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ABSTRACT

We present a computer-aided design (CAD) tool that auto-
matically connects an FPGA application using an embedded
network-on-chip (NoC). After discussing the CAD flow steps,
we delve into the details of implementing transaction commu-
nication using our CAD tool. This request-reply type of com-
munication requires special consideration on FPGAs, for ex-
ample: low round-trip latency, fair arbitration and correct or-
dering. We show how to implement transaction communica-
tion using embedded NoCs, and show that we can improve la-
tency, throughput and efficiency compared to soft buses gen-
erated by a commercial CAD tool.

1. INTRODUCTION

Embedded networks-on-chip (NoCs) have been proposed as
an addition to large FPGA devices to facilitate interconnect-
ing FPGA applications. It has been shown that embedded
NoCs can interconnect wide datapaths more efficiently than
multiplexer-based buses built from soft logic [1, 2]. Further-
more, embedded NoCs make design easier by simplifying
timing closure, especially to I/O and memory interfaces such
as DDRx [3]. Previous work has also focused on making an
embedded NoC usable by current FPGA applications without
a change in design style; for example, streaming communi-
cation is implemented properly by enforcing basic ordering
constraints and providing some latency guarantees [4].

To use an embedded NoC, an FPGA designer would typ-
ically need to know some NoC specifics; the packet format
for instance. The designer would also need to decide where
(which router) to connect their application module on the
NoC. Additionally, the designer will have to sometimes cre-
ate soft logic wrappers to make NoC communication possible
and high performance. This “manual” design, while flexible,
is time-consuming, repetitive and possibly suboptimal.

This work explores automating the interconnection of
FPGA applications using an Embedded NoC. We introduce
LYNX : a computer-aided design (CAD) tool that takes an ap-
plication and an NoC architecture as input, and it connects the
given application to the specified NoC architecture – both em-
bedded and soft NoCs are compatible but we focus on the em-
bedded NoCs presented in prior work [4]. LYNX automates
the packetization of data, instantiates any necessary soft logic,
selects the routers to which to connect each application mod-
ule and generates Verilog output for simulation and synthesis.

After presenting the LYNX CAD flow in Section 2, we fo-
cus on an important communication style used in FPGA ap-
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Fig. 1: Overview of the LYNX CAD flow for embedded NoCs.

plications: transaction communication. Transactions consist
of requests and replies, typically between so-called masters
and slaves. Previous work has shown that streaming com-
munication can be implemented efficiently using embedded
NoCs [4]. How does transaction communication differ? How
do we efficiently use an NoC to create transaction connec-
tions? How does an embedded NoC compare to soft trans-
action buses? We answer these questions in Section 3, and
we show that embedded NoCs also outperform soft NoCs for
transaction systems on FPGAs. By supporting both streaming
and transaction communication, embedded NoCs can imple-
ment any FPGA design that is supported by current FPGA
system-integration tools.

1.1. Related Work and Motivation
There are FPGA system-level interconnection tools in both
academia and industry. Xilinx’ Vivado IP Integrator [5]
and Altera’s Qsys [6] can interconnect design modules with
standard interfaces (such as AXI or Avalon). These tools



use soft multiplexer-based buses to connect an application.
In academia, GENIE [7] is a system integration tool that
can generate both fine-grained and system-level interconnect
given the description of an application. GENIE uses a soft
packet-switched NoC that consists of split and merge blocks
for its system interconnection [8]. CONNECT [9] is a web
program that generates a soft NoC with custom parameters
and topology; however, CONNECT only generates the NoC
but does not integrate a full application. Another NoC gener-
ator is Hoplite [10]. Hoplite is a very light-weight NoC that
uses little resources but is only suitable for applications that
can tolerate high-latency and out-of-order data delivery.

In the context of multiprocessors, NoC CAD tools are
well-studied [11]; however, we found that mapping FPGA
design styles onto an NoC is very different and has its own
set of constraints as detailed both in previous [4] and this
work. FPGA modules can have any width; multiple mod-
ules can share one NoC router, and one module can use
multiple NoC routers – a primary difference to the mainly-
homogenous multiprocessor systems. FPGA communication
protocols – streaming and transactions – also require latency,
performance and ordering guarantees that differ from those in
multiprocessors. For example, multiprocessors often handles
out-of-order data in the processing cores themselves, whereas
FPGA modules typically assume that data arrives in-order to
avoid data/control hazards, and so FPGA system-level inter-
connects – such as that generated by Altera’s Qsys [6] – guar-
antee in-order delivery.

A cornerstone of modular hardware design is the decou-
pling of application modules and the system-level intercon-
nect. Ideally, this interconnect should satisfy the timing re-
quirements of the application, both among the application
modules themselves, and in transferring data to fast I/O in-
terfaces such as memory. The importance of a timing-closed,
automatically-connected FPGA application is especially evi-
dent in high-level synthesis (HLS) [12] and data center accel-
eration [13]. In both of these important emerging areas, the
designer relies on an abstraction in which s/he designs the ap-
plication “kernels”, and then an automatic tool connects the
application kernels together. In this paper we advocate the
use of an embedded NoC to abstract system-level communi-
cation, and we present a CAD system (LYNX) to automati-
cally leverage NoCs to connect any FPGA application. To the
best of our knowledge, LYNX, is the first FPGA CAD sys-
tem to target system-level interconnection using hard and soft
packet-switched NoCs.

