
Wotan: A Tool for Rapid Evaluation of FPGA
Architecture Routability Without Benchmarks

Oleg Petelin and Vaughn Betz
Department of Electrical and Computer Engineering

University of Toronto, Toronto, Canada
{opetelin, vaughn}@eecg.toronto.edu

Abstract—FPGA routing architectures consist of routing wires
and programmable switches which together account for a signif-
icant portion of the fabric delay and area. Routing architectures
have traditionally been evaluated using a full CAD flow with a
suite of benchmark circuits. While the results of such a flow can
be accurate, CAD tools are often tuned to a specific architecture
type and can take a long time to run which prohibits quick explo-
ration of different architectures early in the design process. In this
paper we present an alternative approach that quickly estimates
routability for a wide range of architectures without the use of
benchmark circuits. Our new routability predictor first assigns
congestion probabilities to the architecture’s routing resources
based on demand estimates found via efficient path enumeration
through the routing graph. Next, we compute the probabilities of
successfully routing different source/sink connections and finally
we combine them to assign an overall routability score. We
describe our predictor and present routability estimates for a
range of 6-LUT and 4-LUT architectures, showing reasonable
agreement with routability results from the full VPR CAD flow
in much less CPU time.

I. INTRODUCTION

The routing architecture of a Field-Programmable Gate
Array (FPGA) consists of a set of wires and programmable
switches that define the interconnect between reconfigurable
function blocks. Accounting for a large fraction of total chip
area and critical path delay [1], a good routing architecture is
a crucial component of FPGA design. In this paper we focus
on the routability of an FPGA architecture; a more routable
architecture is able to implement circuits with more complex
connectivity requirements.

Traditionally routing architectures have been evaluated
using academic tools such as VPR [2] or commercial tools such
as Altera’s FMT [1]. These tools are part of a full CAD flow
that synthesizes, packs, places and routes a set of benchmark
circuits and evaluates the area and delay of each circuit to
asses the overall architecture quality. While quite accurate, the
traditional CAD flow has three main challenges for exploring
routing architectures early in a design process:
• Slow speed. Multiple benchmark circuits must be used

to obtain statistically valid results; running the CAD
flow over each benchmark circuit can take a long time.

• Limited insight. A full CAD flow can accurately esti-
mate the area, delay and routability of an architecture,
but these results give limited insight into why one
routing architecture performs better than another.

• Tuned to an architecture. Traditional CAD tool flows
have been targeted at a specific architecture type.

Evaluating a different type of architecture with the
same CAD tool may not accurately represent an
architecture’s potential. As an example, VPR assumes
that placing netlist blocks closer together according to
Manhattan distance is better for the router, but if hard
obstacles in the FPGA required that they be routed
around, then a placement according to Manhattan
distance could increase the difficulty of the routing
problem.

We propose a routability predictor that we call Wotan
which seeks to quickly evaluate a wide range of routing
architectures without the use of benchmark circuits. Such a
predictor would be useful early in the architecture design
process where quick design iteration is necessary in an archi-
tecture space to which traditional CAD tools may not be well-
tuned. As described in later sections Wotan evaluates routing
architectures in three steps:

1) Probabilities of congestion (demands) are assigned
to logic block pins and routing wires based on path
enumeration between different sources and sinks.

2) Probabilities of successfully routing different sources
to different sinks are computed based on the routing
resource probabilities assigned in step 1.

3) An overall routability metric is assigned based on the
connection probabilities computed in step 2.

In addition to the routability predictor our contribution
includes a method to efficiently traverse and enumerate paths
in a cyclic graph; this is used to set node demands and
analyze routing probabilities (exponential in complexity if
done naively).

The rest of this paper is organized as follows. Section
II reviews background and related work. Section III gives
an overview of our predictor method. Section IV presents
predictor results and compares them to routability results from
the full VPR CAD flow. Section V concludes.

II. BACKGROUND AND RELATED WORK

This section briefly reviews literature related to early-
stage architecture evaluation and network reliability. For a
comprehensive overview of the different routing architecture
elements please refer to [3].

A. Early-Stage Routing Architecture Evaluation
Early-stage architecture evaluation refers to techniques for

quickly exploring architecture choices or for exploring entirely



new architecture types to which current CAD tools are not
well-suited.

