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Abstract—Although dynamic voltage scaling (DVS) is a pop-
ular power reduction solution that has been widely used by
processors and ASICs, it is still not commercially adopted by
FPGAs. A unique feature of FPGAs that leads to challenges in
adopting DVS is that the critical path and hence the minimum
safe Vdd depends on the configured application. We present a
robust DVS technique that solves these challenges. For each
application, we generate a calibration table (CT) that stores
the actual failing points of that application on a specific FPGA,
under various operating conditions. This CT is used to scale
Vdd while the application is running to guarantee safe operation
with minimal power consumption. We develop an automated
tool (FRoC) that ensures a Fast-Robust-Calibration of the
FPGA to any application using it. FRoC ensures that the
calibration process is invisible to FPGA users and does not
add any extra manual steps to the design process. We show
that our proposed DVS technique achieves a 33% total power
reduction on two large applications.

1. Introduction

FPGAs’ ability to be programmed allows them to im-
plement almost any digital circuit with a low non-recurring
engineering (NRE) cost and a short time to market [1].
However, their programmability comes at a cost. Studies
in [2] show that FPGAs consume 7-14 times more dynamic
power and 5-87 times more static power than ASICs. Al-
though the majority of earlier academic research on FPGAs
focused on optimizing the area-delay metric, e.g. [3], [4], the
end of Dennard scaling has driven more research towards
reducing power consumption [5], [6]. While transistors are
getting smaller, supply voltage has stopped scaling due
to leakage current imposed constraints on Vth and indeed
the supply voltage of high-end FPGAs from the top two
FPGA vendors has remained almost constant from 40-nm
to 20-nm technology. As we continue packing ever more
functionality on an FPGA with essentially constant Vdd,
power consumption is becoming a major concern especially
with the increasing demand for low-power compute chips.

One can reduce FPGA power consumption at different
design levels such as device-, circuit-, CAD- or system-
level. DVS is an example of a system-level power reduction
scheme which scales Vdd to the minimum value that still
guarantees successful operation at the desired speed. Since
dynamic and static power are quadratically and approxi-
mately exponentially related to Vdd, a small reduction in
Vdd results in a significant total power reduction. DVS offers
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Fig. 1: Proposed DVS system overview.

this power reduction without any changes to existing FPGA
architectures and CAD tools. It is also independent from
the underlying FPGA technology and thus is a long-lived
solution that can add its benefits to many architectures and
process generations.

In [7], we proposed a new DVS technique that is based
on an off-line calibration procedure. Fig. 1 shows the system
overview of the proposed technique. For each application,
a calibration bit-stream is created which includes an exact
replica of the application’s critical paths, a test controller,
on-chip heater circuits and a calibration controller to control
the clock frequency and Vdd. The calibration bit-stream is
used to test the critical paths of the application under dif-
ferent temperatures and Vdd to find the maximum operating
frequency (Fmax) at every temperature-voltage pair on the
specific FPGA running the application. On-chip heaters are
implemented using the FPGA’s soft logic to allow heating
the die without needing any external equipment. Fmax val-
ues are stored in a calibration table (CT) and are used to
set Vdd depending on the temperature while the application
is running. In essence, we measure an application’s Fmax,
at different operating conditions, in two steps; an initial
estimate using worst-case delays is done by a commercial
static timing analyser (STA), as usual. Next, we use this
estimate along with the STA-identified critical paths to
carry out a second more accurate hardware measurement of
Fmax on the specific target FPGA under various operating
conditions.

Our work in [7] focused on designing an accurate high-
frequency digital dc-dc power converter to reliably generate
the variable Vdd along with the controller required to heat
up the chip, control the clock frequency and scale Vdd.



To prove the concept (in [7]), we manually generated one
calibration file by writing HDL code with location and
routing constraints to replicate only the single most critical
path of one application.

This work focuses on generating the calibration bit-
stream, the part highlighted with a blue box in Fig. 1.
The calibration bit-stream must capture all speed limiting
paths of the application such that the generated CT is
robust enough to ensure that the application is running error
free. To capture within-die process variation, the calibra-
tion process should, at least, be carried out at the initial
burn-in of each FPGA running the application. Ideally, to
accommodate device aging effects such as bias-temperature
instability [8], each FPGA should be calibrated with every
power-up which means that the calibration time should be
within seconds or at the maximum minutes. To this end, we:

• Develop a testing procedure to robustly measure an
application’s Fmax by measuring the delay of many
overlapping critical paths, while only using one bit-
stream and a short test time.

• Develop the FRoC (Fast Robust Calibration) tool,
which automates the generation of the calibration
bit-stream with the tested paths and test controller
circuitry for a generic application.

• Explore the robustness of CTs generated from dif-
ferent calibration bit-streams, by using various cov-
erage metrics and hardware measurements.

2. Background and Related Work
CAD tools are designed to be pessimistic since they must

guarantee operation under worst-case conditions. These con-
ditions include process variation, operating temperature and
IR-drop. Process variation is steadily increasing as technol-
ogy scales down and can be divided into die-to-die and
within-die variation [9]. Imperfections in the fabrication
process result in oxide thickness fluctuations, in-consistent
dopant concentrations, and stress variation [10]. These im-
perfections lead to variation in transistor performance; [9]
measured a 15% systematic within-die variation in a 65-nm
FPGA.

