
The Speed of Diversity: Exploring Complex FPGA
Routing Topologies for the Global Metal Layer

Oleg Petelin and Vaughn Betz
Department of Electrical and Computer Engineering

University of Toronto, Toronto, Canada
{opetelin, vaughn}@eecg.toronto.edu

Abstract—The rapid growth of wire RC delay with technology
scaling has put increasing pressure on FPGA architects to make
more efficient use of the different layers available in the metal
stack. While commercial FPGA architectures have implemented
the majority of inter-logic-block wiring on the lower metal layers
and a small fraction of wires on the least-resistive upper metal
layers, published explorations have largely ignored the question
of how to exploit the different layers of the metal stack, focusing
instead on very simple interconnect topologies and physical
models. We generate VPR architectures and detailed area and
delay models at the 22nm node and present enhancements to
VPR that enable us to describe and evaluate complex interconnect
topologies. We use our new architectures and tool enhancements
to explore complex interconnect patterns suitable for modern
unidirectional architectures and suggest topologies to connect
wires on the semi-global and global metal layers. The proposed
topologies improve the critical path routing delay by 17%
compared to architectures with no global layer wires, and by
5-13% compared to architectures with global layer wires using
the default VPR switch pattern.

I. INTRODUCTION

The routing architectures of Field-Programmable Gate Ar-
rays (FPGAs) consist of wires and programmable switches
that, with suitable programming, allow the logic resources to
be connected to meet the needs of any application circuit. For
a typical FPGA design, most of the delay and 50% or more of
the area [1] [2] is due to this programmable interconnect, so
its optimization is a priority for FPGA architects. Moreover,
interconnect RC delay has increased rapidly with process
scaling, particularly for the thin wires at the bottom of the
metal stack [3] [4], and the challenges of poor interconnect
resistance scaling require FPGA architects to use the metal
layers with greater efficiency. Interconnect architecture is a
complex topic, and includes many interacting architectural
decisions such as wire electrical characteristics, wire segment
length and the switch pattern between wires. While each of
these topics has been studied before on its own, e.g. in [5]
[6] [7], the interaction between switch patterns and wire types
has not been explored in published literature. In this paper
we develop new tools and models that allow us to investigate
complex interconnect topologies and switch patterns across
different wire types. We then explore the impact of unidi-
rectional (direct-drive) wiring on switch pattern, as well as
suitable interconnect hierarchies to take advantage of scarce,
fast wiring on the upper metal layers.

A cross section of the metal stack used in Intel’s 14nm
process is shown in Figure 1 [8]. The metal layer stack consists

of a large number of wires with a small cross-section close to
the silicon and a smaller number of wider and taller wires on
the upper metal layers. The thin wires close to the silicon are
naturally useful for the multitude of short-distance connections,
while the larger less-resistive wires further up lend themselves
to long-distance connections, clocking, and power distribution.

While commercial architectures have implemented a small
fraction of their inter-logic-block wires on the highest metal
layers, published explorations of interconnect topologies have
largely ignored the question of how to exploit the electrical
characteristics of the different layers available. In addition,
most published explorations of switch patterns have targeted
only very simple routing architectures with all length 1 routing
wires and bidirectional switches. In contrast, modern commer-
cial devices use a mix of wire lengths and have moved to
unidirectional (mux-based) switches which place significant
restrictions on the switch pattern. In this paper we seek to
fill a gap in published explorations of FPGA interconnect:

• We use the FPGA modelling tool COFFE [9] along
with HSPICE to extract accurate delay and area pa-
rameters at the 22nm process node for use in VPR
architecture files. Challenges such as increasing wire
RC delay are most pronounced in the latest process
nodes, so we believe modelling such an advanced node
is crucial for relevant results.

• We make multiple enhancements to the CAD tool VPR
in order to support the complex routing architectures
we wish to explore. These enhancements include a
new switch block format that allows us to succinctly
specify virtually any interconnect topology in the
VPR architecture file, as well as an improved router
lookahead that can take advantage of different wire

Fig. 1: Intel’s 14 nm process metal stack [8].



types connected in complex ways.
• We investigate the impact of unidirectional architec-

tures on switch block topology and show that the
restrictions imposed by unidirectional wires actually
help to permute the switch pattern, increasing the
number of FPGA tracks that signals using restrictive
switch blocks can reach.

• We use our 22 nm VPR architecture files and VPR
enhancements to explore complex interconnect pat-
terns and suggest switch topologies to exploit wires
on the top-most metal layers. Specifically, we explore
hierarchies to connect fast wires on the upper metal
layers to the rest of the routing fabric, and show an
improvement of 5-13% over the default VPR switch
pattern using the same wire type mix.

The rest of this paper is organized as follows. Section II
discusses background and prior works; Section III outlines our
22nm architectures and Section IV discusses our enhancements
to VPR. Section V explores complex routing topologies and
Section VI concludes.

II. BACKGROUND

A. Routing Elements of Island-Style FPGAs
Figure 2 illustrates the basic routing elements of an island-

style architecture. The figure shows a single FPGA tile, many
of which are stamped across the chip. Parameters of the tile
routing elements are defined similarly to [10].
• W is the channel width and refers to the number of

wire segments in a channel. The length of a wire
segment is defined as the number of tiles that the wire
spans. Figure 2 shows wire segments of length 1.