2. LYNX CAD FLOW

LYNX1 is a CAD tool that automatically connects an FPGA
application using an NoC. We connect application modules
to NoC routers and generate any soft-logic wrappers that are
required for semantically correct and high-performance com-
munication. We start with an annotated application connec-
tivity graph (ACG). In the most basic form, the ACG is sim-
ply a definition of the modules in a system and the connec-
tions between them, the width of these connections and their
type (data, ready or valid). Using only this application meta-
data, LYNX implements the application’s connections using

1LYNX is available for download from www.eecg.utoronto.ca/

˜mohamed/lynx

the NoC by connecting the application modules to the NoC
– the FPGA designer does not need to know anything about
how the NoC works to use LYNX.

Fig. 1 shows an overview of the LYNX CAD flow. An ap-
plication is entered as a LYNXML2 file like the example shown
in Listing 1. The application is then elaborated and an inter-
nal graph representation of the design is created, additionally,
connections are labeled either “streaming” or “transaction” as
they are treated differently in later stages of the flow. The next
step clusters tight latency-critical feedback loops and marks
them to be implemented in light-weight low-latency soft con-
nections to avoid throughput degradation [14]. Next, eligible
modules or clusters are mapped to available NoC routers. Fol-
lowing mapping, soft-logic wrappers are added, primarily to
abstract NoC communication details such as packetization or
to manage traffic as we discuss in Section 3. Finally, simula-
tion and synthesis files are generated to be able to use LYNX
results with traditional synthesis and simulation tools.

1 <!-- Modules -->
2 <module name="src1">
3 <bundle name="obun">
4 <port width="128" name="o_y" type="data"/>
5 <port width="1" name="o_valid" type="valid"/>
6 <port width="1" name="o_ready" type="ready"/>
7 </bundle>
8 </module>
9

10 <module name="dst1">
11 <bundle name="ibun">
12 <port width="128" name="i_x" type="data"/>
13 <port width="1" name="i_valid" type="valid"/>
14 <port width="1" name="i_ready" type="ready"/>
15 </bundle>
16 </module>
17

18 <!-- Connections -->
19 <connection start="src1.obun" end="dst1.ibun"/>

Listing 1: Sample LYNXML description of two modules connected
by a 128-bit wide connection.

2.1. Definitions

Before going through each of LYNX CAD steps in detail, we
define some of the terms we use to avoid ambiguity:

• A flit is the smallest unit of data that can be transferred
over an NoC.

• A packet consists of one-or-more flits, it defines a logical
word transferred over an NoC.

• A virtual channel (VC) refers to a separate buffer that
allows the logical separation of data transported over a
physical channel such as an NoC link.

• A bundle is a collection of ports in an application module,
and must have data, valid and ready signals.

• A connection (s, d) exists between a single source bundle
(s) and a destination bundle (d) to which it sends data.

• A link is the metal wiring between two routers in an NoC.
• Streaming communication: One-way communication

between a source and a destination module.
• Transaction communication: Two-way communication

that consists of a request from a master module and a cor-
responding reply from a slave module.

2LYNXML is an XML format that describes an ACG. We hope to stan-
dardize this format for system-level interconnect research and evalution.



2.2. Elaboration

In this first step of the LYNX CAD flow, we parse the LYNXML
description of the design and create an internal graph repre-
sentation of the system. This graph representation resembles
the LYNXML description very closely; it has a design object
which contains a list of module objects, that have bundles and
ports. Connections are defined as a list of (start,end) bundle
pairs in the design object.

The elaboration step takes the design graph as input and
classifies the connections into streaming and transaction con-
nections. Elaboration also groups transaction connections
to-and-from the same modules together into a “connection
group” as shown in the illustration of Fig. 1. This is because
the number of modules in a transaction system affects later
steps in the CAD flow as we discuss in Section 3.

2.3. Clustering

A major limitation of NoCs is that their latency cannot be re-
duced beyond the latency required to traverse 1 router – in
our embedded NoC, this latency is approximately 8 clock cy-
cles. Consider an application that contains a feedback loop
like that illustrated in Fig. 1. The higher the latency of the
feedback connection, the lower the throughput. In fact, the
throughput of a feedforward system with one feedback con-
nection is equal to 1

latency where latency is the latency of the
feedback connection.

This is not a new problem, and has been studied exten-
sively in the context of latency-insensitive systems where we
choose where to insert pipeline registers that add latency [14].
In this work, the authors use “Tarjan’s algorithm” [15] before
deciding where to insert pipeline registers to avoid adding any
latency to feedback connections. Tarjan’s algorithm identi-
fies strongly-connected components – defined as nodes of a
graph that are connected together in a cycle – and outputs
them as a cluster. Similarly, we also use Tarjan’s algorithm
to cluster modules that are involved in a feedback connec-
tion. However, we ignore transaction connections in this clus-
tering step as they inherently contain a feedforward and a
feedback connection, and we discuss how to implement these
connections efficiently, even using multi-cycle-latency NoC
links, in the following Section. On the other hand, feedback
streaming connections must be implemented using a low-
latency lightweight interconnect to avoid throughput degra-
dation. LYNX conservatively clusters streaming modules in a
feedback cycle and directly connects ports in this cycle using
soft point-to-point links.

