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Abstract—Computer-aided design (CAD) tools provide hun-
dreds or even thousands of options that control various opti-
mizations throughout the design flow. While this flexibility is
powerful, it requires significant experience to be familiar with
those options and effectively utilize them. For example, when a
design fails, in many cases errors can be resolved by adjusting
the CAD tool options rather than modifying the design itself.

In this work, we propose VPR-LLM, a tool that utilizes
Large Language Models (LLMs) to automate error resolution in
the open-source FPGA CAD tool Verilog-to-Routing (VITR) by
modifying the command-line options used to run the tool. VPR-
LLM parses error logs, VIR help messages, and documentation,
then utilizes an LLM to generate modified command-line options
that resolve the issue. VPR-LLM supports various LLM models
and prompting techniques. All these models and techniques are
evaluated and compared in terms of efficiency and cost. To
evaluate our method, we proposed a dataset of 26 VIR run
failures spanning five distinct error categories. The proposed
technique successfully resolved 80% of the cases without re-
quiring any fine-tuning to the LLM model, demonstrating the
effectiveness of VPR-LLM. This work represents an initial step
toward Al-assisted debugging in CAD flows, where LLMs can
enhance productivity by automatically identifying and correcting
tool configurations.

Index Terms—CAD, LLM, FPGA

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are widely uti-
lized in various applications including wireless communica-
tions [1], datacenter infrastructure [2], [3], machine learning
accelerators [4], [S] and many more. The key factor behind
FPGAs’ widespread adoption across these diverse applica-
tions is their reconfigurability. However, this same flexibility
introduces significant challenges in the CAD flow, which is
responsible for mapping a designer’s high-level description
onto the FPGA fabric. This process requires making a series
of complex optimization decisions to produce an efficient
implementation. Since many of these optimization tasks are
NP-hard, FPGA CAD tools rely on heuristic-based approaches
with numerous tunable parameters. While tool developers pre-
configure these parameters to achieve good performance in
general cases, users can manually adjust them through the
command line, GUI, or scripting to further optimize results
for specific designs.

The vast configurability of FPGA CAD tools, while highly
beneficial, poses significant challenges due to the sheer number
of available options and parameters. Navigating this complex-
ity can be overwhelming for both beginners and experienced

users. For instance, AMD’s Vivado Design Suite provides
documentation exceeding 500 pages to cover its synthesis
and implementation options [6], [7]. Similarly, Intel’s Quar-
tus Prime includes extensive documentation detailing various
optimization settings in more than a thousand pages [8]. While
commercial tools can be difficult to master, the challenge is
even greater for open-source alternatives, which often lack
dedicated support infrastructure. For example, the Verilog-
to-Routing (VTR) tool [9], [10] offers approximately 650
pages of documentation but does not have a customer support
team [11].

Examining the VTR documentation reveals that its backend
tool, VPR—which handles packing, placement, and rout-
ing—alone provides over 200 configurable options. These
options govern various aspects of the flow, including which
optimizations to apply, tuning parameter values, design con-
straints, the target FPGA device, and the tool’s computational
effort. While these settings play a crucial role in determin-
ing the quality of results, they can also be instrumental in
resolving errors encountered during execution. Many failures
arise from incorrect command-line arguments, insufficient tool
effort, incompatible option combinations, or an inadequately
sized target device. In such cases, adjusting the command-
line options can often resolve the issue without requiring
modifications to the design itself.

Large language models (LLMs) such as GPT-4 [12],
Claude [13], and LLaMA [14], [15] have shown remarkable
proficiency in tasks like text comprehension, context under-
standing, and answering questions, raising the question of
whether they can be leveraged to understand the extensive
and often complex documentation of FPGA EDA tools like
VTR. Given the breadth and complexity of the available
options, these models could potentially be used to interpret
the documentation and automatically adjust tool settings to
resolve errors encountered during execution.

In this paper, we introduce VPR-LLM, a framework that
leverages a Large Language Model (LLM) to automatically
diagnose and resolve errors encountered during VTR execution
by modifying the command-line options used to run the tool.
To improve efficiency and reduce the cost of LLM inference,
we further propose VPR-LLM-RAG, an enhanced version that
employs Retrieval-Augmented Generation (RAG) to selec-
tively retrieve relevant sections of the documentation based
on the encountered error. This targeted retrieval improves



response accuracy while minimizing computational overhead.
To assess the effectiveness of our approach, we constructed a
dataset of VPR failures spanning various error categories and
evaluated multiple LLM models and prompting techniques.

