terminal enable
a low-voltage FPGA with 50% less power and good delay.

1. INTRODUCTION

The reconfigurability of field-programmable gate arrays
(FPGAs) is achieved through a combination of look-up ta-
bles (LUTs) and multiplexers (MUXes) whose construction
relies heavily on the use of transistor-based switches. Com-
mercial FPGAs and almost all academic FPGA studies use
NMOS pass-transistors as the basic switching element (see
Figure 3a) because each switch requires only one transistor,
minimizing area. However, NMOS pass-transistors have an
important disadvantage: they are incapable of passing a full
logic-high voltage. That is, their output voltage saturates at
approximately VG − VTh where VG is the gate voltage and
VTh is the threshold voltage of the transistor. Static power
dissipation in downstream inverters caused by this reduced
voltage swing has long been a cause for concern for pass-
transistor based circuits [1]. To mitigate this problem, gate
boosting (applying a voltage larger than the supply voltage
(VDD) on the pass-transistor gate) and PMOS level-restorers
have been used to help pull pass-transistor output voltages
up to VDD.

As technology scales, VDD drops more rapidly than VTh

to control power; this results in an increasingly degraded

pass-transistor output voltage. For a 22nm process with a
VDD of 0.8V for example, the output of a non-gate boosted
pass-transistor switches only between 0V and 0.55V. In ad-
dition, the waveform slew rate rising above 0.45V is very
slow. Consequently, the inverter sensing this signal (whose
input can remain near VDD/2 for some time) can experience
a high short-circuit current and a slow switching speed. Fur-
thermore, recent work has shown that pass-transistor based
FPGAs are very sensitive to aging induced by positive bias
temperature instability which has become larger with the
new high-k gate dielectrics [2, 3].

To increase the pass-transistor output voltage, one can
apply larger amounts of gate boosting, but this poses a re-
liability risk as larger VGS values accelerate device aging.
Furthermore, the latest high-k gate processes do not offer
a “mid-oxide” thickness transistor; such transistors were
available in 90nm through 40nm conventional oxide pro-
cesses to give a reduced gate leakage transistor option to de-
signers [4]. These mid-oxide thickness transistors were ex-
cellent pass-gates as their thicker oxide allowed a high level
of gate boosting without compromising reliability. With
PMOS level-restorers the issue is one of robustness. A VTh

that is a larger fraction of VDD means it takes longer for
level-restorers to turn on (which increases short-circuit cur-
rents) or, in the extreme case, they might not turn on at all.
Reliability concerns, a higher susceptibility to device aging,
performance degradation and increasing short-circuit power
dissipation make the pass-transistor an increasingly less de-
sirable switch.

Instead of pass-transistors, FPGAs could use CMOS
transmission gates as the basic switching element [5, 6] (see
Figure 3b). While larger, transmission gates are capable of
passing a full rail-to-rail voltage swing, making them more
robust than pass-transistors at low VDD. Hence, it is unclear
where in the area-delay optimization space a fully transmis-
sion gate based FPGA would fall in relation to a fully pass-
transistor based FPGA. In this work, we locate them both in
advanced process technology (with PTM 22nm HP models
[7]) by designing each type of FPGA from scratch, complete
with architectural design, circuit design and detailed tran-
sistor sizing. We also experiment with gate boosting both
switch types.

To ensure our comparison is accurate, we select state of
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the art topologies for the various subcircuits that make up
the FPGA (LUTs, MUXes, etc.) which we then optimize for
minimal area-delay product using a custom transistor sizing
tool that employs new, more accurate, area and wire load
modeling. Our contributions include:

• A comparison between pass-transistor and transmission
gate FPGAs for various levels of gate boosting.

• A new methodology for FPGA circuit design including
more accurate area and wire load models.

• Detailed circuit designs and VPR architecture files1 that
reflect the complexity of current commercial FPGAs; in-
terestingly, these lead to tile area and critical path delay
breakdowns that differ from oft-quoted maxims.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the chosen FPGA architecture. Section 3
gives details on our circuit designs. Our methodology is
presented in Section 4 and results are given in Section 5.
Section 6 concludes the paper.