2.4. Mapping

Mapping is the core algorithm of the LYNX flow – it con-
nects application modules to NoC routers. As shown in Fig. 1,
mapping takes an NoC architecture file as input. By chang-
ing NoC parameters such as link width, number of routers or
routing algorithm, we can optimize a soft NoC for an appli-
cation. In the case of architecting an embedded NoC before
FPGA manufacture, the system architect can use LYNX to try
out different NoCs for important application benchmarks be-
fore deciding on the final architecture.
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ric to the narrower/faster embedded NoC. 1–4 different bundles can
connect to the shown FabricPort by using one-or-more FabricPort
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Table 1: Possible FabricPort input/output configurations for a time-
multiplexing ratio of 4 and 2 VCs. Two modes are unavailable in the
FabricPort output because we are limited by 2 VCs.

# Bundles ×Width Input Output

1 × 4 flits 3 3
2 × 2 flits 3 3
4 × 1 flit 3 7
1 × 2 flits + 2 × 1 flit 3 7
1 × 3 flits + 1 × 1 flit 3 (3)∗
∗Possible, but not yet implemented in LYNX.

2.4.1. FabricPort Configurability

An embedded NoC is typically ~4× faster than the FPGA ap-
plication. This is why we use a FabricPort to time-multiplex
data from an application onto the embedded NoC [4]. Fig. 2
shows how data moves from a FabricPort input, across NoC,
then a FabricPort output – a FabricPort exists at each NoC
router to perform this width/frequency bridging. The NoC ar-
chitecture file specifies a time-multiplexing ratio, so any Fab-
ricPort (or the absence of one) can be modeled in LYNX.

Each FabricPort Slot (FPSlot) is equal to the NoC width
(or flit width, which we set to 150 bits), and so each input
FPSlot can be used independently by an application bundle.
For example, if our bundles are less than 150 bits, we can
connect 4 of them to the FabricPort input, each to one FPSlot.
In this scenario, each bundle’s data will be sent as a 1-flit
packet across the NoC. However, a wide 600-bit bundle will
use all 4 FPSlots at a router, and it will transfer its data as a
4-flit packet on the NoC.

At the FabricPort output, using the FPSlots independently
imposes an additional constraint: each bundle connected at
the FabricPort output must receive data on a different VC.
Each VC can be stalled separately. This decouples the bun-
dles so that if two bundles are connected at a FabricPort out-
put and one of them stalls (not ready to receive data), the other
can continue to receive data on a different VC. This also en-
sures deadlock freedom [4]. So the maximum number of bun-
dles possible at a FabricPort output is equal to whichever is
smaller: the time-multiplexing ratio or the number of VCs.
To clarify, table 1 shows the possible FabricPort configura-
tions for an embedded NoC with time-multiplexing ratio of 4,
and 2 VCs. The two unavailable configurations at the Fabric-
Port output would require more than 2 VCs to work.

2.4.2. LYNX Mapping

Mapping is the CAD step that assigns (maps) application
modules onto NoC routers – more specifically, mapping as-
signs bundles to FPSlots. Wide bundles can use one-or-more
FPSlots, while multiple narrow bundles can use FPSlots at the



same router, effectively sharing the router. For the mapping
to be legal, it only needs to be in agreement with the rules
described in Section 2.4.1

LYNX uses simulated annealing to map an application to
an NoC. Initially, all bundles are assigned to “off-NoC”, and
then the high cost of off-NoC bundles quickly forces bundles
to connect to NoC routers. The mapping cost function has
four components:

• Path Bandwidth: To avoid NoC congestion, we add the
bandwidth utilization of each NoC link to the cost func-
tion if the utilization of a link is greater than 100%. The
higher the overutilization of an NoC link, the more it con-
tributes to the cost function. An overutilized NoC link in-
evitably results in stalling due to contention for resources.
Note that the computation of link utilization depends on
the packet routing function specified in the NoC architec-
ture file. If overutilized NoC links remain after mapping
is complete, warnings are printed out to the screen as this
can result in throughput degradation.

• Latency: The zero-load latency of each connection is
added to the cost function so that we minimize applica-
tion latency.

• Multiple-router modules: If a module has bundles that
are connected to more than one router, we penalize the
cost function heavily as this mapping may result in highly
constrained placement and routing.

• Off-NoC: We penalize bundles that are not yet mapped on
the NoC depending the number of connections using this
bundle. If a bundle has many connection and is left off-
NoC, it will require expensive soft logic to connect to the
rest of the application. LYNX maximizes the use of an em-
bedded NoC – to leverage that hard resource and minimize
additional soft interconnect – by prioritizing the mapping
of highly connected bundles on the NoC, and giving less-
connected bundles lower priority.