• Connection blocks (CBs) interface wire segments with
logic blocks (LBs) through programmable switches.
Input and output CB flexibilities, Fc,in & Fc,out,
represent the fraction of wires that a pin of an LB
connects to in the routing channel.

• Switch blocks (SBs) provide programmable connec-
tions between different routing wire segments through
buffered, non-tristatable muxes. The wire segments are
thus unidirectional and can be driven at the start of
the segment only [5]. The switch block flexibility Fs

is the number of other wires to which a wire segment
connects inside the switch block.

Fig. 2: Key components of an island-style routing architecture using
unidirectional wires.

B. Interconnect and Scaling
The International Technology Roadmap for Semiconduc-

tors (ITRS) classifies the types of wires in the metal stack
into the M1, intermediate, semi-global and global layers [11].
Semi-global and global layers have wires with dimensions that
are 2x and 4x+ of the intermediate layer respectively. M1 and
intermediate-layer wires have the same dimensions, but differ
somewhat in electrical characteristics.

While interconnect scaling has traditionally maintained an
approximately-constant delay for wires on the lowest metal
layers1, manufacturing challenges and nano-scale effects have
increased the resistance of copper interconnect by a significant
amount. The impact of poor wire resistance scaling has already
been felt in commercial devices [4], and ITRS projects that
at the current rate, interconnect will become a major delay
bottleneck in the near future [11]. With interconnect scaling
posing an increasingly difficult challenge, it is important that
FPGA architects make effective use of the relative advantages
offered by the different metal layers.

C. Complex Routing Architectures
Popular commercial architectures from Xilinx and Altera

[12] [13] use multiple types of wires to route signals. While
to our knowledge Xilinx has not published full details of
their recent routing architectures, Altera’s Stratix series takes
advantage of the relative strengths of different metal layers
by implementing the majority of inter-LB routing on a slower,
more accessible metal layer, while a low-resistance metal layer
towards the top of the metal stack is used to implement a small
number of long (length 16+) wires [13]. On the uppermost
metal layers, layout restrictions of deep via stacks prevent
wire connections to logic blocks and other wires at every tile,
restricting vias to every four LBs [14]. Recently the Stratix V
architecture [1] has moved a portion of short y-directed wires
higher up in the metal stack, though the uppermost metal layers
are still used only for long wires.

Published explorations for designing heterogeneous inter-
connect topologies have been limited. Switch block patterns
like the subset [10], universal [15] and Wilton [7] were
developed for length-1 bidirectional architectures and had a
significant impact on routability. These patterns were then
adopted for longer wires and even a mix of wire lengths. The
Imran switch block [16] has been the only published topol-
ogy that specifically exploits long wires, but it still assumes
bidirectional wiring. Bidirectional architectures have largely
been supplanted by unidirectional architectures that reduce
routing area and critical path delay [5]. Since a unidirectional
wire can be driven at only one point, such architectures place
major restrictions on the switch pattern, which have not been
evaluated in published studies.

Studies of wirelength in [2] used the Wilton switch block
with no adjustments to optimize the switch pattern for the
variety of wire lengths. It also used a bidirectional routing ar-
chitecture and a much older (.35 um) process technology with
lower resistance wires, making its conclusions questionable for
the latest FPGAs.

Overall, combined studies of wire segment length, wire
type and switch pattern are needed for unidirectional topolo-
gies, and in Section V we explore the impact of unidirectional

1Decreasing wire cross section increases resistance, but decreasing wire
length maintains an approximately-constant delay.



wires on switch pattern, as well as interconnect hierarchies to
take advantage of fast wires on the global metal layer.

D. CAD Tools and Algorithms
CAD systems such as VTR (which includes the tool VPR)

[17] are able to explore FPGA design trade-offs by running
a full elaborate/synthesize/pack/place/route flow over a set of
benchmark circuits. This flow outputs metrics such as critical
path delay and the area dedicated to routing resources, which
help to evaluate design decisions. While VPR can model any
set of wire lengths in its architecture files, it includes only
3 predefined switch blocks (subset, Universal and Wilton). In
Section IV we describe modifications to VPR that allow the
specification of arbitrary switch blocks from which VPR can
then construct a routing graph describing the entire chip.

The routing algorithm of VPR operates on a graph of
nodes representing FPGA resources by routing net connections
from source nodes to targets [2]. A router lookahead is an
important component of the timing-driven routing algorithm
because it provides estimates of the remaining delay (and
possibly congestion) to reach targets from intermediate nodes.
The lookahead is vital to keep the router runtime low since it
enables the router to explore the graph in a targeted manner
as opposed to exploring the graph with a breadth first search
which can be slower by more than an order of magnitude [18].

The router lookahead requires some form of knowledge
about the interconnect topology in order to estimate the
remaining delay and congestion to reach the sink since an
inaccurate estimate can degrade runtime, performance or both.
The VPR router takes the following approach [2]: having found
itself on a given kind of node (for example, a slow length-4
wire) as the router looks for a routing path, the VPR lookahead
estimates the delay by assuming that the smallest possible
number of wires of the same type (slow length-4 wires) will be
used to reach the sink. For the complex interconnect topologies
that we wish to explore this strategy is not sufficient: a slow
length-4 wire may connect to a fast length-16 wire on the
global metal layer downstream, and correctly estimating the
remaining delay can improve the quality of results.