2. FPGA ARCHITECTURE

An FPGA consists of an array of tiles that can each im-
plement a small amount of logic and routing. Horizontal
and vertical routing channels run on top of the tiles and al-
low them to be stitched together to perform larger functions.
Figure 1 illustrates FPGA tile architecture at a high-level.
A logic cluster (LC) supplies the tile’s logic functionality.
Connection blocks (CBs) provide connectivity between LC
inputs and routing channels. A switch block (SB) connects
LC outputs to routing channels and provides connectivity
between wires within the routing channels. One replicates
this basic tile to obtain a complete FPGA. Although Figure 1
shows logic and switching functions as distinct sub-blocks,
we assume an interleaved layout in our area, loading and
delay estimates.

Figure 2 shows our logic architecture. Each logic clus-
ter contains N = 10 basic logic elements (BLEs) and each
BLE contains a 6-input LUT (K = 6) as these parameters
have been shown to produce FPGAs with good area-delay

1Available for download at: http://www.eecg.utoronto.ca/
˜vaughn/downloads/FPGA_architecture.html.
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Fig. 2: Logic cluster architecture.

product [8] and are close to the values used in current com-
mercial FPGAs (Virtex 7: K=6, N=8 and Stratix V: K=6,
N=10). The BLEs of modern commercial FPGAs [9, 10]
contain many more features than the commonly used aca-
demic BLE which consists of a K-input LUT and a FF with
a very limited ability to use both LUT and FF together [1].
To design a more realistic FPGA where the LUT and FF can
be used in concert in many more ways, we add additional 2-
input MUXes to our design which can potentially improve
density and speed. These MUXes are labeled A to E in Fig-
ure 2 and are similar to those used in Stratix [11].

Local routing MUXes select the BLE inputs from the
cluster’s local interconnect. These MUXes are sparsely pop-
ulated (at 50%) as this was shown to be a good choice in
[12]. The local interconnect consists of 10 local feedback
wires from the BLEs and 40 cluster input wires. The num-
ber of cluster inputs is set to 40 based on the relationship
I = K(N +1)/2 given in [8] plus a few extra cluster inputs
required by the sparsely populated local interconnect [12].

The wires in the routing channels are directional, single-
driver wires which means they can only be driven from one
end [13]. All routing wires span 4 tiles (L = 4). To obtain a
practical tile layout, the number of wires in a routing channel
should be a multiple of 2L [13]. The routing channel width
is set to W = 320 by adding 30% more routing tracks to
the minimum channel width required to route our biggest
benchmark circuit. As is common in FPGA research, each
incoming wire can connect to 3 routing multiplexer inputs
in a switch block (Fs = 3).

Cluster input flexibility, Fcin, is set to 0.2W based on
results from [1, 12] for similar N and K. Since the archi-
tecture described thus far is fairly different from prior work
in terms of logic cluster outputs (e.g. two outputs per BLE
and single-driver routing wires), Fcout is determined exper-
imentally. In Section 5.1, we show that for this architecture,
an Fcout = 0.025W produces an FPGA with the best area-
delay product.



Table 1: FPGA subcircuit count per tile.

Subcircuit Size Count

Local routing MUXes 25:1 60
Connection block MUXes 64:1 40
Switch block MUXes 10:1 160
BLEs – 10

We use a two-sided architecture which means LC inputs
and outputs can only access the two routing channels (one
vertical and one horizontal) which run over top of the tile, as
shown in Figure 1. Four-sided architectures (capable of ac-
cessing 2 vertical and 2 horizontal channels) have often been
assumed in prior work but are less realistic since such archi-
tectures are difficult to lay out. VPR experiments show that
using the more realistic two-sided architecture results in a 3-
4% critical path delay increase and 8-9% routed wire length
increase over a four-sided architecture. Table 1 details the
subcircuits per tile for this architecture.

3. CIRCUIT DESIGN

The FPGA architecture described in the previous section
consists entirely of MUXes, LUTs and FFs. Our topology
choices for each are detailed below.

3.1. Multiplexers
A multiplexer can be implemented in several different
topologies, each of which possesses a different area-delay
tradeoff [6]. All our MUXes are implemented as two-level
multiplexers because they have been shown to give the best
area-delay product [14] and are used in commercial architec-
tures [15]. An exception to this are the 2:1 MUXes inside the
BLE. They are implemented using a single MUXing level
and a shared SRAM bit. The output of each MUX is driven
by a two-stage buffer enabling it to drive a frequently large
downstream capacitance. Figure 3 shows a pass-transistor
implementation and a transmission gate implementation of
a generic two-level MUX with two-stage buffer. Note that in
the pass-transistor implementation, a level-restoring PMOS
transistor must be included to pull the degraded output of
the MUX up to VDD.