Equation 1 is the simulated annealing cost function used
in mapping. W1−6 are constant weights that control the con-
tribution of each component – they reflect the importance of
each cost component. Util is a function that returns the link
utilization: the total bandwidth of connections that use that
link divided by the link bandwidth capacity. Latency is a
function that returns the number of cycles of a connection’s
path on the NoC assuming zero traffic. OffNoC is a boolean
function that specifies whether the connection’s start/end bun-
dles are mapped on the NoC or not. Routers is a function
that returns the number of routers to which this module is
connected; ideally, each module should not connect to more
than one router.

Cost =
∑

Li∈Links

W1

(
Util(Li)

)W2

+
∑

Ci∈Conns

(
W3Latency(Ci) +W4OffNoC(Ci)

)
+

∑
Mi∈Modules

W5

(
Routers(Mi)

)W6 (1)
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2.5. Wrapper Insertion
“Wrappers” encompass any soft logic required to make com-
munication on the NoC possible and high performance. LYNX
currently generates three types of soft wrappers: translators,
traffic managers and response units. Traffic managers and re-
sponse units are only required for transaction systems and are
discussed in detail in the following section. Translators are
required between any bundle and an NoC router port to trans-
late data and control signals into the format of an NoC packet.

Most translators are very simple as they only need to put
data and control bits in their correct positions in a packet, and
sometimes append more control bits to a packet. For exam-
ple, a translator automatically appends the destination router
address and VC ID if a bundle has only one connection to one
destination as shown in Fig. 3. However, if a bundle may send
to one-of-many destinations, then the user logic has to specify
the destination router and VC, and input them to a translator
which will pack those control bits in their correct position.

We currently have four variations of translators to prop-
erly interact with streaming/transaction connections, and with
different traffic managers. LYNX determines which translator
to instantiate based on the type of connection and traffic man-
ager, and automatically connects it in the system.

2.6. HDL Generation
The hardware description language (HDL) generation step
outputs simulation and synthesis files that can interact with
other CAD tools to evaluate the performance and efficiency
of LYNX NoC interconnect. Embedded NoCs do not cur-
rently exist on FPGA devices, or in FPGA vendor tools –
how then do we simulate and synthesize designs with an em-
bedded NoC? The simulation output connects the user de-
sign to a simulation model of the embedded NoC through
RTL2Booksim, and generates scripts that simulate the en-
tire system in Modelsim. For synthesis, we use Altera’s Quar-
tus II tools. We lock down partitions that have the same size,
location and port-width as embedded NoC routers, then we
connect the user design to wrappers and to these router “par-
titions” to accurately measure area and frequency of the de-
sign, and to model any physical design artifacts. The same
methodology was used in previous work [4].

2.6.1. Mimic Flow: Simulation and Synthesis

In the begining of this paper, we asserted that we only need
the ACG to be able to evaluate a candidate interconnect for
an application – how can we evaluate an interconnect in ab-
sence of the actual application modules that it connects? We



simply instantiate dummy modules in CAD steps that we call
“MimicSim” and “MimicSyn”. In the simulation scenario, we
instantiate dummy traffic generators and analyzers for each
output and input bundle respectively. These dummy modules
produce a trace file of all the packet transfers which LYNX
uses to evaluate the throughput and latency at each point of
an ACG. This allows us to accurately measure the latency and
throughput of an application without having the actual imple-
mentation of each application module.

In MimicSyn, we replace the application modules with
dummy modules that are heavily pipelined so as not to
limit frequency. These dummy modules contain a mix of
logic, RAM and arithmetic units. We can tune the ratio of
logic/RAM/arithmetic and the overall size of the modules
through parameters to better model the actual application be-
ing evaluated. By synthesizing an application using dummy
modules, we can estimate the area, frequency and power of
the application’s system-level interconnect, whether it is an
NoC or something else.

By using these “mimic” flows, we can evaluate and more-
importantly compare system-level interconnect using only the
ACG, without the need for the actual applicaion module im-
plementation. This would better allow the fast investigation of
different system-level interconnects without a set of complete
applications as a prerequisite.

3. TRANSACTION COMMUNICATION

Communication in FPGA applications can be classified into
two main types: streaming or transaction (sometimes referred
to as “request-reply” or “memory-mapped”) communication.
Streaming is the simpler of the two, as data only flows in one
direction from a source module to a sink module. In transac-
tion communication, a request goes from a master to a slave,
and then a reply comes back from the slave to the master. NoC
communication is inherently streaming, because data is pack-
etized and sent from one source to one destination. We imple-
ment transaction communication on NoCs using two under-
lying streaming transfers – one for the request, and another
for the reply. Additionally, we found that we require careful
orchestration of requests/replies using soft wrappers to imple-
ment transactions on NoCs efficiently.

In this section, we perform an in-depth treatment of trans-
action communication, and show how LYNX implements
transactions using our embedded NoC. Specifically, we dis-
cuss how to get reasonable performance and latency of trans-
actions, how to implement fair arbitration, and the role of
transaction ordering and its high-performance implementa-
tion. Most of the techniques we discuss in this section are
not specific to NoCs, and can be used with any system-level
interconnect; however, our techniques are particularly effec-
tive in multi-cycle-latency interconnects such as NoCs.