Although DVS has been successfully deployed in var-
ious types of chips (notably CPUs and ASICs), it has not
been commercially adopted in the FPGA industry. Applying
DVS to FPGAs is inherently difficult due to the nature of the
chip where the critical paths are application dependent and
unknown at manufacturing time. For the same reason, FPGA
vendors are forced to be conservative in their timing models
and speed-bins; every resource (wire and block) must be
faster than the timing-limit of a speed-bin for a chip to
be placed in that bin. These factors add up, resulting in
operating FPGAs with a significant timing margin, which
we can convert to Vdd reduction. Thus, we expect that gains
from applying DVS to FPGAs would be higher than other
chips.
2.1. Related work

The most relevant power reduction solution available in
the industry is the SmartVID adopted by Altera recently in

their Arria 10 chips [11]. For each device, at manufacturing
test time, SmartVID identifies the minimum Vdd for this
specific device that still meets performance requirements.
This value is then stored on-chip in non-volatile registers.
Altera also provides an intellectual property (IP) block that
reads these values and sends them to a voltage regulator
system controller to set Vdd. SmartVID uses a closed-loop
control system by having sense lines from the die power rail
to compensate for voltage drops under high current load.
SmartVID also has limited temperature adaptation; below
10 ◦C the (higher) nominal Vdd is used. SmartVID is a
step towards reducing pessimism due to global (die-to-die)
variation. However, without considering the target applica-
tion, pessimism due to within-die variation is still necessary.
Moreover, SmartVID does not identify the optimum Vdd at
different temperatures.

DVS on FPGAs has also been investigated in aca-
demic studies, and previous work can be divided into two
categories: DVS using a logic delay measurement circuit
(LDMC) [12] and DVS using on-line monitoring [13]–[17].

Chow et al. propose using an LDMC to track the delay
of the application [12]. They first exercise the application
at nominal conditions using a linear feedback shift register
(LFSR) and store the correct output. Then, they test the
application at lower Vdd until it fails and store the corre-
sponding signal from the LDMC. During normal operation,
they use the LDMC signal as a metric to scale Vdd. The
main problem with such an approach is the assumption
that the LFSR supplying the input vector actually exercises
the critical path of the application. This is not a realistic
assumption as the application gets larger with many buried
states. For example, a circuit containing a simple 64-bit
counter needs 264 cycles just to reach the final state of the
counter.

The idea presented in [13]–[17] is based on attaching
shadow registers to monitor the application’s high criticality
(low slack) registers. The shadow registers’ inputs are the
same as the monitored registers, but their clock leads the
monitored registers’ clock by a variable phase offset. By
varying this phase offset and comparing the output of the
monitored registers and the corresponding shadow registers,
the slack can be measured on-line. This information is used
to scale Vdd until the minimum allowed slack is reached. A
major limitation of this technique is the fact that registers
in hard blocks like DSPs and BRAMs are not observable,
so critical paths ending at a register inside one of the hard
blocks cannot be monitored by a shadow register. On-line
monitoring also adds resource and power overhead to the
application due to the extra shadow registers and slack
measurement circuitry added to the application. Another
problem arises because the measured slack depends on the
input data and the state of the application. This means that at
some time the critical paths may not be exercised allowing
the system to work at a lower Vdd which would save power.
However, if suddenly the input changes and exercises the
critical paths, errors could actually occur that affect the
whole system. This maybe acceptable in processors where
the state before the error could be retrieved, but it is quite
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Fig. 2: Testing a single path’s delay.

complex to handle errors in all applications on an FPGA.
Since most industrial designs use hard blocks and have many
internal states, the approaches discussed above cannot be
applied to them.

In the testing community, a body of research focuses on
testing delay faults on FPGAs. While not targeting DVS, it
is still relevant to our proposed technique. The research can
be divided into application dependent [18], [19] and applica-
tion independent [20], [21] testing. Application independent
testing is usually done by FPGA vendors to eliminate faulty
chips and to speed-bin the remaining chips. Application
dependent testing and especially the work presented by
Harris et al. in [18] is more relevant to our proposal. They
divide the paths they want to test into different groups,
such that each group contains only disjoint paths. For each
group, they generate a separate bit-stream with the whole
application and testing logic. Then, they test the paths for
delay faults and repeat this for all bit-streams. This can result
in hundreds of bit-streams as paths tend to overlap quite
frequently. This results in long CAD run times as each bit-
stream requires a separate compile of a design, and even
more importantly, large flash storage requirements and long
test times as many bit-streams must be stored and configured
into the device during testing. Our DVS solution cannot
tolerate such a long testing time, especially since we want
to measure the application’s Fmax under various operating
conditions which means the entire testing procedure must
be performed many times.

3. Calibration Requirements and Approach

Our DVS solution requires that the calibration bit-stream
can accurately measure the application’s Fmax. This section
presents the challenges and the testing procedure we devel-
oped to satisfy this requirement. Since we envision that the
calibration process could be carried out at every power-up,
it is also important that our testing procedure minimizes test
time. To avoid long reconfiguration times, we designed our
testing procedure to use only one calibration bit-stream.

As explained in 2.1, simply driving the primary inputs
of an application with random inputs and checking the
output is not a robust way to measure its Fmax. A more
robust alternative is to extract the application’s critical paths,
sensitize them and measure their delay. To do so, we ini-
tially replicated the application’s single most critical path
and tested it. Measuring the delay of a single path on an
FPGA can be done by converting all LUT configurations
(LUT masks) on the path to perform an XOR, as the delay
through a LUT is essentially independent of its function.