II. BACKGROUND
A. Verilog-to-Routing

VTR [9] is an open-source FPGA CAD flow that facilitates
the exploration of hypothetical FPGA architectures and the de-
velopment of new CAD algorithms, while also supporting the
targeting of commercial FPGAs. It integrates multiple open-
source tools, including Yosys [16], and Odin II [17] for logic
synthesis, ABC [18] for logic optimization and technology
mapping, and VPR [19] for packing, placement, and rout-
ing. VIR offers multiple CAD flow variants, allowing users
to experiment with various configurations and approaches
based on their specific design requirements. For example, the
placement stage of VTR supports various techniques ranging
from analytical placement [20], simulated annealing (SA) with
range limiters [19], to reinforcement learning (RL) controlled
simulated annealing [21], [22]. For each of those algorithms,
there are multiple options to choose from; for example in the
RL-based placement algorithm (RLPlace), the RL agent can
control the move type used during SA [22] or control both the
move type and the block type to be moved [23]. Furthermore,
each of these settings has further tunable options that greatly
affect the flow.

This flexibility allows VTR to serve as the foundation
for several key frameworks, such as OpenFPGA [24], which
automates the design, verification, and layout of customized
FPGA architectures, and is now integral to startups like Rapid-
Silicon and RapidFlex [25], [26]. VTR’s flexibility allows
it to be employed in building bespoke FPGAs implemented
using standard cells [27], while also being used to program
some mainstream commercial devices like the Xilinx Virtex-6
FPGA family through the VTR-to-Bitstream toolchain [28].
Additionally, VTR is instrumental in the Symbiflow project,
which targets Xilinx’s Artix-7 FPGAs [29]. Its robustness,
adaptability, and comprehensive support for various CAD
flows have made it a core component in advancing FPGA
design research and applications.

B. Large Language Models

Large Language Models (LLMs) are advanced deep-
learning models trained on large quantities of text to un-
derstand, generate, and manipulate human language. The
versatility of LLMs, along with their ability to process and
generate text with contextual understanding, has enabled their
adoption in various domains, such as machine translation [30],
automated code generation [31], healthcare diagnostics [32],
legal document analysis [33], and financial forecasting [34].

The rapid evolution of LLMs has led to the development of
increasingly large models with huge numbers of parameters.
For example, OpenAI’s GPT-4 has approximately 1.8 trillion
parameters, significantly surpassing its predecessors in com-
plexity and performance [35]. Similarly, Meta’s Llama series
has seen substantial growth; the Llama 3.1 model, released in

July 2024, has more than 405 billion parameters [36]. Another
example is DeepSeek, which has introduced models with
large parameter counts and competitive performance, further
advancing the field of LLM research [37]. These advancements
in the size and capabilities of LLMs have allowed them to be
deployed in more and more applications.

Most applications that leverage LLMs to address specific
problems employ one of two major techniques:

1) Fine-Tuning the Model on a Specific Dataset: This
approach involves adapting a pre-trained LLM to a
particular task by further training it on a domain-
specific dataset. One technique to do this fine tuning is
Low-Rank Adaptation (LoRA) [38], which introduces
trainable low-rank matrices into each Transformer layer
to significantly reduce the number of trainable param-
eters while enabling domain-specific tuning. The main
advantage of fine-tuning is that it enables the model to
specialize in the target task, leading to high accuracy.
However, it is computationally expensive and requires
a large labeled dataset for use during the fine-tuning
process, and such a dataset may not always be available.

2) Prompt Engineering: Instead of modifying the model’s
parameters, this method carefully designs prompts (i.e.,
inputs) to guide the model’s responses. For example,
Chain-of-Thought (CoT) prompting can enhance rea-
soning capabilities by prompting the model to generate
intermediate reasoning steps [39]. The advantage of
prompt engineering is that it requires no additional
model training and can be rapidly adjusted for different
tasks. However, it often requires extensive trial and error
to achieve the best results.

C. Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) [40] is an ad-
vanced framework that enhances the accuracy and reliability
of LLMs by integrating external knowledge retrieval into
the response generation process. Unlike standard LLMs that
rely solely on their pre-trained parameters, RAG dynami-
cally fetches relevant documents from an external database
resulting in better accuracy and fewer hallucinations. This ap-
proach is particularly beneficial for tasks that require domain-
specific knowledge where accurate and up-to-date informa-
tion is crucial. RAG can be implemented through different
retrieval techniques, including sparse retrieval methods like
BM25 [41], dense retrieval models such as Dense Passage
Retrieval (DPR) [42], and vector embedding models [43] for
semantic document matching.