To present our results in the context of current systems, we
compare the performance and efficiency of transaction sys-
tems when implemented using LYNX and an embedded NoC,
compared to soft buses generated by a commercial system in-
tegration tool: Altera Qsys. The embedded NoC we use has a
150-bit link width, 16 nodes, 4 VCs, 10 buffer words per VC
and a time-multiplexing factor of 4 – we refer the reader to
previous work [3, 4] for further information about the embed-
ded NoC architecture.
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In the general case, transaction communication occurs be-
tween any number of masters and any number of slaves. How-
ever, a multiple-master multiple-slave system can be con-
structed from its building blocks: multiple-master single-
slave, and single-master multiple-slave systems as depicted
in Fig. 4. After presenting the transaction system compo-
nents, we discuss multiple-master and multiple-slave systems
in Sections 3.2 and 3.3 respectively. The methods we present
with each type of system are composable and can easily be
used together in multiple-master multiple-slave systems.

3.1. Transaction System Components in NoCs
Fig. 5 shows how we connect masters and slaves using an
NoC. At both the master side and the slave side, LYNX au-
tomatically generates wrappers to implement transactions. A
master makes a request, and the request is only permitted to
be issued if a “traffic manager” allows it. This master request
then goes through a translator that formats the request data
and any control fields into an NoC packet. The request packet
then traverses the NoC until it arrives at the slave where it
goes through another translator that extracts the data/control
fields from the request packet. A response unit then stores
some request fields, such as return destination, and later at-
taches them to the reply issued by the slave.

3.1.1. Response Unit

Fig. 6 shows an implementation for the response unit. A sim-
ple translator first inspects the master request and extracts the
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connect without traffic management, because all masters can send
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data, valid, return destination, return VC and tag3. Data and
valid are forwarded to the slave module, while the return in-
formation (destination router, VC, tag) is stored in a FIFO.
As soon as the slave issues the reply, the return information is
automatically attached to the reply using a translator to form
a reply packet which can traverse the NoC to the master. Note
that the response unit FIFO must be as deep as the number of
requests that the slave can handle at any given time so that the
FIFO doesn’t become full. Also note that this response unit
assumes that all replies are issued by the slave in the same
order as the requests; otherwise, the slave itself must contain
logic to properly tag the replies or reorder them before send-
ing them to the master.

3.2. Multiple-Master Systems
Multiple-master systems are very common in FPGA designs;
for example, access to on-chip or off-chip memory; where
multiple design modules on the FPGA share memory re-
sources. In such systems it is important to keep latency low
and throughput high (to make best use of the shared slave
bandwidth). Furthermore, we often need to ensure fair arbi-
tration shares to the masters sharing the same slave. In this
subsection, we’ll look at systems that have multiple masters
and a single slave.

3.2.1. Traffic Build Up (in NoCs)

Before discussing our implementation, we present an impor-
tant problem that exists in any pipelined multiple-master in-
terconnect. Fig. 7 shows 3 masters connected to 1 slave
through FIFO buffers and a multiplexer – this is a simple but
valid behavioural model for any multiple-master interconnect;
bus or NoC. If every master is constantly sending requests
to the slave, request traffic builds up quickly in the intercon-
nect buffering resources because the slave can only process
1 request at a time. Therefore, at steady state, each new re-
quest injected into the interconnect effectively waits for every
other request that is already buffered, resulting in a high la-
tency equal to Number of Masters×FIFODepth, where
FIFODepth is the number of pipeline stages or buffer loca-
tions between a master and the slave.

To keep up with fast I/Os and ever-larger FPGAs, the level
of pipelining (FIFODepth) in a bus-based interconnect is
constantly increasing to ensure that the bus has a high fre-
quency. In NoCs, there are reasonably large buffers (10-flits
deep in our case) at each router between a master and a slave,
resulting in a very large FIFODepth and a proportionally
large latency if traffic builds up in these buffers. This is es-
pecially catastrophic for an NoC, being a shared interconnect

3A tag is an optional field to uniquely identify a request/reply.
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Fig. 8: Credits traffic manager to limit traffic between a master shar-
ing a slave with other masters.

resource. When the buffers start becoming full, the latency
of all packets that are using the same routers increases very
quickly. To mitigate this problem, we introduce traffic man-
agement schemes that avoid traffic build-up altogether.

3.2.2. Credit-based Traffic Management

One way to solve the traffic build up problem is to employ
a credit-based traffic management scheme. Fig. 8 shows the
Credits Traffic Manager, which is placed at each master to
limit the number of outstanding requests. The counter in
Fig. 8 is set to a selected “number of credits”, whenever the
master sends a request the credits are decremented by 1, and
whenever a reply is received the credits increase by 1. Zero
credits stalls the master. This ensures that no new requests are
made until replies for the outstanding requests are received.