The motivation for changing the LUT mask is to have the
ability to easily sensitize the path and control the signal
transition at every LUT. Fig. 2 shows an example of a
single path being tested; every LUT on the tested path in the
original design is transformed to an XOR while maintaining
the exact original routing wires between every node. We
control the transition at every LUT through the available
control signals (Edgen), and we check the delay by varying
the clock (CLK) frequency until the path fails timing. To
detect timing failures, we toggle the source (S) register’s
input every cycle and check the target (T ) register’s output.
If it is not toggling every cycle, then the path has failed
timing at the current clock frequency.

However, measuring an application’s Fmax based only
on its single most critical path can result in optimistic
values due to within-die variation and thus, is not a ro-
bust technique. Moreover, FPGA components’ delay have
different sensitivity to Vdd changes. For example, an FPGA
routing switch’s delay reacts differently to scaling Vdd than
a LUT’s delay. FPGAs often drive the pass-transistor of
routing switches with a separate, fixed voltage that is higher
than Vdd (gate boosting) [22]. Fig. 3 shows a typical FPGA
routing switch with a gate-boosted (Vgb) pass-transistor.
When Vdd is lowered, Vgb stays the same which is different
than what happens in a LUT where the gate voltage of
the pass-transistor scales with Vdd. This difference alone
implies that the delay across a LUT and a routing switch
change differently when Vdd is scaled. Since we measure
the application’s Fmax at different Vdd, we must measure
the delay of many near critical paths to capture the actual
slowest path at each Vdd. Measuring the maximum operating
frequency by measuring the delay of many paths is more
difficult. When the paths are disjoint, we could replicate the
structure shown in Fig. 2 for each path and test all paths
simultaneously. However, typically paths are not disjoint and
overlap in the resources they use.

The problem with overlapping paths is that we lose full
control over LUTs shared by more than one path, which
may prevent us from controlling the transition type at each
LUT of every tested path. Also, timing errors could occur
in overlapping paths that are eventually masked out and are
not observable at target registers. To better understand the
problem, we divide overlapping paths into two basic types:
fan-in overlap and fan-out overlap; an example of each type
is shown in Fig. 4.

Fan-out overlap occurs when multiple paths share a
LUT through the same input port but fan-out to different
destinations. This type of overlap has minimal effects on
the testing procedure since we can still use the Edge control

Vgb
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Fig. 3: A typical FPGA routing-switch with gate-boosted
pass-transistor.
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signal on LUTs to achieve the desired transition and there is
no possibility of masking out timing errors. Fan-in overlap
occurs when multiple paths use the same LUT through
different input ports. This has a significant effect on the
testing procedure. To guarantee that all timing errors are
observable at the output registers, we have to ensure that the
paths cannot interfere in a way that masks any timing errors.
For example, in Fig. 4b if we test both Path3 and Path4

simultaneously, timing errors could be masked when both
paths fail timing. To handle this problem, we propose to test
fan-in overlapping paths sequentially. When testing a path,
we fix (keep constant) all off-path inputs to each LUT on the
currently tested path. In the absence of re-convergent fan-
outs, we can fix off-path inputs by fixing all source registers
that could cause them to toggle, so in Fig. 4b, when testing
Path3 we fix node Y by fixing the output of register S2.

Re-convergent fan-out occurs when two or more paths
have a fan-out overlap followed by a fan-in overlap and it
presents additional test challenges. Fig. 5 shows an example
of a re-convergent fan-out where Path1 and Path2 have a
fan-out overlap at Atom A and then a fan-in overlap at LUT
B. An atom could be a LUT or a register. In this case,
when testing Path1, if we fix node Y by fixing all source
registers that affect it, node X will also be fixed making it
impossible to test Path1. To handle this problem, we add
another control signal to each LUT that allows us to fix the
LUT’s output. With this control signal, we can fix all off-
path inputs by fixing the output of the LUTs driving them.
So in Fig. 5 when we are testing Path1 we would set the
control signals of the LUT feeding Y to fix its output at a
constant value. This gives us the ability to measure the delay
of many overlapping paths in the presence of re-convergent
fan-outs, using only one calibration bit-stream.

After considering the modifications required to handle
overlapping paths and re-convergent fan-outs, we developed
a LUT mask that allows us to not only control the transi-
tion’s polarity at every LUT but also lets us fix its output to

a constant value. Instead of programming every tested LUT
to a simple XOR (as in Fig. 2) our new function is

Combout = Fix • (I1 ⊕ I2...⊕ IK−2 ⊕Edge) + Fix (1)

where Fix and Edge are control signals that fix the output
and select the edge transition’s type, respectively. K is the
number of LUT inputs (4 to 6 for modern FPGAs) and Ii is
the ith LUT input. I1 to IK−2 are the available inputs that
can be connected in the same topology as the application
circuit to allow us to model and test overlapping paths, but
Fix and Edge cannot be connected to any tested path and
are only used to control testing. Given that we fix all off-
path inputs, Edge gives us the flexibility to model all edge
transition types between the on-path input and Combout.
The downside of having two control signals, is that we can
only test paths using the K-2 available input ports of a LUT.