D. LLM for EDA

Recently, LLMs have been increasingly applied to the do-
main of Electronic Design Automation (EDA) and Computer-
Aided Design (CAD) tools. DAVE [44] and VerilogEval [45]
investigated the use of LLMs to generate hardware description
language (HDL) code. Qiu et al. [46] utilized a LLM to explain
synthesis errors to the users. Nvidia proposed ChipeNemo [47]
that utilizes a LLM for 3 EDA applications: an engineering
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Fig. 1: VPR-LLM flow diagram.

assistant chatbot, EDA script generation, and bug summariza-
tion and analysis. Ahmad et al. [48] proposed using a LLM to
repair identified security bugs hardware designs by generating
replacement code. As LLMs continue to evolve and improve,
they present an exciting opportunity to revolutionize the EDA
and CAD landscape by improving automation, increasing the
precision of feedback, and lowering the barrier to use these
tools.

III. VPR-LLM

As discussed earlier, during the execution of the VTR tool
suite, errors may arise due to incorrect, incomplete, or incom-
patible command-line options. Additionally, most optimization
algorithms in VTR are heuristic-based and tuned for average-
case scenarios. As a result, their default parameter values
may not always yield optimal results and, in some cases, can
even lead to tool failures. Choosing suboptimal parameter val-
ues—whether explicitly set in the command line or inherited
as defaults—can cause the tool to fail or produce poor-quality
results. These errors require manual intervention to diagnose
and correct the issue. The complexity of VPR’s command-
line interface, combined with a vast number of configurable
parameters, makes it challenging for users to quickly identify
and resolve such errors. To automate this process and provide
efficient debugging assistance, we introduce VPR-LLM, a
system that integrates large language models (LLMs) with a
specialized workflow designed to process VTR logs, extract
relevant information, and generate corrected command-line
options.

The proposed approach follows a structured flow, as il-
lustrated in Figure 1. It consists of five key stages: VIR
Log Processing, Help Processing, LLM Inquiry, Command
Extraction and Re-execution, and Output Logging and Iter-
ative Refinement. The following paragraphs provide a detailed
explanation of each stage.

1) VIR Log Processing

The first stage of the flow involves extracting key informa-
tion from the VTR execution logs. When an error occurs, the
system parses the log file to identify three critical elements:

System message: You are an expert
in the VTR tool, specializing

in debugging and command-line
optimizations. You have access to
the following VIR command-line help
text: {help text}

User message: The VTR tool was
run with the following command:
{command} However, the following
error occurred: {error}

Your task is to modify the command
to resolve the error while
preserving the original file
names. Prioritize fixing settings
(e.g., effort levels, optimization
parameters) over increasing device
size (e.g., channel width, grid
size), unless absolutely necessary.
Provide only the modified command
and a brief explanation of the
changes made.

Fig. 2: VPR-LLM basic prompt template.

(1) the command used to invoke the VPR tool, (2) the error
message produced, and (3) a small window of preceding log
lines to provide additional execution context. This information
helps the LLM understand not only the error message itself
but also any prior warning messages or parameter settings that
might have contributed to the issue.

2) Help Processing

Since resolving an error requires an understanding of valid
command-line options and parameter constraints, we prepro-
cess the VPR tool’s help into a text format. The raw help text
can either be directly used as input to the LLM or further
segmented into small chunks for efficient retrieval of relevant
sections as we will detail in Section IV.

3) LLM Inquiry

Next, the LLM Inquiry stage constructs a prompt using the
extracted command, error message, and help text following the
prompting template shown in Figure 2.The prompt is designed
to guide the LLM in diagnosing the issue and suggesting
modifications to the command while adhering to specific
constraints:

« Prioritize correcting parameter settings (e.g., effort lev-
els, optimization heuristics) over increasing device size
(e.g., grid dimensions, channel width), unless absolutely
necessary.

o Ensure that input file names and output paths remain
unchanged to maintain consistency across runs and avoid
introducing new errors.

o Avoid unnecessary modifications to default settings that
do not directly relate to the error.



LLM Inquiry stage then initializes an LLM client from a
selected provider, sends the prompt, and collects the response
along with statistics on the number of input and output tokens.
To facilitate broad compatibility and flexibility, the LLM In-
quiry stage is designed in a modular way, allowing it to support
any provider compatible with the OpenAl API [49], such as
OpenAl [49], Groq [50], Cerebras [51], and DeepSeek [37].
Users can configure the system to select their preferred LLM
provider and specify the desired model variant. The system
also logs statistics such as the number of input and output
tokens for each query, allowing users to track costs and
optimize usage.