It is crucial to select the number of credits appropriately
– too many credits and traffic will build up, too few credits
and that slave will be underutilized. To better visualize this,
see Fig. 9: we vary the number of credits for different systems
and plot request latency, which we want to keep low, and slave
throughput, which we want to be equal to 1. As predicted, in-
creasing the number of credits improves throughput until the
slave is fully utilized, then it starts worsening latency beyond
that. The ideal number of credits at each master (circled in
Fig. 9) depends on the number of masters and the round-trip
latency (between sending a request and receiving its reply),
and follows the following equation:

Creditsideal =
Latencyroundtrip

Number of Masters
(2)

To understand why equation 2 works, consider several
masters communicating with 1 slave. After Latencyroundtrip
cycles, a master receives a reply and therefore increments
its credits and is able to send another request. In a 1-
master system, the number of credits should be equal to
the Latencyroundtrip so that as soon as the master runs out
of credits, a reply arrives and increments the credits by 1
– this ensures that the master is constantly sending requests
and the slave bandwidth is fully utilized. Equation 2 effec-
tively shares that slave bandwidth equally by dividing the
Latencyroundtrip by the number of masters.

Fig. 10 plots the ideal number of credits for multiple-
master systems while varying the number of masters. The
“simulation” data series in this plot was experimentally deter-
mined by trying out different number of credits. Equation 2
is also plotted (dotted line) – the model agrees with our sim-
ulation results very closely and the discrepencies only exist
because our Credits Traffic Managers only support an inte-
ger number of credits. We include this model in LYNX which
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Fig. 9: Investigation of the ideal number of credits for multiple-master communication with 3, 6 and 9 masters.
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Fig. 11: Comparison of Lynx NoC and Qsys bus latencies in high-
throughput systems.

automatically instantiates the traffic manager and sets the cor-
rect number of credits for any multiple-master systems.

3.2.3. Latency Comparison: LYNX NoC vs. Qsys Bus

We generate two pipelined Qsys bus variants for a fair com-
parison with our embedded NoC. In the one labeled “no clock
crossing” in Fig. 11, all masters and slaves operate using the
same global clock, whereas “with clock crossing” denotes a
system in which all the masters use one clock, and the slave
uses a different clock. Qsys generates asynchronous FIFOs to
bridge between two clock domains but this adds both area and
latency. The embedded NoC contains clock crossing circuitry
built-in the FabricPorts so each master and slave can use an
independent clock without additional soft logic.

Master

Slaves

time
Req 1 Req 2 Reply 2 Reply 1

Slave 1 latency

Slave 2 
latency

Fig. 12: Requests to multiple slaves can result in out-of-order
replies; for example, if slaves have different processing latencies.

Fig. 11 compares the roundtrip latency of multiple-master
systems of different sizes. Every master attempts to send a
request in each cycle and is stalled by the interconnect (bus
or NoC) or a traffic manager. The latency of Qsys buses in-
creases linearly with the number of masters because of traffic
build-up as discussed in Section 3.2.1. However, when traffic
managers are used in LYNX, the latency remains more-or-less
constant4 as we increase the number of masters. Even though
the zero-load latency of Qsys buses is close to half that of
our embedded NoC (8 cycles compared to 18), proper traffic
management in the NoC results in a lower roundtrip latency
in a high-throughput multiple-master system.

3.3. Multiple-Slave Systems
An example of a multiple-slave system is a processor (mas-
ter) controlling multiple slaves such as memory units, accela-
tors or I/O devices. In high-performance FPGA applications,
a common multiple-slave system is a banked on-chip or off-
chip memory, where a memory is divided into separate banks
to provide fast and parallel data storage/access. In this sec-
tion, we investigate how to build high-performance multiple-
slave systems using NoCs while maintaing proper transaction
ordering to avoid hazards.

3.3.1. Ordering in Multiple-Slave Systems

Fig. 12 shows the timing diagram of a master connected to
two slaves. It sends request 1 to slave 1 first, then request 2 to
slave 2, but receives reply 2 before reply 1 because slave 1 has
a longer processing latency. Even if all slaves have equal pro-
cessing latencies, replies can arrive out-of-order because of
different interconnect latency or simply if the slave was busy
when the request was sent. This out-of-order reply delivery

4The fluctuations are due to the difference between the ideal and actual
number of credits used. For example, the ideal number of credits for an 11-
master system equals 1.54, but we round this value to 1 in our experiments.



can be problematic in an FPGA system where the master ex-
pects replies to arrive in order. It is our experience that this is
a common assumption in FPGA systems, and that it is left to
the interconnect to guarantee correct ordering of transactions.
We therefore have to have the option of in-order reply delivery
in LYNX NoCs to qualify as a system-level interconnect, and
have the same correctness properties as existing buses such as
those generated by Qsys – we present three ways to do this in
the following subsections.

3.3.2. Three Traffic Managers for Multiple-Slave Systems

In this subsection we present three traffic managers to en-
sure ordering within multiple-slave systems. All three traffic
managers include a Credits Traffic Manager (Section 3.2.2)
to limit the number of outstanding requests destined to each
slave – we have separate counters for each slave in the sys-
tem. For each traffic manager we can give an equation for its
maximum throughput in terms of:

• Nreq1slave: Number of consecutive requests to the same slave.
• Latency: Roundtrip latency between master and slave.
• NVC,Nslave,Ncredits: Number of VCs, slaves, credits.