3.1. Carry Chain Consideration

The above description assumes that an FPGA’s Logic
Element (LE) has one LUT and one output (Combout).
However, almost all modern FPGAs have some form of
carry-chains to speed-up addition. Since our target for this
work is a Cyclone IV FPGA, we studied its carry-chain and
customized our testing procedure towards its architecture.
LEs in Cyclone IV include a 4-input LUT and they have a
Combout and a Cout output [23]. Combout is the standard
output which can drive any wire connected to the LE. Cout
is a special output that computes the carry of a 3-bit addition
and can only drive a special input (Cin) of the neighbouring
LE. Cout is only dependent on three inputs and one of them
is Cin, which can’t be driven from general routing wires. If
we use two of these three inputs to control Cout the same
way as Combout in Eq. 1, we would only test paths using
one input port which reduces our coverage of tested paths
significantly. The adder function implemented in the carry-
chain has some characteristics that we can exploit: Cout is
negative unate in Cin and it is either positive or negative
unate in all other inputs. Based on these characteristics, we
can eliminate the Edge control signal (for LUTs in carry-
chains) that selects the type of edge transition to Cout and
use different LUT masks to achieve the required transition
occurring in the application design. This means that from
the three input ports that Cout depends on, we only connect
one port to a control signal (Fix) and thus, we can test paths
using the remaining two ports.
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3.2. Local Routing Congestion Consideration
Adding two control signals (Fix and Edge) to each LE,

could result in local routing congestion. Each cluster of LEs
(LAB) has a certain number of LAB lines that connect LE
inputs to the general routing [24]. Since in most designs
not all LE inputs in one LAB are used or they usually share
signals, FPGAs are designed such that the number of LAB
lines is smaller than the sum of all LE inputs in a LAB [25].
To minimize the probability of running out of LAB inputs,
we try to share as many control signals as possible and
eliminate any redundant control signals. For example, we
only need to fix the output of an LE when one of its fan-
outs is using more than one of the available inputs. So in
Fig. 4 we would only add the Fix control signal to LUT D
and LUT E.

4. FRoC
It is not reasonable to ask users to manually replicate

paths they want to test, apply all the constraints described
in the previous section and add failure testing circuitry to
get the CT for each application they design. We developed
FRoC to perform this process automatically with no addi-
tional input beyond the design. We integrated FRoC with a
commercial FPGA CAD tool (Quartus Prime). Fig. 6 shows
the proposed design flow augmented with FRoC, where all
test generation is invisible to the user.

First, we run placement and routing on the user’s design;
then we use Quartus Prime STA to analyse the design (first
measurement) and generate timing reports for the top critical
paths of the circuit. FRoC takes the design and the Quartus
Prime STA report as inputs, and generates a new calibration
design and constraints that are fed back into Quartus prime
to generate the calibration bit-stream. To create this design,
FRoC:

• Extracts candidate paths and selects which candidate
paths will be tested.

• Replicates the selected paths.
• Groups the replicated paths into test phases and

generates the test controller.

4.1. Path Extraction and Selection
FRoC runs the Quartus Prime STA and extracts the

application’s top critical paths (candidate paths). Ideally, we
would select all candidate paths to replicate and test, but
there are several cases where we must ignore (not replicate)
some candidate paths in order to accommodate the control
circuitry we require to test the other selected paths.

There are four cases where we are forced to ignore
paths. First, we need to have two control signals (Edge
and Fix) for each LUT, so we remove paths to ensure
that at least two LUT inputs are free for control signals.
Our tool chooses which ports will be connected to control
signals in a manner that ensures that the less critical paths
are the ones to be ignored. For example, if the candidate
paths use all of a certain LUT’s inputs, our tool ranks the
LUT’s input ports based on the most critical path at each
input; then it removes all paths using the least important
port. This heuristic ensures that as we increase the number
of candidate paths, we do not ignore the more critical paths.

The second reason for ignoring paths is to avoid local
routing congestion. Although, as mentioned in Section 3.2,
we try to minimize the number of external control signals
going into a LAB, we can still face situations where the
number of external signals is higher than or almost equal
to the number of LAB lines. Our tool tracks the number
of external signals going into a LAB and ensures that
this number is at most 90% of the number of LAB lines.
We leave 10% of the LAB’s input signals free to ensure
routability with the sparse crossbar between LAB lines and
LUT inputs [26]. If the input signal count exceeds the 90%
threshold for some LAB we rank the LAB’s external signals
based on the slack of the paths using them, and we ignore
all paths using the external signal with the highest slack. We
repeat this procedure for the next highest slack input until
we are below the threshold.

The third reason for ignoring paths is re-convergent fan-
out. Although the Fix control signal allows us to test most
re-convergent fan-out paths, it is unable to break one type.
In Fig. 5, if either the upper (U ) or lower (M ) path from
Atom A to LUT B contains 0 LUTs, then it is impossible
to fix the off-path input at LUT B while testing both paths.
For example, if only M is 0, we can test Path2 by fixing
node X . However, we can’t fix node Y and test Path1. Our
tool breaks this connection by removing the edge with more
slack.