The router lookahead proposed in Independence [19] is
able to target complex interconnect topologies as it makes
no assumptions about the FPGA routing architecture. The
architecture-adaptive lookahead of Independence uses K-
means clustering to group routing nodes which have a similar
delay to reach a small number sinks in the routing graph.
Sample routing from the clustered “supernodes” to a subset
of sinks in the graph is then used to build lookup tables
that are accessed during routing to estimate the remaining
delay (all nodes in a supernode share a table entry). While
this lookahead algorithm is very general, the lookup tables
constructed through this method can have a prohibitively large
memory footprint, especially as the number of supernodes
increases for large FPGAs.

In Section IV we propose a new lookahead algorithm for
the VPR timing-driven router that is able to take advantage of
complicated wiring patterns while maintaining a low compute
and memory requirement.

III. ARCHITECTURES IN 22NM

The 22nm FPGA architecture on which we build our inter-
connect explorations is based on the flagship VPR 7.0 40nm

TABLE I: Logic architecture for most of our interconnect
explorations.

LB Size Ten 6-input Fracturable LUTs
LB Input Crossbar Full Crossbar
LB Output Crossbar None
LB Internal Feedback Through Input Crossbar
DSP Elements 36x36 Fracturable Multipliers
Memories 32Kb Block RAMs
Fc,in 0.1
Fc,out 0.1

TABLE II: Architecture used to check sensitivity of main
interconnect results.

LB Size Eight 4-input LUTs
LB Input Crossbar None
LB Output Crossbar None
LB Internal Feedback None
DSP Elements 36x36 Fracturable Multipliers
Memories 16Kb Block RAMs
Fc,in 0.2
Fc,out 0.2

TABLE III: Metal stack data from the 2014 entry of the ITRS
2011 interconnect report.

Metal Layer Half-Pitch
(nm)

Aspect
Ratio

R
(ohm/um)

C
(fF/um)

Intermediate 24 1.9 54.825 0.175
Semi-Global 48 2.12 7.862 0.215
Global 96 2.34 1.131 0.250

architecture and uses a logic block similar to that of popular
commercial devices [1] [20]. This architecture is summarized
in Table I and we use it for most of our results. However, in
Section V-C we also check the accuracy of our main results
using a logic block architecture similar to [21] which has
4-input LUTs and no internal crossbars; this architecture is
summarized in Table II.

To have timing and area parameters representative of the
22nm node, the transistor-sizing tool COFFE [9] was used
to size a number of architectures over different wire segment
lengths, metal layers and routing flexibilities. The metal stack
data used is shown in Table III and was extracted from the
2011 ITRS interconnect report [3] from which the 2014 entry
was chosen to represent the 22nm node.

By default COFFE uses the intermediate metal layer to
implement the wiring inside the logic block and the semi-
global layer to implement the general routing outside of it. We
wish to explore wire length and topology choices for general
interconnect on the global metal layer, so to extract delay and
area parameters from COFFE we did the following. For each
combination of {semi-global, global} metal layer and length-
{1, 2, 4, 8, 16} general routing wires we used COFFE to
perform transistor sizing on an architecture with a channel
width of 300 containing only one of the aforementioned wire
type combinations. For each combination we also varied the
connection block and switch block flexibilities in order to
capture the delay impact of different routing mux sizes. Area
and delay parameters extracted from COFFE were then used
for VPR architecture files. Representative parameters for the
different wire types are shown in Table IV. Longer wires and
wires on the global metal layer present a larger capacitive load



TABLE IV: Extracted 22nm delay and area data for different
wire types. Each entry shows data for the (semi-global / global)
metal layers. VPR and COFFE measure area in Minimum-
Width Transistor Areas (MWTAs).

Fig. 3: Delay per tile versus wire length on the semi-global and
global layers. Delay per tile is the total delay through a loaded wire
segment (including the driver delay) divided by the segment length.

and so require bigger, less resistive routing switches2. The
last row of Table IV shows that wires on the global metal
layer have significantly lower resistance per tile, where the
dimensions of a tile were reported by COFFE to be 30µm by
30µm.

Figure 3 contrasts the delay difference between the semi-
global and global metal layers for multiple wire lengths. The
increasing RC delay of advancing technology nodes clearly
shows its impact – in contrast with some of the earliest routing
architecture studies [2], semi-global length-8 and length-16
wires are now too resistive to provide a delay benefit over
length-4’s without removing connections to SBs or CBs.

IV. TOOL ENHANCEMENTS

Our exploration of complex interconnect patterns required
multiple enhancements to the VPR CAD tool which we
describe here. These enhancements will be contributed back
into VPR and will be documented in the VPR user manual.