Stall Traffic Manager: A straightforward way to ensure or-
dering is to conservatively stall the master whenever the des-
tination slave is changed until all outstanding replies are re-
ceived. This Stall Traffic Manager – also used in Qsys buses
– can hurt throughput considerably if the master switches
slaves often; however, it is easy to implement and small.
Fig. 13 shows our implementation for the Stall Traffic Man-
ager. A simple control unit keeps track of the current desti-
nation slave, and if the destination slave changes, the master
request is stalled and buffered in a shallow FIFO until all out-
standing replies arrive at the master.

ThroughputStall =
Nreq1slave

Nreq1slave + Latency
(3)

VC Traffic Manager: We leverage VCs to avoid stalling ev-
ery time the destination slave is changed. The VC Traffic
Manager assigns a different VC to each slave, then chooses
from which VC to read the replies based on the order in which
the requests were sent. The VC Traffic Manager in Fig. 13 in-
spects the request destination, then allocates a VC for it. For
the next request, if the destination is the same it uses the same
VC, if the destination is different, it is allocated a different
VC. While requests are being sent out, the assigned VCs are
stored in a FIFO; this tells the traffic manager the next VC it
should read from for correct ordering. Note that if we have
more slaves than VCs, then the traffic manager stalls until a
VC becomes available (all its outstanding replies arrive).

ThroughputVC =

{
NVC(

Nreq1slave

Nreq1slave+Latency ) NVC < Nslave

1 NVC ≥ Nslave
(4)

Reorder Buffer (ROB) Traffic Manager: The ROB Traffic
manager adds an 8-bit “tag” to each request it sends out, and
it only stalls the master when it runs out of credits, similarly
to the Credits Traffic Manager (Section 3.2.2). The response
unit (Fig. 6) ensures that the tag for each request is attached

to the slave reply on the return path to the master. The ROB
Traffic Manager then uses that tag to store the incoming re-
ply in a unique location in a hash table, and these replies are
read in the correct order in which they were sent. Note that
the number of entries in the hash table must be equal to the
number of credits so that there are never any collisions (writ-
ing replies to the same location in the hash table). This makes
this Traffic Manager very tunable; the more credits we have,
the better the throughput, but this also comes at the extra area
cost of buffering in the hash table.

ThroughputROB =

{
Ncredits

Latency Ncredits < Latency

1 Ncredits ≥ Latency
(5)

3.3.3. Traffic Managers Performance and Efficiency

Fig. 14 plots the master throughput in multiple-slave systems
generated by LYNX and Qsys. On the x-axis of Fig. 14, we
vary the number of consecutive transfers to each slave. When
this value is 1, that means that the master changes the slave it
sends to every request – this is the worst-case traffic pattern.
In this case, the stall traffic manager performs very poorly
as it has to stall each time the slave is changed. It is worse
for our embedded NoC compared to Qsys buses because of
the higher roundtrip latency. The VC Traffic Manager (with
4 VCs) improves throughput fourfold but must stall because
the number of slaves are greater than the number of VCs in
Fig. 14; however, if the number of slaves were 4 or less, the
throughput would always be the maximum. Finally, an ROB
Traffic Manager with Ncredits = Latency always has the max-
imum throughput. With fewer credits, the master throughput
decreases linearly until, with 1 credit, the ROB Traffic Man-
ager becomes the same as the Stall Traffic Manager.

Fig. 15 compares the area of the three traffic managers as
we vary the number of credits. We measure area in equivalent
Altera logic clusters (LABs5). The Stall and VC Traffic Man-
agers use ~23 LABs, mainly for the 2-word FIFO which is im-
plemented using FPGA flip flops. The ROB Traffic Manager
contains sizable hash tables that are implemented as block
RAM, and is approximately 1.8× the size of the other traffic
managers.

All in all, the traffic managers needed for multislave com-
munication are not large by the standard of today’s FPGAs
– the smallest Stratix-V FPGA from Altera has 8900 LABs
and 688 M20K BRAMS (or 11652 equivalent LABs), and
the largest is 46480 equivalent LABs. The largest multiple-
master multiple-slave system we can build using our NoC that
has a width of 300 bits (for example) will have 30 masters
and 2 slaves. In this case we’ll need 30 TMs (one per master)
for a total area of approximately 690 equivalent LABs – this
absolute worst case uses between 1.3%–8.0% of the FPGA’s
LAB + BRAM area, depending on the FPGA size and the
selected traffic manager. However, we stress that this pes-
simistic estimate of additional area overhead is only needed
for multiple-slave systems that require a guarantee of order-
ing, for all other systems we instantiate our Credits Traffic
Manager that has a negligible area (less than 1 LAB each).