The last reason for ignoring paths occurs at LUTs having
Cout as an output. As explained earlier, only one control
signal is needed for Cout. However, one of the inputs (Cin)
controlling Cout is only accessible from the neighbouring
LUT. So if we have to control a LUT through Cin, we
must ensure that the LUT driving this Cin is not used by
any other path. In case this LUT is used by other paths, we
ignore the less critical paths to handle this scenario.
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4.2. Path Replication
To replicate all selected paths, FRoC first creates primi-

tives (WYSIWYGs) [27] to represent each LUT or register
on the replicated paths. If the LUT in the original circuit
does not use Cout, then it is created with a LUT mask
implementing Eq. 1. If Cout is used, the chosen LUT mask
depends on the transition types between the LUT inputs and
Cout in the user design. In the calibration bit-stream, some
LUT inputs come from the replicated paths while others
are control signals to sensitise paths and control transition
polarity. Next, FRoC fixes the location of every created LUT
to match the exact location from the user design. Finally,
FRoC generates a routing constraints file [27] that forces
the routing of the replicated paths to match that in the user
design, including both the routing wires and LUT input ports
used.
4.3. Path Grouping and Test Controller

After replicating all selected paths, FRoC starts grouping
paths that can be tested simultaneously into test phases by
generating a path-relation graph that is similar to the graph
presented in [18]. Each node in this graph represents a
path and an edge between two nodes indicates that these
two paths cannot be tested at the same time. To generate
the graph we loop across all replicated LUTs and at each
input port we add edges between paths using the current
port and all paths using LUTs driving the other input ports.
After creating the graph, FRoC colors the graph greedily
by visiting nodes in the order of criticality. Each color
represents a test phase, so nodes with the same color will be
tested in parallel. We formulated this as a graph colouring
problem to minimize the number of test phases and hence
minimize testing time.

FRoC then generates HDL for the test controller which
consecutively loops through all test phases and at each phase
performs the following steps:

• Sets the appropriate control signals, generates input
stimulus for the current test phase and waits for five
cycles, to let the control signals settle.

• Checks for errors at the target registers of paths in
the current test phase for Y cycles.

The block diagram of the test controller is shown in
Fig. 7. The test controller toggles the inputs of source reg-
isters that are part of the paths being tested in the current test
phase and fixes the other source inputs to a constant value.
To set the appropriate control signals, the test controller sets
the Fix control signal to fix the output of all LUTs driving
an off-path input to the LUTs forming the paths tested at the
current phase. Also, it sets the Edge control signal to get
the worst-case edge transition at each tested LUT. FRoC
uses the user design timing report (generated by Quartus
Prime STA) to identify the worst-case combination of edge
transitions for every path. However, the test controller is also
able to test all possible rise/fall combinations at the expense
of longer test time. As shown in Fig. 7, the test controller
checks for errors at all target registers. It also contains an
OR-tree for each test phase that only checks for errors in
target registers that are part of the paths being tested at this
phase. At any point in time, the error is the output of the
OR-tree that corresponds to the current test phase.

The chosen time (Y cycles) to check for errors at each
test phase is affected by several factors like clock jitter and
power supply ripple. We define the maximum operating fre-
quency as the frequency that generates zero errors through
the entire testing process. This is different than the definition
used in [28], [29], as our goals are different. In [28], [29],
testing is done to measure the delay of some resources on
the FPGA, so it is important to remove clock uncertainty to
report an accurate delay. However, we are trying to measure
the maximum operating frequency of the application; thus,
we must account for the worst-case jitter and power supply
ripple. We chose a testing time that is long enough to capture
high-frequency clock jitter that can affect cycle times and
capture the lowest point of the power supply ripple, during
each test phase. The switching frequency of our designed
dc-dc converter is 500 KHz, which gives an output voltage
ripple with a 2 µs period. We test every test phase for at
least two periods (4 µs) of the power supply ripple which
also covers enough cycles to capture high-frequency clock
jitter at the tested frequencies.

It is critical that all parts of the test controller fail at
a higher frequency than the replicated paths. To ensure
this, we deeply pipeline the test controller, allowing only
one stage of logic between pipeline stages in all OR-trees.
We also allow the control signal to settle for five cycles
before checking for errors. Moreover, we generate timing
constraints that guide Quartus Prime to spend more effort
minimizing the delay of the test controller and other parts
of the calibration design not related to the replicated paths.

5. Experiments and Results
To evaluate our DVS technique we developed bench-

marks and targeted them to a Cyclone IV EP4CE115F29C7
FPGA manufactured using TSMC 60-nm technology. The
FPGA is mounted on a DE2-115 board and has a nominal
voltage of 1.2V. We experimented with two different ap-
plications. Our first benchmark is based on a dual-channel
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51-tap low pass FIR filter generated from the Quartus IP
catalogue. The second benchmark is based on a full crossbar
(XBar) with 16 100-bit-wide-ports and registered I/Os. To
validate and assess the robustness of the generated CT, we
need to know the actual maximum operating frequencies
of the benchmarks at different supply voltages. This also
helps us quantify the pessimism added by Quartus Prime,
in the absence of DVS. In order to do so, we wrapped
our applications with a built-in-self-test (BIST) structure.
Fig. 8 shows an overview of our benchmarks’ general
structure; both benchmarks have the same structure but use
different applications (XBar or FIR). The linear feedback
shift register (LFSR) feeds the circuit with pseudo-random
inputs, while the multiple input signature register (MISR)
analyses the output signals at each cycle. We ensured that
the circuit under test fails timing before other parts. As
explained in Section 2.1, this set-up is not guaranteed to
exercise all critical paths of a general application, so we
chose our applications to be feed-forward circuits with no
buried states. We compile each benchmark through Quartus
Prime with an unachievable 200 MHz timing constraint and
default settings. Table 1 summarizes the resource usage and
speed reported by Quartus Prime for both benchmarks.