An important parameter in the design of two-level
MUXes is the size of each level. If S1 and S2 are the sizes
of the first and second levels respectively, any combination
of S1 and S2 such that S1 × S2 = MUXsize is a possible
MUX topology. Since SRAM cells occupy 35-40% of tile
area (as shown in Section 5.5), we choose a MUX topol-
ogy that minimizes the number of SRAM cells required by
having S1 ≈ S2.

3.2. Lookup-Tables
Lookup tables are generally implemented as fully encoded
MUX trees where each level of the MUX tree is controlled
by a LUT input. Our 6-LUT is implemented in this fashion
but we insert a two-stage buffer after 3 levels to minimize
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Fig. 3: A generic two-level MUX with two-stage buffer imple-
mented with a) pass-transistors and b) transmission gates.

the quadratically increasing delay associated with chains of
pass-transistors. We experimented with different inverter lo-
cations within the pass-transistor tree and found this to be
the best choice. Figure 4 shows a portion of a pass-transistor
based 6-LUT. The LUT contains 64 SRAM cells, a 64-input
fully encoded MUX tree, 8 internal buffers, an output buffer
and 6 distinctly sized input drivers. We also include an
isolation buffer between the SRAM cells and the MUX to
improve both speed and robustness. In our transmission
gate FPGAs, pass-transistors are replaced with transmission
gates and the level-restoring transistors are removed.

3.3. Flip-Flops
As we will show in Section 5.5, the impact of the flip-flops
on critical path delay and tile area is relatively small. Con-
sequently, we did not explore different FF implementations.
We use a static transmission gate based master-slave register
similar to the one used in [1].

3.4. Gate Boosting
Commercial FPGAs have often used a voltage greater than
VDD on the gates of pass-transistors (gate-boosting). The
more VG is boosted above VDD, the faster a pass-transistor
circuit will become due to faster and larger swinging pass-
transistor outputs. A thorough comparison of pass-transistor
and transmission gate FPGAs should include an analysis of
the effect of gate boosting both switch types. Gate boosting
a MUX is achieved by connecting SRAM cells to separate
power and/or ground rails (VSRAM+ and VSRAM− in Fig-
ure 3). Setting VSRAM+ above VDD will effectively apply
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a higher voltage to the gates of transistors inside the mul-
tiplexer (provided the cell contains a logic-high value). In
addition to increasing VSRAM+, transmission gate FPGAs
can set VSRAM− below 0V to improve PMOS transistor per-
formance. Since SRAM cells only switch at configuration
time, gate boosting does not increase dynamic power con-
sumption and high-VTh, low-leakage transistors can be used
in the SRAM cells to minimize static power consumption
(their speed is not important). Through HSPICE simulation,
we found that boosting the voltage by 200mV on an SRAM
cell built from PTM 22nm low-power transistors increased
its static leakage by 3.6× However, the SRAM contribution
to the chip-wide static power consumption remained below
1mW. We do not gate boost LUTs since it is less straight for-
ward to do so and would come at a cost of increased power
consumption.

Too much gate boosting will cause faster aging by ac-
celerating time-dependent dielectric breakdown and bias-
temperature instability or could even destroy the transistor.
Since it is unclear exactly how much gate boosting is safe for
a 22nm process, we sweep the gate voltage over three val-
ues (VDD, VDD + 0.1V and VDD + 0.2V ) thus providing a
general indication of the effect of gate boosting from which
a safe gate boosting level can be chosen. Consequently,
we design six different FPGAs representing three levels of
gate boosting for both pass-transistor and transmission gate
switches. All six FPGAs have identical architectural param-
eters (W, N, K, etc.) but differ in circuit design. Throughout
this paper, we refer to these FPGAs as implementations.

4. METHODOLOGY

To obtain a fair comparison, we optimize the transistor siz-
ing of each of the six FPGA implementations to minimize
area-delay product. Once all implementations have been op-
timized, tile area, critical path delay and power are measured
and compared. Figure 5 shows the CAD flow used for each
FPGA implementation.
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Fig. 5: CAD flow for each FPGA implementation.