A. Enhanced Switch Block Descriptions
VPR 7.0 can specify three kinds of switch blocks in the

architecture file – subset, universal and Wilton. While these
switch patterns have a significant impact on routability for
bidirectional topologies, they do not have a clear analogue
for unidirectional wires. VPR adapts these switch patterns
to unidirectional topologies by snapping switch block con-
nections to the nearest wire start point, which results in a
somewhat ambiguous pattern. More importantly, the switch

2The routing switch intrinsic delay was modelled to include the wire
resistance and capacitance (but not connection block & switch block loading).
This still allows us to accurately model the effects of capacitive loading from
additional switches, but simplifies parameter extraction from COFFE HSPICE
files.

blocks used by VPR do not allow us to specify some of the
complex interconnect topologies that we wish to explore. For
example, later in this paper we explore a routing architecture
with “regular” and “fast” wires.. The regular wires are driven
by both regular and fast wires, but a signal can find its way onto
a fast wire only through the output connection block or another
fast wire. While our new switch block description format is
able to describe architectures like the one above, the switch
block patterns in VPR 7.0 would not be able to specify this
kind of interconnect hierarchy and would connect the wire
types in a semi-random manner.

Our switch block description format, which can be speci-
fied in the VPR architecture file, is a generalized version of the
permutation function tables described in [22]. We can specify
a mathematical permutation function that determines how two
different wire types defined in the architecture file can connect
at a switch block. For example, one can specify how a signal
taking an east-north turn at a switch block will connect from
one of the midpoints of a length-4 wire to the start point of a
length-16 wire. This description format allows us to succinctly
specify any switch block we wish to explore in a well-defined
manner, including switch blocks where different wire types
interconnect with varying flexibilities.

B. Enhanced Connection Block Descriptions
We have enhanced VPR’s connection block format to allow

varying connection block flexibility based on the type of wire
to which a pin connects. For example, this enhancement allows
us to describe architectures where fast wires on the global
metal layer can be driven from a connection block with a
higher flexibility than the rest of the routing but have no direct
connection to input pins, forcing routed paths to reach inputs
through regular wires on the semi-global layer instead.

C. Varying Delays Based on Mux Fan-in
The size and topology of the buffered muxes used to

connect routing wires is influenced by the mux fan-in. Both
COFFE and VPR use a 1-level topology to implement smaller
muxes and a 2-level topology to implement muxes with larger
fan-ins (VPR 7 uses mux fan-in and topology to account for
area differences between muxes). The signal delay through a
mux grows with fan-in, and it is important to capture this effect
in our interconnect explorations. We did so by enhancing the
VPR architecture files to accept a list of (fanin, delay) pairs
for each routing switch in the architecture file. During the
generation of the VPR routing resource graph, interpolation in
this delay table is used to choose the delay of each multiplexer,
as only at that point is the precise fan-in of each mux known.
As mentioned in Section III, COFFE was used to extract timing
parameters for switches driving each kind of wire type we
explored over a range of fan-in values.

D. Enhanced Router Lookahead
We propose a new lookahead that is well-suited to the

regularity of island-style FPGA architectures. Our lookahead
is more general than the lookahead used in VPR and has a very
low memory requirement compared to that of Independence.

Figure 4 summarizes the lookahead generation algorithm.
This algorithm computes look-up tables by running Dijkstra’s
algorithm sorted on delay from a small subset of wires
belonging to each wire type that has been defined in the VPR



1: function GENERATE LOOKAHEAD(routing resource graph)
2: REF X=3, REF Y=3, M = 10
3: lookahead map = NULL
4:
5: For each wire type in the VPR architecture file{
6: For chan type in {x-chan, y-chan}{
7: For M wires at REF X, REF Y{
8: n = get routing resource graph node( wire )
9: priority queue = NULL

10: priority queue.push(n)
11:
12: //Run Dijkstra’s algorithm sorted on path delay
13: While priority queue not empty{
14: n = get lowest delay node(priority queue)
15: if (n is input pin &&
16: n.x >= REF X && n.y >= REF Y){
17: dX = n.x - REF X
18: dY = n.y - REF Y
19: old T = get path delay(
20: lookahead map[wire type][chan type][dX][dY])
21:
22: // lookahead map to contain smallest-delay entry
23: if (old T == UNDEFINED ||
24: old T > n.path delay){
25: lookahead map[wire type][chan type][dX][dY] =
26: add entry(n.path delay, n.base path cost)
27: }
28: }
29: add neighbors by path delay(n, priority queue)
30: } //While
31: } //For M wires
32: } //For chan type
33: } //For each wire type
34:
35: return lookahead map
36: end function

Fig. 4: Algorithm to generate look-up tables to be used by the
router lookahead.

architecture file (i.e. the algorithm is run from a few slow
length-4’s, a few fast length-16’s, or any other wire types
that were defined). The search is performed at one reference
coordinate from both x-directed and y-directed channels and
notes two pieces of information each time an input pin is
encountered above and to the right of the starting tile: the path
delay and the base path cost to arrive at that pin – these are
the two costs (timing and resource) that VPR needs to estimate
during routing. Note that the search is performed away from
the edge of the chip to avoid fringe effects, and we assume
symmetry by only searching up and to the right of the starting
coordinate. This search records the minimum path delay and
associated base path cost required to reach each coordinate
relative to the starting tile3.