4) Command Extraction and Re-execution

After receiving the LLM-generated response, the system
extracts the modified command from the model’s output. Since
LLMs may provide verbose explanations or extraneous text,
the system employs regular expressions and structured parsing
techniques to isolate the corrected command. The extracted
command is then passed to the VPR Re-launch stage, where
the tool is re-executed with the suggested modifications. The
system monitors the execution status, captures performance
metrics, and determines whether the issue has been success-
fully resolved.

5) Output Logging and Iterative Refinement

All relevant information from VPR-LLM consolidated into
an output log, including:

o The original command and its corresponding error mes-
sage.

o The LLM-suggested modifications and the reasoning be-
hind them.

o The modified command used for re-execution.

o The resulting VPR log output and execution status.

o Performance metrics such as runtime, memory usage, and
routing congestion.

If the modified command still results in a failure, the system
can optionally trigger an iterative refinement process. In this
mode, the newly generated VPR log file is fed back into
the system, allowing the LLM to generate further corrections
based on the updated error message. This iterative approach
continues until a successful execution is achieved or a prede-
fined retry limit is reached.

The proposed flow demonstrates highly promising results,
as detailed later in Section VII. However, a key limitation
of this approach is the substantial number of input tokens
required, primarily due to the extensive size of the tool’s help
and documentation. For instance, the help text alone exceeds
14,000 tokens (using OpenAl tokenizer), which significantly
constrains the inclusion of additional resources, such as the
full documentation or relevant research papers, within the
prompt to avoid exceeding the model’s context length. More-
over, the high token consumption restricts the application of
advanced prompting techniques. Additionally, the high token
consumption increases computational costs, particularly when
using commercial LLM services. Every query incurs expenses
based on input and output token counts, which can become a
limiting factor for large-scale or frequent use. To address this
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issue, we introduce an optimized approach, RAG-VPR-LLM
to selectively retrieve and include only the most relevant help
text in each query.

IV. RAG-VPR-LLM

To optimize the number of input tokens while preserving
the effectiveness of LLM-based error resolution, we employ
a Retrieval-Augmented Generation (RAG) approach. Instead
of passing the entire help documentation as part of the LLM
prompt, we dynamically extract only the most relevant sections
based on the specific error message and command in question.
This significantly reduces token usage while improving re-
sponse quality by ensuring the model focuses only on relevant
information.

Our RAG-based approach leverages semantic search tech-
niques to retrieve the most relevant help documentation before
invoking the LLM. The workflow consists of three main
stages: indexing the help documentation, processing queries,
and retrieving relevant parts of the help documentation.

1) Indexing the Help Documentation

As illustrated in Figure 3a, we preprocess the help text
by splitting it into smaller, manageable chunks based on
paragraph boundaries. This ensures that each chunk contains a
coherent and self-contained piece of information. Each chunk
is then transformed into a dense vector representation using a
pre-trained embedding model, allowing for efficient semantic
similarity comparisons. The generated embeddings, along with
their corresponding text chunks, are stored in a Facebook
Al Similarity Search (FAISS) [52] index, enabling fast and
scalable nearest-neighbor searches.

2) Query Processing and Retrieval

When an error occurs, we construct a query by combining
the error message and the original command responsible
for triggering the error. The query is then encoded into an
embedding using the same model used for indexing the help
documentation, as shown in Figure 3b. The FAISS index is
then queried to retrieve the top-k most relevant help text
chunks that closely match the query’s embedding. These
retrieved chunks are expected to contain useful information
for resolving the issue.



3) Context Construction and LLM Invocation

Rather than providing the entire help documentation to the
LLM, we concatenate only the retrieved chunks and include
them in the LLM prompt along with the error message and
command following the structure shown in Figure 2. This
approach ensures that the LLM receives the most relevant
information without being overloaded with extraneous data,
improving both accuracy and efficiency.

By integrating this RAG-based retrieval mechanism, our
approach (RAG-VPR-LLM) offers several advantages in terms
of efficiency, accuracy, and scalability.

First, the use of RAG significantly reduces token usage and
cost. Instead of consuming thousands of unnecessary tokens
by passing the entire help text, our approach ensures that only
the most relevant sections are included in the LLM query.
This leads to a substantial reduction in token consumption,
making the solution more cost-effective and even compatible
with free-tier LLM APIs in certain configurations.