4.1. Transistor-Level Design Methodology
The most accurate transistor-level design methodology in-
volves creating a complete layout from which to extract
area and delay; a process that is much too time consum-
ing for multiple designs. We instead estimate layout area
and layout-dependent wire loading with predictive models
detailed below. Even with these estimates, the design space
is much too large for manual exploration as there can easily
be thousands of different transistor sizing combinations in
a single FPGA implementation. To facilitate the transistor-
level optimization process, we developed a semi-automated
transistor sizing tool that finds the transistor sizing combi-
nation that yields a target area-delay objective.

4.1.1. Area Modeling

We model area via an updated version of the minimum-
width transistor model of [1] which estimates the area of
a transistor as a function of its relative drive-strength, x:

Area(x) = 0.5 + 0.5x (1)

We find that for more advanced process technology,
(1) significantly over-predicts area, particularly for large
drive-strengths, with over-predictions of 21-143% for drive-
strengths ranging from 2-32x minimum drive-strength.
Since we do not have access to layout rules for a 22nm
process, we scale TSMC’s 65nm layout rules to 22nm and
use a least-square fit of area versus drive-strength to obtain
area as a function of drive-strength.

Area(x) = 0.447 + 0.128x+ 0.391
√
x (2)

The area of an FPGA subcircuit is obtained by summing
the areas of all the transistors in that subcircuit. Despite
the fact that 6 small transistors are required per SRAM cell,
an area of 4 minimum-width transistors is used because a



denser, more optimized layout is assumed for such a fre-
quently used cell.

For our transmission gate FPGAs, we assume that the
extra PMOS transistors can be placed in existing N-wells.
If this is not possible and additional wells are required, our
sample layouts suggest that transmission gate FPGA area
would increase by no more than 7%, which would not sig-
nificantly change our overall conclusions.

4.1.2. Wire Load Modeling

To get realistic transistor sizes, it is important to include the
effects of all transistor and wire loading. Transistor loads are
relatively easy to determine based on architectural parame-
ters and circuit topologies. Wire loads, on the other hand,
are length-dependent making them more difficult to deter-
mine since the exact layout is not known. We estimate wire
lengths based on the area estimates of (2) along with a set
of general layout assumptions. For example, local intercon-
nect wires (see Figure 2) are assumed to span the height of
a logic cluster. The logic cluster’s layout is assumed to be
square and its area is obtained from our area model. Since
the effects of wire loading are becoming more important in
advanced process technology, we model all wire loading as
far down as the metal connecting two transistors inside a
multiplexer. All wire loads are automatically accounted for
by our transistor sizing tool. Wire resistance and capaci-
tance per unit length are extracted from ITRS 2011 [16]. All
wires are implemented in ITRS’s intermediate layer (min-
imum width and spacing) except for general routing wires
which are implemented in the semi-global layer (2x mini-
mum width and spacing).

4.1.3. Transistor Sizing Tool

Our transistor sizing tool solves the same problem as Kuon
and Rose’s automated transistor sizing tool [17] but we take
a different approach. While [17] sizes an entire FPGA tile
at once by optimizing a representative critical path that con-
tains at least one of each type of FPGA subcircuit (LUTs,
MUXes, etc.), we size each subcircuit individually. This
difference stems from our different delay measurement tac-
tics. Optimizing a representative critical path presents a
huge design space which [17] confronts with a two-phase al-
gorithm consisting of an exploratory phase that utilizes lin-
ear device models to keep CPU times reasonable followed
by an HSPICE-based fine-tuning phase that adjusts the tran-
sistor sizes to account for the inaccuracies of linear mod-
els. We found linear device models to be highly inaccurate
at 22nm, so our tool relies exclusively on HSPICE simula-
tions to measure delay. Area is calculated with the model
of Section 4.1.1. Exhaustively simulating large quantities of
transistor sizing combinations quickly reaches prohibitively
long runtimes. We tackle this problem in two ways.

First, transistor sizing is performed on subcircuits rather
than larger structures (e.g. a tile). This divide-and-conquer

approach produces smaller search spaces but requires itera-
tion to account for changing transistor loads. That is, sub-
circuits are usually loaded by other subcircuits and changing
the transistor sizes of one subcircuit changes the load on an-
other. In our experience, transistor sizes usually stabilize
after 2-4 iterations.