In [4] Rose and Brown introduced the concept of ‘flexibil-
ity’ for the connection block (Fc,in & Fc,out) and switch block
(Fs) which specifies the number of programmable switches
to be used without considering the precise switch patterns.
Later, the differences between the planar/subset, universal
[5] and Wilton [6] switch blocks would highlight that the
switch patterns of routing elements play a significant role in
routability. Analytical models like [7] [8] quantify the effect
of coarse parameters like Fc and Fs on architecture routability
but do not account for different wire segment lengths or the
precise switch patterns of the routing elements.

In [9] and [10] Sharma et al proposed the ‘Independence’
placement and routing algorithms which avoid making assump-
tions about the underlying architecture but at the cost of very
high runtime.

In [3] Lemieux and Lewis proposed a method of evaluating
the goodness of sparse crossbars by using network flow (over
many random test vectors) to measure a crossbar’s worst-case
capacity. Since a cascade of FPGA routing elements form
a compound crossbar it is tempting to extend this work to
evaluate an FPGA routing architecture as a whole. However,
network flow cannot account for routability differences be-
tween short and long connections, and has no view of typical
congestion patterns in the routing architecture.

The shortfalls of the routability evaluation methods de-
scribed above are that they don’t account for wire segment
length or switch pattern topology [4] [7] [8], take a very
long time to run [9] [10], or are limited in scope to a single
component of the routing architecture [3]. In contrast Wotan
seeks to quickly evaluate the routing fabric as a whole over a
wide range of architectures.

B. Network Reliability
Network reliability investigates methods of evaluating con-

nections between nodes in probabilistic graphs G(V,E) where
nodes V and/or edges E have independent probabilities of
failure (e.g. due to congestion). In [11] Valiant showed that all
measures of network reliability belong to the class of counting
problems #P-complete and are more difficult than problems
in NP-complete. For example calculating the probability of
connecting a source node s to T (s) other nodes in an arbitrary
graph requires knowledge of all shortest paths which connect
s to T (s); but such shortest paths are Steiner trees and finding
any Steiner tree is NP-complete.

Despite the computational complexity, network reliability
offers interesting insights [12]. Consider Figure 1 – we want
to evaluate the probability of successfully connecting the top
and bottom nodes of graphs G1 and G2 where intermediate
nodes have a probability p of being operational. Plotting
the probability of successfully connecting the nodes versus
the value of p shows that G2 is more reliable in low-stress
conditions (when node operational probability p is high) while
G1 is more reliable at high-stress conditions (when p is low) 1.
Comparisons of routing networks must therefore be qualified

1Intuitively at high-stress the probability of long paths being operational
is extremely low so the effect of short paths dominates; at low-stress points
both short and long paths have a high probability of operation so the overall
number of paths connecting the nodes (short or long) is more important.

Fig. 1: Plot of probability of connecting the top and bottom nodes
in graphs G1 and G2. Intermediate nodes have probability p of

being operational.

Fig. 2: Wotan flow. Routing graph read-in from VPR.

by their level of stress; one network is not necessarily better
than another at all loading levels. The routability metric of our
predictor is based on the level of stress required for a network
to achieve a certain value of reliability.

III. ROUTABILITY PREDICTOR – OVERVIEW

This section describes the high-level features of the Wotan
tool. Due to space constraints we cannot describe the predictor
implementation fully, but provide implementation details and
examples at www.eecg.utoronto.ca/∼opetelin/wotan.

Wotan operates on a directed routing resource graph [13]
G(V,E) with a set of vertices V and edges E. Each node
v ∈ V receives a cost c(v) which we take to represent the
wirelength of the corresponding routing resource (but could
also represent node delay or something else). Sources and
sinks are represented by the set of nodes S ⊆ V and T ⊆ V
respectively; in the VPR routing graph sources and sinks
represent inputs and outputs of primitives such as flip-flops
or LUTs. A directed path through the graph can be written
as an ordered set of nodes (v0, v1, ...) provided that there are
edges which connect each pair of consecutive nodes. Since
nodes have cost, the cost of a path, c(v0, v1, ...) is defined as
the sum of the constituent node costs. The distance betweeen
two nodes, d(vi, vj), is defined as the cost of the minimum-
cost path that connects vi to vj . Lastly, demands (congestion
probabilities) are placed on nodes; a demand De(v) indicates
the probability for node v to be congested so that it is
unavailable for routing.