Second, our method improves response quality and ac-
curacy by providing the LLM with focused, high-quality
context. Instead of overwhelming the model with excessive
information, the retrieval mechanism selects only the most
relevant documentation, resulting in more precise and relevant
responses. This structured retrieval process also helps in re-
ducing hallucinations, as the model is guided by only relevant
information.

Another advantage of our approach is its scalability. Unlike
naive solution (i.e. VPR-LLM) that directly feed entire help
files into the LLM, RAG enables seamless integration of
additional knowledge sources, including tool documentation,
research papers, source code comments, and past error logs.
The retrieval mechanism ensures that only the most useful
information is selected, preventing performance degradation
due to excessive input size.

Furthermore, the framework is designed to be modular,
allowing for easy customization and experimentation. The
embedding model can be replaced with a different one that
offers better performance, the number of retrieved chunks can
be tuned to optimize accuracy versus cost, and additional
filtering mechanisms can be incorporated to refine retrieval
results further.

V. ADVANCED PROMPTING TECHNIQUES

The efficient retrieval technique proposed in RAG-VPR-LLM
enables us to explore more advanced prompting techniques
to enhance the accuracy and robustness of the proposed
flow. These techniques enhance the LLM’s ability to generate
precise and well-reasoned corrections while maintaining com-
putational efficiency. Below, we describe the key prompting
techniques we tested.

A. Chain-of-Thought (CoT) Reasoning

A fundamental limitation of single-shot responses from
LLMs is that they may not fully consider alternative solutions
or evaluate trade-offs effectively. To address this, we imple-
ment a Chain-of-Thought (CoT) reasoning approach, where the
error resolution process is decomposed into multiple sequential

steps. First, the LLM is asked to generate a comprehensive list
of potential solutions to the given error. Instead of providing
a single correction outright, the system offers several alter-
natives. Following this, a follow-up query asks the model to
rank the proposed solutions based on their effectiveness in
resolving the issue. Factors such as resource efficiency and
minimal modification to key design parameters are considered
during ranking. Finally, the LLM selects the highest-ranked
solution and verifies its correctness by cross-referencing the
modified command against the extracted help documentation
before execution.

We expected this structured reasoning process mitigates
incorrect or suboptimal corrections, ensuring that the final
recommendation is both well-justified and more likely to
resolve the error effectively.

B. Evaluate N Temps: Controlling Response Variability

The temperature parameter used in LLMs controls the
randomness of the responses generated. Lower temperature
values (e.g., 0.2) lead to more deterministic, focused outputs,
while higher values (e.g., 0.8) introduce greater variability
in the responses. To harness this property, we introduce the
Evaluate N Temps technique. In this approach, the same Basic
prompt (similar to the one in Figure 2 and using RAG-
VPR-LLM) is issued multiple times with varying temperature
settings, producing a range of responses. These responses
are then sent to the LLM again to be evaluated, and the
LLM selects the most coherent and contextually appropriate
solution. This method helps to balance response diversity and
reliability, ensuring that edge-case errors are addressed without
introducing unnecessary randomness.

C. Evaluate N Seeds: Enhancing Solution Diversity

Another source of variability in LLM-generated outputs
comes from the random seed used during inference. To
enhance the diversity of potential solutions, the Evaluate N
Seeds technique executes the same query multiple times with
different random seeds. This produces a variety of potential
corrections, and similar to Evaluate N Temps technique, all
these proposed corrections are sent back to LLLM for evaluation
and picking the optimal out of them. This approach is partic-
ularly valuable for ambiguous errors where multiple viable
solutions might exist, ensuring that the final recommendation
is not biased by any one response.

By incorporating these advanced prompting strategies, our
flow enhances the accuracy of error resolution while maintain-
ing computational efficiency.

VI. FAILURES DATASET

To effectively evaluate the proposed flow, we introduce a
curated dataset consisting of 26 distinct failure cases encoun-
tered during the execution of VTR. This dataset encompasses a
wide variety of error scenarios, each representing a unique case
that highlights a specific failure within the tool. It is important
to note that modifying only the circuit or architecture file,
while leaving the underlying error cause unchanged, does
not create a new failure case. Each failure in our dataset



is fundamentally distinct in its root cause and manifestation,
ensuring a comprehensive evaluation framework.