Second, we size the NMOS and PMOS of transmission
gates and inverters as a unit. More specifically, instead of
sizing the NMOS and PMOS of a transmission gate indepen-
dently, the tool forces them to be of equal size and changes
them both simultaneously. Similarly, the NMOS and PMOS
of an inverter are sized concurrently based on some P/N ra-
tio. The initial P/N ratio is determined by equalizing the
inverter rise and fall times for a mid-range transistor sizing
combination of the subcircuit. Once the best area-delay siz-
ing is found, the P/N ratios of all inverters are re-optimized
in a final step to balance rise and fall times.

4.2. Area, Delay and Power Measurement Methodology

Tile area is obtained by first calculating the area of each
FPGA subcircuit using our area model and the final transis-
tor sizes obtained from the transistor sizing tool. Then, the
subcircuit areas are multiplied by the number of subcircuits
in a tile (Table 1) and summed to obtain total area.

A VPR architecture file is created for each of the six
FPGA implementations. Critical path delay is measured ex-
perimentally with VPR by placing and routing MCNC [18]
and VTR [19] benchmarks on each FPGA for five different
placement seeds.

Dynamic power is obtained for each FPGA subcircuit
by using HSPICE to measure the average current required to
propagate a rising and a falling transition through the subcir-
cuit and then multiplying it by VDD. To compute relative to-
tal power, we multiply the power-per-subcircuit numbers by
the average number of times each subcircuit is used in VPR
placed and routed benchmarks. Since we are only interested
in a relative power comparison between our six FPGA im-
plementations, we do not need to perform a functional simu-
lation to obtain toggle activities as we expect them to be the
same across implementations except for very slight glitch
changes due small variations in timing.

5. RESULTS
5.1. Choosing Fcout
Previous work has shown that Fcout = W/N is an appro-
priate cluster output pin flexibility [1]. However, our cluster
output architecture differs from that of [1] (e.g. two outputs
per BLE and single-driver routing wires). Therefore, we re-
investigate cluster output pin flexibility. The area tradeoffs
are as follows. Smaller Fcout values lead to smaller switch
block MUXes as there are fewer connections from the clus-
ter outputs to routing wires. However, larger channels are
needed due to poorer routability, leading to a larger num-
ber of switch block MUXes. The delay tradeoffs are similar.



Table 2: Area and delay for different Fcout values.

Fcout W
Tile Area Crit. Path Area-Delay

(µm2) Delay (ns) Product

0.250 288 936 7.96 7.4
0.100 296 891 7.83 7.0
0.025 320 873 7.84 6.8

Smaller values of Fcout reduce loading and lead to faster
cluster outputs but might lead to circuitous routing.

We use VPR to place and route the MCNC benchmarks
on three architectures with different values of Fcout. The
channel width for each architecture is chosen such that all
architectures are equally routable (same W/Wmin where
Wmin is the average minimum channel width required to
successfully route the benchmarks) despite their differing
Fcout values. Tile area and critical path delay for each ar-
chitecture is shown in Table 2. Based on these results, we set
Fcout = 0.025W as it gives the best area-delay product for
our N = 10, K = 6 and Fcin = 0.2W architecture. Since
single-driver routing reduces the portion of a routing chan-
nel that can be accessed by logic cluster outputs to W/L, it
seems intuitive that Fcout should be lower than it is for ar-
chitectures with tri-state driver routing [1] where the whole
channel is accessible.

5.2. Gate-Boosting Transmission Gates

A transmission gate can be gate boosted by applying a volt-
age larger than VDD on the gate of the NMOS transistor, by
applying a voltage smaller than 0V on the gate of the PMOS
transistor or by a mixture of both. To choose a gate boosting
strategy, we experiment with different levels of gate boost-
ing on our completely optimized, non-gate boosted, trans-
mission gate FPGA design.

Figure 6 shows the delay reductions observed in the
switch block MUXes; results for other MUXes follow the
same trend. Gate boosting only the NMOS transistor (left-
most bar graph) results in almost twice the delay reduc-
tion that is obtained when only the PMOS transistor is gate
boosted and results in nearly the same amount of delay re-
duction obtained when both transistors are gate boosted.
Therefore, we choose to only gate boost the NMOS tran-
sistors of transmission gates since the additional delay re-
duction achieved by also gate boosting the PMOS transis-
tors probably does not merit the creation of a new sup-
ply plane. As well, some transistors in the configura-
tion SRAMs will be subjected to a voltage difference of
VSRAM+ − VSRAM−. Hence, simultaneously gate boost-
ing both NMOS and PMOS transistors by some voltage
increases the reliability risk versus gate boosting only the
NMOS transistors by that voltage. Bars of the same color in
Figure 6 have the same stress on the SRAM cells.
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Fig. 6: Effect of different gate boosting strategies on transmission
gate switch block multiplexer delay (VDD = 0.8V ).