5To compute equivalent LABs, we add the logic area (number of LABs)
and the block RAM area (Number of BRAMs×4), since each M20K BRAM
is as big as 4 LABs [16].
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4. AREA & FREQUENCY:
LYNX NOC VERSUS QSYS BUS

We have shown how LYNX automatically connects an appli-
cation to an (embedded) NoC. By using traffic managers, em-
bedded NoCs can implement higher-throughput and in many
cases lower-latency transaction communication compared to
Qsys buses. The LYNX CAD system is now comparable to
Qsys since it implements most of its features (transactions,
streaming, fair arbitration, ordering). In this section, we com-
pare the overall efficiency (area and frequency) of a LYNX
interconnection solution using an embedded NoC, and a Qsys
interconnection solution implemented as a bus.

We use an NoC with 4 VCs, 150-bit width and 16 nodes
– this embedded NoC’s area is equivalent to 800 LABs [17].
In different FabricPort modes (discussed in Section 2.4.1), we
can connect up to 64 modules of 150-bit width, 32 Modules
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accessing a single slave, single master issuing requests to multiple
slaves and a fully connected crossbar of masters and slaves.

of 300-bit width or 16 modules of 600-bit width. We quantify
the efficiency of the first option in more detail in this section.

4.1. Area Limit Study

Fig. 16 shows the area of the embedded NoC as compared to
any Qsys bus that can implement transaction systems that fit
on our embedded NoC. The x-axis shows the total number of
modules in a system. For example a 32-module system has 31
masters and 1 slave in a multiple-master system, 1 master and
31 slaves in a multiple-slave system, or 16 masters and 16
slaves in a crossbar system. We also synthesize Qsys buses
that have 2 clock domains – a realistic test case for modern
FPGAs that can support tens of clocks. In the case of em-
bedded NoCs, clock-crossing circuitry is already included at
each router’s FabricPort which allows each module to use a
different clock [4].

Our 4-VC embedded NoC has an area equivalent to 1.7%
of the largest Stratix-V device – this is smaller than most
Qsys bus-based systems as shown in the figure. For rela-
tively small buses that interconnect ~10 modules or less, a
Qsys soft bus is smaller than the area of an embedded NoC
(at best ~8× smaller). However, as the number of modules
increase, Qsys bus area increases beyond the area of the em-
bedded NoC. Qsys-generated crossbars are especially huge; a
32x32 crossbar with 2 clock domains is larger than the entire
area of the largest Stratix-V FPGA and 78× the area of the
embedded NoC. This highlights both the difficulty of imple-
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menting large crossbars on FPGAs6, and the efficiency of a
hard system-level interconnect such as an embedded NoC.

4.2. Frequency Limit Study
Fig. 17 shows the frequency of transaction systems connected
by Qsys buses and the LYNX embedded NoC. We use the
“MimicSyn” flow by connecting dummy modules to the bus
and embedded NoC, and measure the resulting overall fre-
quency. The mimic module has a high frequency in isolation
(~525 MHz) and it consist of a heavily pipelined array of soft
logic (199 LABs), multiplers (7 DSP blocks) and BRAM (15
M20K BRAMs) – this mix of FPGA resources is meant to
model an average-case realistic application module that does
not limit overall application frequency.

With the embedded NoC, each module in the system op-
erates at an independent clock – we plot the minimum, max-
imum and average of these module frequencies using error
bars in Fig. 17 to show the variation. In highly-connected
systems, the minimum frequency will typically govern overall
system performance because data will have to be processed by
the slowest module – this is true for an application consisting
of a cascade of streaming modules. However, in more decou-
pled systems where there are multiple independent modules
processing data in parallel, the average speed of the modules
affects performance. For example, if there is a master request-
ing data from two slave memory modules equally, and these
slaves are running at 100 MHz, and 150 MHz, their effective
frequency is the average (125 MHz) because half the requests
will complete more quickly at 150 MHz, while others will run
at the slower 100 MHz clock.

To model the physical design repercussions (placement,
routing, critical path delay) of using an embedded NoC, we
emulated embedded NoC routers on FPGAs by creating 16
design partitions in Quartus II that are of size 10x5=50 logic
clusters; each one of those partitions represents an embed-
ded hard NoC router with its FabricPorts and interface to
FPGA [4]. Fig. 17 shows that, compared to single-clock Qsys
buses, the LYNX embedded NoC achieves ~1.5× higher fre-
quency on average. Furthermore, the connection pattern does
not influence frequency in the embedded NoC as it does for a

6More efficient large crossbars can push FPGAs into new markets such as
building a high-bandwidth Ethernet switch [4, 18], or implementing hardware
mapreduce [19].

Qsys bus – the NoC itself does not change, we are just using
it in a different way; however, with Qsys buses, the gener-
ated bus is different depending on the number of masters and
slaves. In the extreme case, a 16x16 Qsys crossbar is 3×
slower than our embedded NoC.

5. CONCLUSION

We presented a CAD flow to connect an FPGA application
using an NoC. We then focused on the implementation of
transaction communication using an embedded NoC; specifi-
cally, how to maximize throughput and minimize latency, how
to implement fair arbitration in distributed interconnects like
NoCs, and how to ensure correct transaction ordering. Our
embedded NoC results outperform Altera’s Qsys soft cus-
tomized buses in latency, throughput and area efficiency, es-
pecially for larger and higher-throughput systems.
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