Our lookahead takes advantage of the regularity of the
island-style FPGA architecture to build small look-up tables
that can be rapidly indexed by the router. For example, to
estimate the delay to travel 3 tiles in the x direction and
5 tiles in the y direction starting from an x-directed wire
of type len4, the router would lookup the base path cost
and path delay information under index [len4][x-chan][3][5].

3We also tested approaches that record multiple path delay and base
path cost entries at each dX and dY and then boil them down to a
single representative entry by taking the average, median or geometric mean.
However, we found that such methods, which potentially overestimate path
cost, can be detrimental to VPR’s routing time.

TABLE V: Memory, compute requirements and generality of
different router lookaheads for a 200x200 island-style FPGA.

Router
Lookahead
Algorithm

Memory
Footprint

Lookup Table
Compute Time

Generality

VPR 0 0 X
Independence > 6GB Not Listed XXX
Proposed < 10MB 30s XX

Fig. 5: Average critical path routing delay over 9 largest VTR
benchmarks, for two lookaheads, over 8 distinct architectures.

Fig. 6: Average VPR runtime over 3 largest VTR benchmarks, for
two lookaheads, over 8 distinct architectures.

Table V compares the compute and memory requirements of
our lookahead to that of VPR and Independence. While not
as general as Independence, our lookahead achieves a good
trade-off point due to its much more manageable memory
footprint. With a computational complexity of Nlog(N) (N
is the number of nodes in the routing graph), our lookahead
scales well to very large chips and adapts to arbitrary wire
type mixes and switch patterns, assuming only that the chip is
translationally invariant (which island-style FPGAs are).

Figures 5 and 6 compare our lookahead with VPR’s over
two simple, four moderately complex and four very complex
architectures. The first two points represent simple architec-
tures with only one type of wire available. The next four
architectures (points 3-6) have 85% of wires on the semi-global
layer and 15% on the global layer; the global wires can only be
driven from block output pins and can only drive semi-global
wires. The last four points (points 7-10) represent architectures
where the global wires (which comprise 15% of the channel
width) can be driven, and can only drive, a small fraction
of the regular wires on the semi-global layer. Our lookahead
has quality and runtime equivalent to the VPR lookahead for
simple and moderately complex architectures (points 1-6), and
has significantly better result quality for complex architectures
at the expense of route time (points 7-10). Despite the longer



TABLE VI: ∗Benchmarks for evaluating routing delay.
†Benchmarks for evaluating routability. Data from [17].

Circuit #6-LUTs Min W (len-4 wires)
mcml∗ 99700 144
LU32PEEng∗ 75530 204
bgm∗† 30089 168
stereovision2∗ 29849 172
LU8PEEng∗† 21954 136
stereovision0∗† 11462 78
stereovision1∗† 10366 120
blob merge∗† 6016 100
mkDelayWorker32B∗† 5580 110
or1200† 2963 90
boundtop† 2921 72
sha† 2212 64
raygentop† 2134 74
mkSMAdapter4B† 1977 80

runtime for the last four architecture points, our lookahead
adapts well to their complex and irregular structure, and we
use it for our interconnect explorations.

V. ARCHITECTURE EXPLORATIONS

A. Benchmarks and Methodology
We use VPR along with the VTR benchmark set [17] to

evaluate routability and delay; the benchmarks used are sum-
marized in Table VI. In Section V-B we evaluate routability by
finding Wmin, the minimum routable channel width of each
circuit. In Sections V-B and V-C, critical path routing delay
(the portion of the critical path through the inter-LB routing)
is evaluated at a constant channel width of W=300, which
provides some extra flexibilty over what is required by our
most complex benchmark circuit. We consider timing results in
a fixed channel width the most representative as all commercial
FPGA families ultimately choose a single channel width, and
a channel width of 300 aligns well with popular commercial
FPGA devices [23] with a logic block of ten fracturable 6-
LUTs similar to the one we use (Table I).

In our architecture explorations we have treated the fastest
metal layers as a scarce resource – in addition to being used for
fast general routing wires, these layers are utilized for power,
ground and clocking. Furthermore, the via stack required to
connect from the highest metal layers to silicon presents
significant layout challenges since vias must traverse through
all the intermediate metal layers. Commercial architectures
have used 10-20% of the available channel width for fast long
wires, and have restricted wires on upper metal layers to have
vias approximately every four logic blocks [14] [23].

For our delay experiments we use architectures with a
channel consisting of 300 unidirectional wires where 15% of
the channel width can be used for wires on the global metal
layer. To reflect the layout difficulties of deep via stacks, wires
on the global metal layer are allowed to have connection block
and/or switch block connections only once every four tiles.

B. Effect of Unidirectional Wires on Switch Pattern
In this section we look at the best single wirelength and

switch block topology to be used for the semi-global metal
layer in our subsequent explorations. Commercial architectures
have typically based their routing around a shorter (approx-
imately length-4) wirelength and a switch block topology

Fig. 7: Routability of switch block patterns converges for longer
unidirectional wires.

Fig. 8: Restrictions of unidirectional wiring make it impossible to
create traditional low-routability patterns like the subset at wire

lengths greater than 1.

that allows signals to have access to a diverse set of tracks
during the course of a route; we validate this choice of semi-
global wirelength at the 22nm node and make some interesting
observations about switch block topology in unidirectional
architectures.