Wotan analyzes routability based on pairwise connections
between source nodes s ∈ S and a set of sink nodes
associated with each source, T (s) ⊆ T . The predictor steps
are summarized below:

1) Estimate congestion: Node demands De(v) are es-
timated by efficiently enumerating paths from all
sources s to each of the corresponding sinks in



Fig. 3: Probability distribution of 2-point MST connection lengths
for placed CLMA benchmark.

T (s). The demand due to a path between (s, t) is
added to all nodes which the path traverses. For each
source/sink pair (s, t) the maximum allowed path cost
is a linear function of the distance between s and t,
cb(d(s, t)).

2) Analyze source/sink pair routability: For each
source/sink pair, (s, t) t ∈ T (s), efficiently estimate
the probability of routing s to t. As in the previous
step, only paths of cost ≤ cb(d(s, t)) are considered.

3) Compute routability metric: The routability metric is
a weighted sum of the individual routing probabilities
from step 2.

Wotan also accepts two user parameters which account
for some of the behaviour of real netlists and CAD tools by
applying appropriate weights in the steps above.

• The connection probability distribution P (l) is in-
tended to capture the tendency of a placer to make
certain connection lengths more likely. For an island-
style architecture connection length is defined as the
Manhattan distance between the source and the sink.

• The probability of using different sources, P (s). This
passed-in parameter is meant to reflect behaviour
where certain source nodes are more likely to be used
than others.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We used Wotan to estimate routability for 60 6-input-LUT
architectures and 60 4-input-LUT architectures as shown in
Figure 4 and compared these estimates to routability results
from the full VPR CAD flow. Both 6LUT and 4LUT archi-
tectures vary the length of unidirectional [14] wire segments
(1, 2 or 4), connection block flexibilities Fc,in and Fc,out, as
well as switch block topology (planar, universal or Wilton).

The logic blocks of the 6LUT architectures are based on
Altera’s Stratix V architecture [1] with 10 6LUTs per logic
block, 40 equivalent input pins (connected through a full
crossbar) and 20 output pins. The 4LUT architectures had logic
blocks based on Lattice Semiconductor’s iCE40 architecture
[15] with 8 4LUTs per logic block, 32 input pins and 8 output
pins; although the logic blocks in the 4LUT architecture did
not have a full crossbar on the input pins, the four pins of each
4LUT are still logically equivalent amongst themselves.

As in Figure 2, VPR was used to generate a routing archi-
tecture to be read-in by the predictor. This routing architecture
represented a 10-by-10 grid of logic blocks with the precise
routing fabric defined by wire segment length, switch block
topology, Fc,in and Fc,out. While Wotan evaluated routability

Fig. 4: Listing of architecture points evaluated for 6LUT and 4LUT
architectures. From left to right the columns represent: wire segment

length, switch block topology, Fc,in, Fc,out, minimum routable
channel width from VPR, inverse of predictor routability metric α.

Fig. 5: Routability results for 6-input-LUT architectures.



Fig. 6: Routability results for 4-input-LUT architectures

Correlation (6LUT) 0.90
Correlation (4LUT) 0.83
Pairwise Comparisons in Agreement (6LUT) 1582/1770 (0.89)
Pairwise Comparisons in Agreement (4LUT) 1505/1770 (0.85)
VPR Runtime / Architecture Point 10min
Predictor Runtime / Architecture Point 25s

Fig. 7: Level of agreement between VPR and Wotan routability
estimates for 6-input LUT and 4-input LUT architectures.

only between logic blocks, VPR routability results also account
for signal connections to I/O pads and hard blocks like
memory. We therefore set the connection block flexibilities
of non-logic-block components to ‘1.0’ to increase the fidelity
of comparison.

Wotan evaluated the routability of each architecture over
channel widths of 50, 70 and 90; the geometric mean over the
channel widths defined the final routability score α. While
source probabilities were set to P (s) = 1, the connection
length probability distribution P (l) was set based on a bench-
mark circuit profiled in VPR. A placed circuit netlist was
decomposed into a minimum spanning tree (MST) to get the
length probability distributions as in Figure 3. Wotan then
analyzed routability for connections of Manhattan distance ≤ 4
from the source with demands due to different paths weighted
according to this distribution. VPR evaluated the routability
of each architecture based on 20 MCNC benchmark circuits,
evaluating the average minimum routable channel width for
each circuit over 4 seeds.