To identify the actual Fmax, we first run the application
at nominal voltage and nominal Fmax reported by Quartus
Prime for 232 cycles and store the output signature as the
golden reference. We then vary Vdd, run the application
again for 232 cycles at different frequencies and check the
result of comparing the output signature with the golden
signature. We powered the FPGA using a variable output
DC power supply and used a function generator to provide
the clock; this allowed us to manually vary both Vdd and
the clock frequency. We measured Fmax at different Vdd

values for both benchmarks and plot them in Fig. 9. This
graph shows that the actual Fmax is on average 50% higher
than the reported nominal Fmax and that the application can
successfully run at the nominal Fmax with a 20% reduction
in Vdd, on average.

An important question to answer is how many candidate
paths should FRoC extract to generate the CT. At one
extreme, extracting and testing one path gives the shortest

Table 1: Benchmarks’ summary

FIR XBar

Logic Elements 67,505 (59%) 26,579 (23%)
Quartus Prime (nominal) Fmax 121 MHz 115 MHz
Nominal Vdd 1.2 V
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Fig. 9: Benchmarks maximum operating frequencies.

test time but is not robust, as explained earlier. At the other
extreme, extracting and testing all possible paths results
in high confidence in the generated CT but is not really
feasible. Paths can be exponential in the number of nodes
in a circuit, so to test all paths we must use many bit-streams
and the test time for each bit-stream would be significantly
long. Moreover, testing all paths is unlikely to be necessary
as many paths have a much lower delay than the critical path
and will not add any real information to the CT. We believe
that a compromise should be made between test time and the
number of extracted paths. To gain insight into this trade-
off, we performed several experiments and we divide the
results into coverage analysis and hardware measurements.

5.1. Coverage Analysis
In this section, we investigate the achieved coverage

when we vary the number of candidate paths and vary their
extraction procedure. Moreover, since we ignore several
candidate paths to accommodate the testing of others, we
also quantify the effect of the ignored paths. We define two
different sets of paths: the all paths set (AP) which contains
all paths of a circuit and the pairs only set (PO) which
contains only the most critical path between every pair of
registers. Since many paths are dominated by others, testing
every path would cost us test time without much-added value
to the CT. So we use PO as a heuristic representation of the
important paths that actually limit the circuit speed. FRoC
enabled us to run many experiments by varying the number
of candidate paths it extracts and changing the set (AP or
PO) from which it extracts them (candidate paths).

To quantify the effect of ignoring paths, Fig. 10 shows
the normalized ignored paths and LUTs across different
numbers of candidate paths extracted from the PO set.
The figure also quantifies the impact of each constraint
(explained in Section 4.1) that can cause us to ignore paths.
As more paths are added, we are forced to ignore some paths
to allow the insertion of our testing logic. The histogram
shows that the dominant constraint for ignoring paths and
LUTs is the number of inputs constraint, which is the sole
reason for ignoring paths in the XBar benchmark. This
suggests that as we move our testing procedure to high-end
FPGAs with larger LUTs, significantly fewer paths will be
ignored. Another important point is the fact that the amount
of ignored LUTs (LUTs in the candidate paths but which



  0%

  5%

  10%

  15%

  20%

  25%

  30%

  35%

  40%

  45%

C
B

F
IR C
B

F
IR C
B

F
IR C
B

F
IR

P
e

rc
e

n
ta

g
e

 o
f 

ig
n

o
re

d
 p

a
th

s

Number of candidate paths

100 500 2,000 10,000

Re−convergent fan−out constraint
Routing congestion constraint
Adder inputs constraint
LUT inputs constraint

(a) Ignored paths

  0%

  1%

  2%

  3%

  4%

  5%

  6%

  7%

C
B

F
IR C
B

F
IR C
B

F
IR C
B

F
IR

P
e

rc
e

n
ta

g
e

 o
f 

ig
n

o
re

d
 L

U
T

s

Number of candidate paths

100 500 2,000 10,000

Re−convergent fan−out constraint
Routing congestion constraint
Adder inputs constraint
LUT inputs constraint

(b) Ignored LUTs

Fig. 10: The number of ignored paths and LUTs when
extracting different numbers of candidate paths from PO.

are not present at all in the replicated paths) is significantly
less than ignored paths. For the XBar benchmark when we
ignore around 45% of the paths, we only ignore less than
3% of LUTs. This means that even though we are ignoring
many paths, we are still covering most of the LUTs in the
candidate paths.

Although we are testing the majority of LUTs, we must
ensure that the ignored LUTs are less critical and that we are
testing the remaining LUTs through the longest paths using
them and not just any path. To verify this, we evaluated the
timing edge coverage of the replicated paths. A timing edge
is a connection between the pins of an atom. This connection
could be between the input and output pin of an atom (cell
delay) or the output pin of an atom and input pin of another
atom (connection delay). We binned timing edges based on
their criticality, which is the ratio of the longest path using
this timing edge to the most critical path of the application.