In Figure 7 we evaluate the routability of the subset,
universal [15] and Wilton [7] switch blocks implemented with
unidirectional wires of varying length on the semi-global layer.
As expected, longer wire lengths are generally less routable
because they decrease the granularity with which signals can
utilize the routing resources.

With regard to switch blocks, at length-1 the Wilton topol-
ogy is much more routable. While the universal and subset
switch blocks restrict a signal to a small subset of possible
wires, the Wilton switch block permutes the switch pattern so
that signals are able to find their way onto virtually any track
in the FPGA4. However, at longer wire lengths the routability

4The low connection block flexibility in our architectures (see Table I)
contributes to the significantly lower routability of the subset and Universal
switch blocks at the length-1 point. Signals from an output pin are confined
to a small fraction of available wires in the FPGA due to the restrictive nature
of these switch blocks. The wires that an output pin connects to would hence
not be guaranteed to line up with the switches connected to the input pins
of I/O, RAM or DSP blocks (which do not have an input crossbar in our
architecture) causing some nets to be unroutable even without congestion.
Increased Fc would likely improve the overall area usage of these patterns,
but they would still remain inferior choices to the Wilton switch block at
length 1.



Fig. 9: Area-delay (blue) and critical path routing delay (red) of
architectures with a single type of semi-global wire using the

Wilton switch block.

of the different switch block patterns begins to converge.
In unidirectional architectures wires can only be driven at

their start point which eliminates some of the area required
for bidirectional routing [5]. We observe that the restriction
of connecting only to the start points of unidirectional wires
permutes the switch block connections beyond what the switch
block pattern specifies for wire lengths greater than 1. In
Figure 8 we illustrate an architecture with length-2 wire
segments where a signal on track 1 can make its way onto
tracks 1 and 2 by taking turns through the routing (regardless
of switch block), doubling the number of tracks a subset
switch block would be able to reach compared to a length-
1 architecture. With a subset switch block, length-L wires
increase the number of tracks that a signal can reach by a
factor of L, and the restriction of connecting to wire start
points can further help stagger the output connection block
pattern. The routability of switch block topologies therefore
converges at longer wirelengths – an interesting observation
about unidirectional routing that to our knowledge has not been
previously published. In our multi-wirelength explorations we
choose the Wilton switch block but focus on how different
routing resources connect instead of the specific switch pattern
that implements the connection.

Figure 9 verifies that length-4 wires still achieve the best
area-delay tradeoff at 22nm, and length-4’s form the basis of
our complex architecture explorations.

C. Complex Routing Topologies
As shown in the previous section, unidirectional wires act

to permute the switch block pattern beyond what is specified
and, at moderate and long wire lengths, analogues of low-
routability patterns like the subset are difficult to create. In
this section we explore high-level hierarchies to connect fast
wires on the global metal layer with the rest of the routing.
Figure 10 illustrates the topologies; the thick arrows represent
wire types and the thin arrows represent how each wire type
connects to other wires and FPGA blocks. Each connection
between wire types is implemented with a Wilton switch
pattern adapted to that length of unidirectional wire but, as
shown in Section V-B, other switch permutations can likely be
used without significantly affecting the result. The topologies
explored represent three kinds of wire type hierarchies:

• No distinction between wire types. The default VPR 7
switch pattern connects wires using the Wilton switch
block, snapping connections to the start points of
unidirectional wires. With this pattern, some wires
connect to other wire types, and some wires connect

to the same wire type, producing a somewhat irregular
interconnect where connections between wire types
are not guaranteed.

• Isolated wire types. The (a) On-CB/Off-CB topology
of Figure 10 does not implement connections between
wire types, and wires connect only within their own
type and to FPGA blocks. This topology was also used
in [24] to evaluate a mix of regular wires and fast
(widely-spaced) wires.

• Connected wire types. Topologies (b), (c), (d) and (e)
in Figure 10 have guaranteed connections between
wire types, and also vary the available connections
between wire types and FPGA blocks.

As mentioned in Section V-A, each topology allocates 15%
of the available channel width to wires on the global metal
layer, and connections to/from global-layer wires are restricted
to one in every four tiles to reflect the layout difficulties of
deep via stacks. Each topology is evaluated over a number of
global-layer wire lengths and is compared to an architecture
using the default VPR 7 switch pattern with the same wire
mix, as well as to an architecture using only length-4 semi-
global wires. The delay and per-tile routing area results are
shown in Figure 11.

With reference to Figures 10 and 11, the topology results
are discussed below:
(a) On CB, Off CB: In this topology global wires are only

driven by output pins and can only drive input pins
and other global wires; essentially the global wires form
a completely distinct routing network from the regular
(semi-global) wires. Figure 11 shows that length-4 global
wires achieve a slight critical path routing delay reduc-
tion over architectures with only semi-global wires, while
longer wire lengths don’t provide much benefit. While this
topology worked well in [24] (13% speedup), it does not
work well with global-layer wire segments, which can not
be used efficiently due to the layout difficulties of deep
via stacks.

(b) On CB, Off SB: Global wires are only driven by output
pins and can only drive other global/semi-global wires.
As in (a), each output pin still has a dedicated connection
to a fast wire on the global layer, but the ability of global
wires to ”jump down” to semi-global wires adds an extra
level of flexibility to the routing and allows signals to use
the global wires with greater efficiency. For the same wire
type mix, this topology reduces critical-path routing delay
by 4-12% compared to the default VPR switch pattern.