The failure cases in this dataset are organized into five
broad categories based on their underlying cause, allowing
for targeted analysis and testing of our error-handling and
correction flow. These categories are as follows:

1) Typos and Command Errors: Failures in this cate-
gory stem from incorrect syntax, misspelled commands,
or missing arguments in the command-line invocation.
These issues are typically caused by human errors in the
formulation of command-line instructions.

« Example: A user might mistype an option name,
such as using ——rote_chan_width instead of
——route_chan_width. In this case, VPR would
reject the unrecognized flag, leading to a failure. An-
other common mistake is omitting a required option
value, such as using ——disp instead of ——disp
on, which would result in an invalid argument
error. These types of failures are straightforward
to identify but often lead to frustrating debugging
experiences, especially for new users.

2) Bad Values: This category includes errors that occur
when invalid, unsupported, or out-of-range values are
passed to VPR configuration options, causing the tool
to behave incorrectly or even fail entirely.

« Example: When using a unidirectional routing
architecture, specifying an odd routing channel
width (e.g., ——route_chan_width 15) can
cause VPR to fail. Similarly, another example in-
volves using an incompatible circuit format with
the ——circuit_format flag. While the format
specified might technically be valid, it may not
match the actual format of the circuit file, lead-
ing to parsing errors when the architecture file is
processed. These types of errors are often due to
mismatches between configuration parameters and
the actual design specifications.

3) Not Enough Effort: Failures in this category are a result
of the default tool settings not providing enough com-
putational effort to successfully complete the placement
and routing tasks. In these cases, the tool may require
additional resources or iterations to find a feasible solu-
tion.

« Example: A common issue is that routing might
fail because the default number of routing iterations
is insufficient. For instance, increasing the iteration
limit using the —-max_router_iterations
flag can allow VPR to make more attempts to find
a valid routing solution, resolving the failure. These
types of errors are often indicative of scenarios
where the complexity of the design or routing
constraints exceeds the tool’s initial configuration
settings.

4) Small Size: Failures in this category occur when the
FPGA fabric is too small to accommodate the design’s
requirements, either in terms of routing resources or

available logic elements. These errors are often caused
by resource constraints that prevent the tool from placing
and routing the design successfully.

« Example: VPR provides two modes for routing:
(1) searching for the minimum channel width that
allows the circuit to be routed, and (2) targeting
a fixed channel width. In the fixed-width mode,
routing may fail if the specified routing channel
width is too small to support the circuit. This can
be resolved by increasing the channel width using
——route_chan_width, which provides more
routing resources. Alternatively, enabling the search
for the minimum channel width may also resolve
the failure by allowing VPR to automatically adjust
the width to fit the design’s routing requirements.

5) File Handling: Failures in this category are caused by
missing, misformatted, or incorrectly referenced files,
which can prevent proper execution of the tool. Such
errors are often related to external dependencies, such
as constraint files or architectural specifications, that are
not correctly specified or are unavailable.

« Example: A common failure occurs when an in-
correct SDC (Synopsys Design Constraints) file
references a non-existent clock signal. In this case,
VPR cannot apply the timing constraints correctly,
resulting in an error. This issue can be resolved
by either removing the incorrect SDC file from the
command or modifying it to reference the correct
clock signal name. These types of errors highlight
the importance of correct file referencing and en-
suring that all necessary files are properly formatted
and available.

This dataset provides a structured benchmark for evaluating
the efficiency of the proposed flow. By covering a diverse set
of failure types, it allows us to rigorously assess how well
different error-handling mechanisms and retrieval strategies
perform in diagnosing and resolving VPR failures, ensuring
that the proposed flow can handle the complexities of different
failure modes effectively. This dataset is available at removed
for blind review.

VII. RESULTS & DISCUSSION

To evaluate the effectiveness of the proposed VPR-LLM
flow, we conducted a series of experiments using the failure
dataset introduced in Section VI. For each case, we assessed
how well the proposed flow was able to generate the correct
command modifications to resolve the issue. The process
involved extracting the modified command generated by the
LLM for each failure case, which was then automatically used
to launch VPR. Following this, we monitored the execution
status of VPR to determine if the failure was successfully
resolved or if further adjustments were required.

All LLM queries for this evaluation were performed using
the Groq [50] API, which provides a robust interface for
interacting with large language models. Unless otherwise
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Fig. 4: VPR-LLM and RAG-VPR-LLM performance and cost
comparison. For the tokens bars, the light colors represent the
output tokens while the dark colors represent the input tokens.

specified, the L1lama3.3-70B model was used for gener-
ating the command modifications. This model, referred to
as llama-3.3-70b-versatile in the Groq API, was
chosen for its strong performance across a range of tasks
and its capacity to handle the complexity of the VPR-related
queries. For generating the responses, we configured the LLM
with a temperature setting of 0.5 and a seed value of 1, unless
otherwise noted.