Fig. 11 shows the coverage of the replicated paths’
binned timing edges for both benchmarks, when FRoC
extracted 10,000 candidate paths from the PO and AP set.
The blue and grey bars are the coverage when the 10,000
paths are extracted from the PO set normalized to the tim-
ing edges in these 10,000 candidate paths (before ignoring
paths) and normalised to all timing edges in the benchmark,
respectively. Since the blue bar compares the timing edges of
the replicated paths against the timing edges of the candidate
paths, it is the best metric to reflect how much coverage are
we losing due to ignoring paths. The figure shows that we

are covering all given edges in the most critical bin and that
our coverage goes below 90% only at the least significant
bins. The grey bar reflects how much we are covering from
the whole application. It is expected that this percentage
would be smaller than the blue bar, as paths in the PO
set neglect several edges since it only considers the worst
path between pairs of registers. The green bar represents the
coverage when we extract 10,000 candidate paths from the
AP set normalized to all timing edges in the application. It
is shown that our coverage is extremely high for the more
critical bins. These results indicate that FRoC successfully
ignores the less critical paths in favour of the more critical
paths, which results in covering the more critical timing
edges. Moreover, it also suggests that extracting paths from
the AP set is better as we obtain higher coverage compared
to extracting from the PO set. However, we still have to
consider testing time which is proportional to the number
of test phases. Table 2 presents the number of test phases
for different numbers of candidate paths extracted from
PO and AP sets. Although extracting paths from the AP
set gives us more timing edge coverage, it requires more
test phases as replicated paths in this case overlap more
than paths from the PO set. The increase in the number
of phases is application dependent and is based on how
much overlap exists between paths sharing the same source
and target register. For the FIR application, the number of
test phases for 10,000 paths from the AP set is 5x larger
than 10,000 paths from the PO set, while it is only 1.7x
larger for the XBar application. Given that each test phase
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Fig. 11: Replicated paths’ timing edge coverage for both
benchmarks across multiple experiments.



Table 2: Number of test phases and required test time.

# of Paths 2000 2000 (AP) 10000 10000 (AP)

FIR (Test phases) 34 78 69 349
FIR (Test time (µs) ) 137 315 279 1410
XBar (Test phases) 12 20 17 29
XBar (Test time (µs) ) 49 81 69 117

is tested for 4 µs and requires 5 cycles for the control signals
to settle (as explained in 4.3), Table 2 also indicates the time
required to test the replicated paths at nominal Fmax under
one operating condition (temperature-voltage pair).

To evaluate if the higher coverage achieved when ex-
tracting paths from the AP set results in a more accurate CT,
we have to perform hardware measurements and compare
the generated CTs.

5.2. Hardware Measurements
5.2.1. Manual Measurements. This section shows how the
CT of Fmax is impacted by the number of candidate paths
and the set (AP or PO) from which they are extracted. To
allow for a fair comparison with the values in Fig. 9, we
used the same set-up used to measure the benchmark’s actual
Fmax with the addition of a heat-gun to fix the package
temperature so that we can measure Fmax at different Vdd

but constant temperature. Moreover, we connected the error
signal in Fig. 7 to an oscilloscope to monitor the failing
clock frequencies. Fig. 12 shows the measured Fmax for
several calibration bit-streams using different numbers of
candidate paths, for both benchmarks. When measuring
Fmax from the calibration bit-streams, we fixed the package
temperature at 58 ◦C and 41 ◦C for the FIR and XBar
benchmarks respectively. These were the package tempera-
tures when we were running the full-benchmarks at nominal
conditions. We measured Fmax using various numbers of
candidate paths and for both benchmarks, the values start to
stabilize beyond 2000 paths, so we only plot the results for
1, 2000 and 10000 paths.

Fig. 12a shows that, for the FIR benchmark, the mea-
sured Fmax from the calibration bit-streams using 2000
candidate paths or more closely match the benchmark’s
actual Fmax. As expected using only 1 candidate path in
the calibration bit-stream results in Fmax values that are
noticeably different than the actual values. The graph also
shows that the 10,000 paths curve is slightly below the 2000
paths which is also expected due to IR-drop. When more
paths are tested, the FPGA draws more average current and
thus the IR-drop increases resulting in this slight change in
values. To ensure that the low IR-drop is not the reason for
the high Fmax measured with 1 path, we added redundant
logic that consumes extra current (more than the 2000 paths’
current) to the calibration bit-stream with 1 path and re-
measured Fmax. In this case, Fmax values were slightly
less than without the redundant logic but still higher than
results obtained with 2000 paths. The average decrease of
Fmax values when using the extra redundant logic was 0.4%
and the maximum decrease was 1%. Another interesting
point is the fact that the measured Fmax values for 2000

paths extracted from PO and AP are almost identical. This
means that, for the benchmarks tested in this work, the extra
coverage achieved by extracting paths from the AP set is not
worth the increase in test time as it does not affect the CT
values.