Table 3: FPGA tile area.

VG PT (µm2) TG (µm2) TG/PT

VDD 875 1006 15.0%
VDD + 0.1V 873 1010 15.7%
VDD + 0.2V 887 1015 14.5%

5.3. Pass-Transistor Vs. Transmission Gate FPGAs
Table 3 shows the tile area for pass-transistor (PT) and
transmission gate (TG) FPGAs with different levels of gate
boosting (VDD = 0.8V in this section). The results indicate
that transmission gate FPGAs are approximately 15% larger
than pass-transistor FPGAs. Gate boosting does not signifi-
cantly affect tile area. In general, we noticed that as the level
of gate boosting is increased on pass-transistor FPGAs, our
transistor sizing tool tends to reduce pass-transistor sizes but
increases buffer sizes resulting in an FPGA that has similar
tile area but reduced delay. Due to their larger area, our
transistor sizing tool almost always choses minimum sized
transmission gates. The buffers in transmission gate FPGAs
are larger than those of pass-transistor FPGAs due to more
transistor and wire loading. The P/N ratios of buffers are
also different for different levels of gate boosting as the sig-
nal swings at the buffer inputs are changing. Table 4 shows
the transistor sizes for a switch block MUX in units of min-
imum contactable transistor width (45nm in this process).

Table 5 shows average critical path delay for all 6 FPGA
designs for the VTR benchmark set (MCNC benchmarks
yielded similar results). The results show that, with no
gate boosting, transmission gate FPGAs are 25% faster than
pass-transistor FPGAs. As the level of gate boosting is
increased, the delay gap is reduced but transmission gate
FPGAs remain faster. The higher speed with transmission
gates is due to the increased voltage swing and the fact that
we now have two switch transistors in parallel, providing
lower resistance. The resistance of transmission gates is fur-
ther reduced in advanced processes because highly strained



Table 4: Switch block multiplexer transistor sizes for PT and TG
implementations for different levels of gate boosting (see Figure 3
for transistor labels). Note that with the exception of P/N ratios,
the transistor sizing tool uses integer granularity.

Type, VG
lvl1 lvl2 buf1 buf2

P N P N P/N P/N

PT , VDD + 0.0 - 3 - 3 3/3.2 20.7/11
PT , VDD + 0.1 - 2 - 2 7.0/3 31.6/12
PT , VDD + 0.2 - 2 - 2 12.6/3 37.5/14
TG, VDD + 0.0 1 1 1 1 3/4.3 35.7/21
TG, VDD + 0.1 1 1 1 1 4/4.3 39.9/19
TG, VDD + 0.2 1 1 1 1 5.6/4 44.9/19

Table 5: Critical path delay (VTR benchmarks).

VG PT (ns) TG (ns) TG/PT

VDD 23.3 17.4 -25.4%
VDD + 0.1V 18.9 15.8 -16.3%
VDD + 0.2V 16.2 14.4 -10.7%

silicon has narrowed the gap between PMOS and NMOS
mobility.

The area-delay product for each FPGA design is given
in Table 6. With no gate boosting, transmission gate FP-
GAs have an area-delay product that is 14% lower than
pass-transistor FPGAs. However, given the right amount of
gate boosting (in this case somewhere between +0.1V and
+0.2V), pass-transistor FPGAs eventually become more ef-
ficient than transmission gate FPGAs.

Table 7 shows dynamic power, normalized to the non-
gate boosted pass-transistor FPGA implementation. Trans-
mission gate FPGAs consume slightly more power than
pass-transistor FPGAs. This is likely due to their larger tile
area. The small decrease in power consumption experienced
by pass-transistor FPGAs with 0.1V of gate boosting is due
to reduced short-circuit current. With 0.2V of gate boost-
ing however, the gains from reduced short-circuit current are
lost due to the power increase from higher voltage swings in
the internals of the pass-transistor MUXes.

5.4. Decoupling VDD and VG for Low-Power FPGAs
An FPGA that employs adaptive voltage scaling can trade
delay for power by using an operating VDD that is lower
than its nominal supply voltage (VDDn). To reduce the de-
lay penalty without adversely affecting power, the resulting
low-power FPGA can mimic the concept of gate boosting
by lowering VDD but not VG. What is particularly interest-
ing about decoupling VDD and VG in this way is the fact
that, as long as VG <= VDDn, “gate boosting” low-power
FPGAs does not pose a reliability risk as it does for FPGAs
running at VDDn where any amount of gate boosting results
in VG > VDDn.