For the Retrieval-Augmented Generation (RAG)-based ex-
periments, we utilized the gte—-large embedding model
from TheNLPer [53]. This model provides 1024-dimensional
embeddings, which are essential for efficiently retrieving and
integrating relevant information from large text corpora, such
as VPR’s help and error logs. By combining these embeddings
with the LLM’s generative capabilities, we were able to
retrieve precise information and generate contextually relevant
command modifications to resolve the failures.

A. VPR-LLM Results

As shown in Figure 4, VPR-LLM successfully resolved more
than 80% of the test cases (21 out of 26), allowing VPR to run
without errors. This demonstrates the effectiveness of leverag-
ing LLM-based techniques to assist users in overcoming VPR-
related issues. However, a subset of failure cases remained
unresolved, which we analyzed in detail below:

1) Incompatible FPGA Architecture: One failure oc-
curred when attempting to run VPR on a synthesized
circuit targeting an FPGA architecture different from
the one it was synthesized for. The netlist contained
primitives absent in the target FPGA, making resolution
infeasible within the scope of this work. While no com-
mand modification could resolve this issue, including
it in the dataset highlights an opportunity for future
enhancements where the LLM agent could access the
architecture file or the entire VTR GitHub repository to
propose an appropriate architecture.

2) Incorrect Circuit Format: In another case, a circuit was
provided in .blif format while the command spec-

ified --circuit_format FPGA_interchange.
We expected the LLM to resolve this error; however,
upon investigation, we found that VPR did not produce
a meaningful error message but instead crashed with
ambiguous output. This lack of clear error reporting
hindered the LLM’s ability to diagnose and correct the
issue. This case underscores the importance of robust
error handling in EDA tools to facilitate LLM-assisted
debugging.

3) Routing Congestion with Fixed Channel Width: A
test case involved routing failures due to excessive con-
gestion with a fixed channel width. The LLM suggested
increasing the routing channel width, which was a step
in the right direction. However, because we explicitly
instructed the agent not to aggressively increase device
resources, the adjustment was insufficient to resolve
the failure. When we relaxed this constraint, the LLM
successfully generated a working solution. Furthermore,
allowing iterative interactions between the LLM and
VPR enabled the agent to refine its suggestions over
multiple attempts, ultimately resolving the issue.

4) DSP Chain Packing Issue: Another complex failure
arose when placement failed due to insufficient space
for DSP blocks, despite the presence of available DSP
locations. The root cause was that the circuit created
DSP chains, leading to inefficient resource utilization
(e.g., a device with two DSP columns of five blocks
each versus a circuit with three DSP chains of three
blocks each). Since VPR only reports the total number
of DSP blocks and available locations without details
on chaining, the LLM did not consider increasing the
device size as a potential fix. Instead, it attempted
adjustments to packing options, which did not resolve
the problem. However, removing the restriction against
increasing device size enabled the LLM to generate a
viable solution.

5) Invalid Floorplan Constraints: One failure stemmed
from an incorrect floorplanning constraint that mapped
a block outside the device’s valid region. Resolving this
issue would require modifying the constraint file, a task
beyond the scope of our current approach. Addressing
such cases may necessitate integrating an additional
agent capable of analyzing input files and suggesting
corrections, which is a potential avenue for future work.

These findings underscore both the strengths and limitations
of VPR-LLM. On the one hand, the system showcases impres-
sive performance in automatically identifying and correcting
a majority of the VPR-related failures, demonstrating its
potential as a valuable tool for VPR users. However, certain
failure cases reveal that the current capabilities of VPR-LLM
are not sufficient to fully resolve all errors. These unresolved
issues often point to areas where the system’s understanding
of the underlying architecture or the specific context of the
failure could be further refined. Future work will explore these
directions to further enhance automated debugging for VPR
users.



B. RAG-VPR-LLM Results

A notable limitation of VPR-LLM is its dependence on
the complete help documentation of the tool for each query,
resulting in substantial token consumption. As shown in Fig-
ure 4, processing all 26 failure cases required ~375k input
tokens, averaging approximately 14.5k tokens per individual
inquiry. This heavy reliance on the full documentation leads
to significant computational costs, making the approach less
scalable for larger datasets or real-time applications.