(c) On CB, Off CB/SB: Global wires are driven only by output
pins and drive global/semi-global wires and LB input pins.
Compared to (b), the ability of global wires to drive some
LB input pins allows some nets to be routed using the fast
global layer wires exclusively which further reduces the
routing delay (5-13% compared to the default VPR switch
pattern) at the slight expense of extra per-tile routing area.

(d) On SB, Off SB: With this topology global wires can drive,
and can be driven from a fraction of the semi-global wires.
Compared to (c), length-16 global wires provide a greater
delay benefit since their connection with semi-global wires
provides an extra degree of flexibility. On the other hand,
length-4 and length-8 wires have a higher routing delay
compared to (c) because signals seeking to use the global
layer must first traverse semi-global wires.



Fig. 10: Different routing topologies with regular and fast wires. Topology names refer to the connectivity of global wires. (a) On CB, Off
CB topology (b) On CB, Off SB topology. (c) On CB, Off CB/SB topology. (d) On SB, Off SB topology; only a fraction of regular L4 wires

can drive global wires. (e) On CB/SB, Off CB/SB topology.

Fig. 11: (a) Critical path routing delay for different interconnect topologies and global metal layer wire lengths. (b) Per-tile routing area (in
MWTAs) for different interconnect topologies and global metal layer wire lengths.

Fig. 12: (a) Sweeping input/output connection block flexibility for best interconnect topologies at each global metal wire length (best
architecture with global length 16 wires does not have global CB connections and is not included here). (b) Sweeping switch block flexiblity

for best interconnect topologies at each global metal wire length.

Fig. 13: Critical path routing delay results for a 4-input LUT logic block architecture without internal crossbars.



(e) On CB/SB, Off CB/SB: Global wires can be driven and can
drive both LB pins and a fraction of the available semi-
global wires. This topology provides no delay benefits over
(c) for shorter wire lengths and no benefits over (d) for
length-16 wires.

The results show the importance of connections between
different wire types, and all topologies with guaranteed con-
nections between wire types performed relatively well. How-
ever, the exact choice of topology depends on global-layer wire
length. Two important observations are:

• Shorter global-layer wires are best driven directly
from the output pins of FPGA blocks to give signals
immediate access to fast routing resources. On the
other hand, longer unidirectional wires have fewer
start points in each channel segment, and should be
driven from wires on the semi-global layer to provide a
greater degree of flexibility. Lastly, global-layer wires
of all lengths should drive regular wires on the semi-
global layer; the restriction of having via connections
every four tiles makes it impractical for global wires to
drive pins directly through the input connection block
without traversing the semi-global layer wires first

• While popular commercial architectures use long wire
lengths (length 16+) on the least-resistive metal layers,
our explorations show that with the appropriate topol-
ogy, shorter wire lengths can be made surprisingly
fast. Just as short wires are more routable, shorter
wires on the global metal layer allow a greater num-
ber of signals to take advantage of the fast routing
resources, potentially speeding-up a larger number of
timing-critical connections.

Figure 12 shows CB and SB flexibility sweeps for the
best topology at each global wirelength – increased Fc and
Fs appear to add capacitive loading without improving critical
path delay through extra routing flexibility.

The sensitivity of architecture explorations to experimental
setup is well known [25], and in addition to averaging our
results over multiple benchmark circuits, we have also repeated
our topology explorations using a logic block architecture
similar to [21], which has eight 4-input LUTs and no internal
crossbars. Figure 13 shows the critical path routing delays for
this architecture over a subset of medium-size VTR bench-
marks. While our main observations remain the same, one
important difference is present: the lack of internal crossbars
places an increased emphasis on routing flexibility, and both
length-8 and length-16 global-layer wires must now be driven
by regular wires on the semi-global layer; only length-4 wires
see a delay benefit using On-CB topologies.

Lastly, we suspected that length-16 global-layer wires may
further reduce critical path delay when larger benchmarks are
used. We checked our results using only the three largest VTR
benchmarks but did not observe improvement in the relative
delay performance of longer wire lengths.

VI. CONCLUSION

FPGA interconnect architecture has always been a com-
plex topic and the rapidly increasing RC delay of scaling
interconnect motivates FPGA architects to use the available
metal layers more efficiently. In this paper we have sought to
fill a gap in published explorations of interconnect topology

by enhancing architecture models and tools, and exploring
interconnect hierarchies to take advantage of fast global-layer
routing across different wire lengths.

While traditional switch block patterns like the subset,
universal and Wilton had significant routability differences
when bidirectional architectures were used, we have shown in
Section V-B that unidirectional wires act to permute switch
patterns beyond what a traditional switch block specifies.
With the exception of short wire lengths, the requirement of
connecting to wire start points places a limit on how restrictive
a switch pattern can be made, and analogues of low-routability
patterns like the subset switch block are difficult to create.
Therefore, rather than focusing on the detailed switch pattern,
in Section V-C we explored high-level hierarchies to connect
fast global-layer wires to the rest of the routing, and suggest
two observations for exploiting this fast but scarce metal layer:

• For greatest delay benefits, global wires of all lengths
should drive regular semi-global layer wires. As well,
shorter wires are best driven directly from the con-
nection block while long wires are best driven from
regular semi-global layer wires.