We explore the idea of adaptive voltage scaling with
decoupled VDD and VG on our non-gate boosted pass-

Table 6: Area-delay product (VTR benchmarks).

VG PT TG TG/PT

VDD 20.4 17.5 -14.2%
VDD + 0.1V 16.5 16.0 -3.1%
VDD + 0.2V 14.3 14.7 2.2%

Table 7: Relative power (VTR benchmarks).

VG PT TG TG/PT

VDD 1.00 1.04 3.8%
VDD + 0.1V 0.99 1.05 6.4%
VDD + 0.2V 1.02 1.06 4.4%

transistor and transmission gate FPGA implementations
(that have been fully optimized for VDD = 0.8V ) by ex-
perimenting with two low-power FPGA schemes. In the
first, VDD and VG are kept equal and are both lowered be-
low 0.8V to produce a low-power mode. In the second,
VG is maintained at 0.8V and only VDD is lowered, result-
ing in a “gate boosted” low-power mode. Figure 7 shows
critical path delay and dynamic power (normalized to PT,
VDD = VG = 0.8V ) for both schemes. The results show
that lowering VDD and VG to 0.6V results in a 2× power
reduction for both pass-transistor and transmission gate FP-
GAs but a 6× and 2.5× increase in delay respectively. How-
ever, if we maintain VG at 0.8V when VDD is lowered to
0.6V, pass-transistor and transmission gate FPGA delays im-
prove by 65% and 18% respectively at no additional power
cost. Clearly pass-transistor FPGAs are a very poor choice
for low-power if gate voltages are not maintained at VDDn.

Figure 8 shows that decoupling VDD and VG for low-
power FPGAs is very beneficial. If we maintain VG at 0.8V,
the VDD yielding minimal power-delay product shifts from
0.8V to 0.7V where we experience a 25% power reduction.
In addition, the results indicate that transmission gate FP-
GAs always achieve lower power-delay product than pass-
transistor FPGAs in the low-power regime with a 26% ad-
vantage at 0.6V.

5.5. Area and Delay Breakdown

Figure 9a shows the area contributions of different FPGA
subcircuits averaged over our 6 FPGA implementations.
Approximately 26% of the area is devoted to BLEs (LUT +
FF) leaving 74% of the area to routing. This number is lower
than the 90% routing area commonly quoted in academic
work (e.g. [20]), but is higher than the commercial Stratix
V architecture where routing area is said to account for only
50% of tile area [9]. This discrepancy could be due to our
architecture having fewer features than commercial archi-
tectures (e.g adders, more complex FFs, LUTRAM, etc.).
SRAM cells cover 40% of tile area for pass-transistor FP-
GAs and 35% of tile area for transmission gate FPGAs.

The critical path contributions are shown in Figure 9b.
Approximately 24.5% of the critical path delay comes from
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the BLEs, 73% comes from the routing and 2.5% comes
from hard multipliers and block memory (where we use
Stratix IV-like delay values).

6. CONCLUSION

We develop a new methodology for designing FPGA cir-
cuitry and use it to compare pass-transistor and transmis-
sion gate FPGAs in 22nm process technology. Transmission
gate FPGAs consume 15% more area than pass-transistor
FPGAs but are 25%, 16% and 10% faster for 0V, 0.1V,
and 0.2V of gate boosting respectively. In terms of area-
delay product, transmission gate FPGAs are 14% better than
pass-transistor FPGAs without gate boosting but 2% worse
with 0.2V of gate boosting. Clearly, if gate boosting is not
permitted, building FPGAs out of transmission gates is the
better choice. However, given enough gate boosting, pass-
transistor FPGAs are still more efficient. Even if 0.2V of
gate boosting is safe, however, a case can be made for trans-
mission gate FPGAs due to the reliability concerns associ-
ated with pass-transistors in advanced process technology as
they incur only a 2% area-delay product and 5% power in-
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Fig. 9: Tile area (a) and critical path delay (b) breakdown.

crease. If low-VDD operation is desired, transmission gate
FPGAs that maintain VG at the nominal supply voltage yield
the best power-delay product.
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