Figures 5 and 6 compare VPR and Wotan routability
estimates. The x-axis corresponds to the architecture points
in Figure 4 and the architecture points are color-coded by
wire segment length. To highlight some interesting predictions,
Wotan correctly ranked a 6-LUT length-2 planar architecture
to have slightly higher routability than a length-1 Wilton
architecture (6LUT architectures 7 & 9) – an unintuitive result
which happens because it is not possible to create a truly
planar switch block with length-2 unidirectional wires. In
the 4LUT case (Figure 6) Wotan correctly ranked the set
of length-4 architecture points 39-51 as being equivalent in
routability regardless of switch block pattern or connection
block flexibility – another unintuitive result which occurs
because the restriction of connecting to the drive points of
length-4 unidirectional wires actually permutes the switch
block connections beyond what a switch block prescribes.
These results show the fidelity of our predictor method across
wire segment lengths, switch block patterns, and connection
block flexibilities. Figure 7 quantifies the level of agreement
between Wotan and VPR to show that our predicted routability
estimates are in good agreement with the full VPR CAD flow
in significantly less CPU time.

On the other hand Wotan does not properly account for
fanout effects which we believe to be a major source of
misprediction. The predictor considers fanout nets decomposed
into two-terminal connections (the P (l) parameter) so that all
path enumeration is done from logic block outputs to nearby
logic block inputs; this does not properly account for high-
fanout nets which can consume significant routing resources
over a large area of the chip. Fanout effects can potentially be
addressed by analyzing paths from virtual sources instantiated
at routing wires reachable from logic block outputs – this
would emulate fanout behaviour where a signal can travel a
long distance before branching out.

V. CONCLUSION

We have presented an alternative method of evaluating the
routability of an FPGA routing fabric. Whereas routability has
traditionally been evaluated using a slow but accurate synthe-
size/pack/place/route CAD flow over multiple benchmarks, our
predictor does not require benchmarks and shows reasonably
good agreement with routability results from the VPR CAD
tool in significantly less CPU time. Furthermore while the
traditional CAD flows are often tuned to a specific kind of
architecture, our routability evaluation methodology can be
easily adapted to a variety of different architecture types.
Lastly, it is possible to visualize routing node demands and
individual path connection probabilities which can be used to
gain insight into routing architectures; future work will explore
this fully.

REFERENCES
[1] D. Lewis et al., “Architectural Enhancements in Stratix V,” in FPGA,

2013, pp. 147–156.
[2] J. Luu et al., “VTR 7.0 : Next Generation Architecture and CAD System

for FPGAs,” ACM TRETS, vol. 7, no. 2, 2014.
[3] G. Lemieux and D. Lewis, Design of Interconnection Networks for

Programmable Logic. Springer New York, 2004.
[4] J. Rose and S. Brown, “Flexibility of Interconnection Structures for

Field-Programmable Gate Arrays,” JSSC, pp. 277–282, 1991.
[5] Y.-W. Chang and D. F. Wong, “Universal Switch Modules for FPGA

Design,” ACM TODAES, vol. 1, no. 1, pp. 80–101, 1996.
[6] S. J. E. Wilton, “Architectures and Algorithms for Field-Programmable

Gate Arrays with Embedded Memory,” Ph.D. dissertation, University
of Toronto, 1997.

[7] S. Brown, J. Rose, and Z. G. Vranesic, “A Stochastic Model to Predict
the Routability of Field-Programmable Gate Arrays,” IEEE TCAD,
vol. 12, no. 12, pp. 1827–1838, 1993.

[8] J. Das and S. Wilton, “An Analytical Model Relating FPGA Architec-
ture Parameters to Routability,” in FPGA, 2011, pp. 181–184.

[9] A. Sharma, C. Ebeling, and S. Hauck, “Architecture Adaptive
Routability-Driven Placement for FPGAs,” in FPL, 2005, pp. 427–432.

[10] A. Sharma and S. Hauck, “Accelerating FPGA Routing Using
Architecture-Adaptive A* Techniques,” in FPT, 2005, pp. 225–232.

[11] L. Valiant, “The Complexity of Enumeration and Reliability Problems,”
SIAM J. Comput., vol. 8, no. 3, 1979.

[12] E. Moore and C. Shannon, “Reliable Circuits Using Less Reliable
Relays,” Journal of the Franklin Institute, pp. 281–297, Oct. 1956.

[13] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, 1999.

[14] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and Single-Driver
Wires in FPGA Interconnect,” in FPT, 2004, pp. 41–48.

[15] Lattice Semiconductor, “iCE40 LP/HX Family Data Sheet.”