RAG-VPR-LLM addresses this issue by retrieving only the
top 5 most relevant data chunks, reducing total input tokens
over all the dataset to approximately 62k (<2.5k tokens
per inquiry). However, this optimization reduces the error
resolution success rate to ~70%. In response to this trade-
off, we increased the number of retrieved data chunks to 15,
effectively restoring the error resolution success rate to 80%,
which matches the performance of VPR-LLM. At the same
time, we maintained a total token count below 230k (averaging
fewer than 8.7k tokens per test case), which represents a
40% reduction in token usage compared to VPR-LLM. This
significant reduction in token consumption not only enhances
efficiency but also reduces computational costs, enabling
RAG-VPR-LLM to operate within the free-tier access limits
of Groq’s platform for the Llama3.3-70B model'. In terms of
runtime, indexing the full tool help text takes approximately
5-6 seconds and is performed only once during the initial
local execution; subsequent queries reuse the cached index.
For LLM inference, using LLaMA 3.3-70B, the response time
is around 7-8 seconds per query using Groq APL

These findings demonstrate that RAG-VPR-LLM effectively
balances efficiency and accuracy, providing a scalable and
cost-effective solution for automating debugging in VPR.
By reducing token consumption while maintaining a high
success rate, RAG-VPR-LLM offers a compelling alternative
to VPR-LLM, making it more practical for frequent usage.

C. Advanced Prompting Techniques Results

We also investigated the impact of advanced prompting
techniques, specifically Chain of Thought (CoT), Evaluate N
Seeds, and Evaluate N Temps, on error resolution performance.
These techniques were integrated into the RAG-VPR-LLM
flow, where the top 5 most relevant help chunks were retrieved
for each query. The success rates of these techniques, along
with the associated input and output token counts, are pre-
sented in Table L.

The results indicate that these advanced prompting tech-
niques improve the error resolution success rates compared
to the baseline RAG-VPR-LLM with the top 5 retrieved
chunks—represented by the orange column in Figure 4. How-
ever, despite the improvements, none of these techniques were
able to match the performance of RAG-VPR-LLM with 15
retrieved chunks—shown in the green column in Figure 4. This
suggests that while the advanced prompting methods provide
some accuracy benefits, they do not fully compensate for the

'Groq’s free-tier access and pricing details can be found at https://console.
groq.com/docs/rate-limits, accessed on 10 March 2025.

TABLE I: Performance comparison of advanced prompting
techniques. All the experiments use RAG-VPR-LLM with top
5 chunks of the help retrieved in each inquiry.

# Output Tokens

Success Rate  # Input Tokens

Baseline 69.23% 62261 2886
CoT 73.08% 243290 27901
Eval N seeds 76.92% 255535 11517
Eval N Temps 69.23% 385990 17606

information loss caused by the reduced number of retrieved
chunks. Moreover, these techniques tended to use a similar
or slightly higher token count, which indicates that while they
can enhance performance, they also increase the computational
cost.

These findings highlight the potential of advanced prompt-
ing in improving the accuracy of RAG-VPR-LLM, but they
also underscore the importance of carefully balancing accuracy
improvements with the associated token costs. To maximize
the performance-to-cost ratio, it is essential to apply these
advanced prompting techniques strategically, considering both
their impact on success rates and their effect on computational
resources.

VIII. CONCLUSION AND FUTURE WORK

This paper explores the potential of using LLMs to au-
tomatically resolve errors in complex CAD tools like VTR
by modifying command-line arguments. It also utilized RAG
techniques to minimize the cost of LLM deployment while
enhancing its ability to access relevant information. Our work
introduces a dataset of 26 diverse VIR failure cases, which
serves as a benchmark for evaluating the proposed techniques.

The results demonstrate that VPR-LLM effectively resolves
over 80% of the test cases, and RAG-based retrieval strategies
significantly reduce token consumption without sacrificing
accuracy. This enables more scalable and cost-effective de-
ployment, even within free-tier API constraints.

In our future work we aim to expand the information
available to the LLM by integrating additional sources such
as research papers, source code, and full tool documentation.
Furthermore, we propose a multi-agent system where dis-
tinct agents handle different aspects of error resolution: one
for modifying command-line arguments (as presented in this
work), another for adjusting input files when necessary, and a
third for updating the tool’s source code. Employing Mixture
of Experts (MoE) techniques to orchestrate these agents could
further improve automation and enhance the robustness of
error resolution in VTR and similar CAD tools. Finally, we
plan to broaden the class of errors that VPR-LLM can help
resolve to include timing closure issues.
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