• With the right interconnect topology, shorter wires
on the global metal layer can be surprisingly fast.
Compared to long wires, the higher routing flexibility
of shorter wires allows more signals to use the fast
routing resources, which can further decrease critical
path routing delay.

Our best topologies follow the above rules and improve the
critical path routing delay by 17% compared to architectures
with no global layer wires, and by 5-13% compared to archi-
tectures with global layer wires using the default VPR switch
pattern.

In our explorations we have allocated 15% of the available
channel width to global-layer wires and have restricted global-
layer wire connections to one in four logic blocks. While these
choices are reasonable [14] [23] [24], it would be interesting
to investigate the impact of via depopulation and percentage
of global-layer wires on the choice of interconnect topology,
and future work will explore this fully.

ACKNOWLEDGEMENT

This work is funded by Lattice Semiconductor and the
NSERC/Altera Industrial Research Chair in Programmable
Silicon. We would like to extend our thanks to Jun Zhao,
Duan-Ping Chen, Brad Sharpe-Geisler and David Rutledge
for their helpful discussions and suggestions. Computations
were performed on the gpc supercomputer at the SciNet HPC
Consortium. SciNet is funded by: the Canada Foundation
for Innovation under the auspices of Compute Canada; the
Government of Ontario; Ontario Research Fund - Research
Excellence; and the University of Toronto.

REFERENCES
[1] D. Lewis et al., “Architectural Enhancements in Stratix V,” in FPGA,

2013, pp. 147–156.
[2] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-

Submicron FPGAs. Kluwer Academic Publishers, 1999.
[3] International Technology Roadmap for Semiconductors, “2011 Report,

Interconnect Chapter.”
[4] G. Yeap, “Smart Mobile SoCs Driving the Semiconductor Industry:

Technology Trend, Challenges and Opportunities,” in IEDM, 2013.



[5] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and Single-Driver
Wires in FPGA Interconnect,” in FPT, 2004, pp. 41–48.

[6] V. Betz and J. Rose, “FPGA Routing Architecture: Segmentation and
Buffering to Optimize Speed and Density,” in FPGA, 1999, pp. 59–68.

[7] S. J. E. Wilton, “Architectures and Algorithms for Field-Programmable
Gate Arrays with Embedded Memory,” Ph.D. dissertation, University
of Toronto, 1997.

[8] Intel Corporation, “Advancing Moore’s Law on 2014,” 2014.
[9] C. Chiasson and V. Betz, “COFFE: Fully-Automated Transistor Sizing

for FPGAs,” in FPT, 2013, pp. 34–41.
[10] J. Rose and S. Brown, “Flexibility of Interconnection Structures for

Field-Programmable Gate Arrays,” JSSC, pp. 277–282, 1991.
[11] International Technology Roadmap for Semiconductors, “2013 Report,

Interconnect Chapter.”
[12] Xilinx, “UltraScale Architecture and Product Overview.”
[13] D. Lewis et al., “The Stratix II Logic and Routing Architecture,” in

FPGA, 2005, pp. 14–20.
[14] D. Lewis et al., “The Stratix Routing and Logic Architecture,” in FPGA,

2003, pp. 12–20.
[15] Y.-W. Chang and D. F. Wong, “Universal Switch Modules for FPGA

Design,” ACM TODAES, vol. 1, no. 1, pp. 80–101, 1996.
[16] M. Imran Masud, “FPGA Routing Structures: A Novel Switch Block

and Depopulated Interconnect Matrix Architectures,” Master’s thesis,
University of British Columbia, 1999.

[17] J. Luu et al., “VTR 7.0 : Next Generation Architecture and CAD System
for FPGAs,” ACM TRETS, vol. 7, no. 2, 2014.

[18] J. Swartz, V. Betz, and J. Rose, “A Fast Routability-Driven Router for
FPGAs,” in FPGA, 1998, pp. 140–149.

[19] A. Sharma and S. Hauck, “Accelerating FPGA Routing Using
Architecture-Adaptive A* Techniques,” in FPT, 2005, pp. 225–232.

[20] S. Chandrakar, D. Gaitonde, and T. Bauer, “Enhancements in UltraScale
CLB Architecture,” in FPGA, 2015, pp. 108–116.

[21] Lattice Semiconductor, “ECP5 and ECP5-5G Family Data Sheet,” 2016.
[22] G. Lemieux and D. Lewis, Design of Interconnection Networks for

Programmable Logic. Springer New York, 2004.
[23] K. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Titan: Enabling

Large and Complex Benchmarks in Academic CAD,” in FPL, 2013.
[24] V. Betz and J. Rose, “Circuit Design, Transistor Sizing and Wire Layout

of FPGA Interconnect,” in CICC, 1999, pp. 171–174.
[25] A. Yan, R. Cheng, and S. Wilton, “On the Sensitivity of FPGA

Architectural Conclusions to Experimental Assumptions, Tools, and
Techniques,” in FPGA, 2002, pp. 147–156.