Fig. 12b shows the measured Fmax for the XBar bench-
mark, and most trends match those of the FIR design. Firstly,
we see that 1 path is again not sufficient and that 2000
candidate paths produces a noticeably lower calibration
Fmax that better matches the benchmark circuit. Also, the
results of 2000 candidate paths from AP and PO are almost
identical. The main difference is that the measured Fmax
values do not match the benchmark’s actual Fmax, where the
benchmark’s actual Fmax values are on average 6% lower
than the Fmax values measured from 2000 candidate paths.
This discrepancy is caused by the absence of some fan-outs
in the calibration bit-streams. Currently, FRoC replicates
the selected paths without modelling fan-outs that are not
part of any selected path. This could reduce the delay of
the replicated paths compared to the actual delay in the
application as LUT outputs and routing switches do have
moderate delay increases when their fan-out increases. The
FIR benchmark is mainly composed of adders so most of
the critical paths are long carry-chains, while the XBar
benchmark has no adders and most of its critical paths are
formed by regular LUTs and routing elements. Carry-chains
could only have fan-outs at the beginning or the end of the
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Fig. 12: Measured Fmax when using different numbers of
candidate paths.



60

80

100

120

140

160

180

200

220

0.8 0.9 1 1.1 1.2 1.3

F
m

a
x
(M

H
z)

Vdd (V)

45 degrees

65 degrees

85 degrees

Fig. 13: Automatically measured CT for XBar benchmark
with different package temperatures.

chain, so the delay is almost not affected by the absence of
fan-out. However, the critical paths of the XBar have many
fan-outs at almost every intermediate node in the path, so
the absence of fan-outs have an effect in this case. To check
that this is the reason for the discrepancy, we compared
the Fmax reported by Quartus Prime for the calibration
bit-stream with 1 path against the reported Fmax for the
full benchmark. The FIR calibration bit-stream resulted in
a similar Fmax to the benchmark’s reported Fmax, while,
for the XBar calibration bit-stream, Quartus Prime reported
an Fmax which is almost 5% higher than the benchmark’s
reported Fmax. We went one step further where we manually
modelled fan-outs, added it to the calibration bit-stream
with 1 path and re-measured the actual Fmax for the XBar
benchmark. The measured Fmax values were on average 3%
lower than without fan-outs. These results show that fan-outs
have a significant effect on delay and must be considered
during the calibration process.

5.2.2. Automatic Measurements. This section presents re-
sults of the automatically generated CT when using on-chip
heaters to heat the die. The experimental set-up is different
than the one used in generating the actual benchmarks Fmax.
We power the FPGA using our designed dc-dc converter and
use a clock generator to provide the clock. Both are con-
trolled from the FPGA and more details on this set-up can be
found in [7]. Using this set-up, we are able to automatically
generate the CT entries at different temperatures. Fig. 13
shows part of the generated CT for the XBar at 45 ◦C, 65 ◦C
and 85 ◦C when using 2000 candidate paths from the PO
set to generate the calibration bit-stream. Our CT covers the
temperature range from 30 ◦C to 85 ◦C, but we only show
a subset of those values. This figure shows that the effect
of temperature on the measured Fmax is more significant at
higher voltages. The FIR CT shows similar behaviour.

5.3. Guard-band and Power Reduction
After generating the CT we must add a guard-band to the

measured Fmax values to capture various effects that are not
considered in the calibration process. Both the instantaneous
and the average current drawn during the calibration process
are significantly different than the current drawn when the
application is running. This results in different IR-drop that

Table 3: Power in nominal condition and with DVS.

Total Power (W) Temperature ( ◦C)
FIR (Nominal) 2.85 58
FIR (DVS) 1.89 50

XBar (Nominal) 1.07 41
XBar (DVS) 0.72 39

could affect delay. Moreover, capacitive crosstalk between
simultaneously switching wires is also different when the
application is running. To accommodate these variations,
we add a 5% guard-band to match our experimental results.
Since at this stage our tool does not model the complete
fan-outs of replicated paths, we also add a guard-band to
compensate for the missing fan-outs. This guard-band is
calculated based on the difference between the Quartus
Prime reported Fmax from the benchmark and the calibra-
tion HDL, which was around 1% for the FIR and 5% for
the XBar.

After adding the guard-band, we ran the benchmarks
at the reported nominal Fmax using both nominal Vdd and
the lowest guard-banded Vdd from the CT. Table 3 presents
the total measured power consumption and the package
temperature (due to self-heating) for the nominal Vdd and
with DVS. With our DVS approach we are able to save
33.2% total power consumption on average.

6. Conclusion and Future work
We presented a robust DVS solution based on a two-step

measurement approach, that exploits FPGA reconfigurability
and calibrate every FPGA to its target application. Using
information generated by a standard STA, we replicate the
application’s speed limiting paths, measure their delay under
various operating conditions on the specific FPGA being
programmed, and store this information on-chip in a CT.
In this paper, we presented a testing procedure that enables
us to measure the delay of many overlapping paths using
a single bit-stream. We developed FRoC, a CAD tool that
analyses an application, replicates its most critical paths and
generates testing circuitry to measure the replicated paths’
delays. FRoC also tries to minimize testing time by dividing
paths into groups that can be tested in parallel.

We tested FRoC and our DVS solution on two applica-
tions (FIR and XBar). The results show that after adding
a small guard-band to our CT we can safely run both
applications with the guard-banded values and achieve a
33.2% total power reduction, on average.

Our next step is to add fan-out modelling to FRoC which
will allow us to eliminate the guard-band needed for fan-
out enabling further voltage reduction and power savings.
To allow FRoC to handle hard-blocks, we will develop
custom tests for DSPs and BRAMs that can identify the
minimum safest voltage for the specific blocks used by the
user application.
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