
Double Duty: FPGA Architecture to Enable
Concurrent LUT and Adder Chain Usage

Junius Pun*

Nanyang Technological University
JPUN001@e.ntu.edu.sg

Xilai Dai*
Cornell University
xd44@cornell.edu

Grace Zgheib
Altera

grace.zgheib@altera.com

Mahesh A. Iyer
Altera

mahesh.iyer@altera.com

Andrew Boutros
University of Waterloo

andrew.boutros@uwaterloo.ca

Vaughn Betz
University of Toronto

vaughn@ece.utoronto.ca

Mohamed S. Abdelfattah
Cornell University

mohamed@cornell.edu

Abstract—Flexibility and customization are key strengths of
Field-Programmable Gate Arrays (FPGAs) when compared to
other computing devices. For instance, FPGAs can efficiently
implement arbitrary-precision arithmetic operations, and can
perform aggressive synthesis optimizations to eliminate ineffec-
tual operations. Motivated by sparsity and mixed-precision in
deep neural networks (DNNs), we investigate how to optimize
the current logic block architecture to increase its arithmetic
density. We find that modern FPGA logic block architectures
prevent the independent use of adder chains, and instead only
allow adder chain inputs to be fed by look-up table (LUT)
outputs. This only allows one of the two primitives—either adders
or LUTs—to be used independently in one logic element and
prevents their concurrent use, hampering area optimizations. In
this work, we propose the Double Duty logic block architecture to
enable the concurrent use of the adders and LUTs within a logic
element. Without adding expensive logic cluster inputs, we use 4
of the existing inputs to bypass the LUTs and connect directly
to the adder chain inputs. We accurately model our changes
at both the circuit and CAD levels using open-source FPGA
development tools. Our experimental evaluation on a Stratix-
10-like architecture demonstrates area reductions of 21.6% on
adder-intensive circuits from the Kratos benchmarks, and 9.3%
and 8.2% on the more general Koios and VTR benchmarks
respectively. These area improvements come without an impact to
critical path delay, demonstrating that higher density is feasible
on modern FPGA architectures by adding more flexibility in
how the adder chain is used. Averaged across all circuits from
our three evaluated benchmark set, our Double Duty FPGA
architecture improves area-delay product by 9.7%.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) offer bit-level pro-
grammability at the price of performance when compared
to Application-Specific Integrated Circuits (ASICs). This en-
ables their flexible use in many application domains where
deployment-time reconfigurability is warranted such as cloud
networking [1]–[3], wireless communication [4]–[6], and ma-
chine learning [7]–[10]. Many mainstream machine learning
workloads depend on high-performance dense matrix mul-
tiplications, pushing FPGA vendors to either bolster their
FPGAs with tensor compute units [11], [12] or resort to
heterogeneous FPGA-CGRA hybrid computing devices [13].
However, as machine learning becomes ever more prevalent,
it is finding its way into a broad variety of applications that
can take advantage of the flexibility of the FPGAs’ soft logic.
This is highlighted by the plethora of works to create new

* These authors contributed equally to this work.

frameworks [14], methods [9], [15]–[17], benchmarks [18],
and architectures [19], [20] to improve the efficiency of deep
neural networks (DNNs) implemented using the FPGA fabric
soft logic.

Most DNN accelerators struggle to leverage unstructured spar-
sity or arbitrary mixed precision for higher efficiency [21].
This is also true for hard blocks (DSPs and BRAM) that are
available on modern FPGAs. For example, DSP units are often
designed to optimize fused multiply-add operations that are
18, 27, or 32 bits wide [22], [23]. Despite many efforts to
make FPGA hard blocks more reconfigurable [24]–[27], they
are still fundamentally limited by their modes of operation,
their fundamental multiply-accumulate operation, and their
limited resource number on a given FPGA chip. In contrast,
a soft-logic implementation of DNNs plays to the FPGA’s
strength of bit-level programmability by constructing exactly
the circuit that is needed for an arithmetic operation. This
includes the flexibility to optimize away ineffectual operations
at the operand and bit levels [9], [18], and to utilize custom
numerical formats [28], [29]. For instance, when synthesizing
a multiplication operation where one operand is known at
compile time, the operation can often be decomposed into
a series of additions, allowing better utilization of FPGA
adder chains. Furthermore, adder trees are important and
common as they are needed to perform reduction in matrix
multiplication.

Several prior works have explored arithmetic efficiency in
FPGA soft logic. Compressor trees, constructed with gener-
alized parallel counters (GPCs) [30]–[32], combine the use
of both LUTs and dedicated adders to further boost resource
utilization. Other approaches involve architectural changes to
the logic block, such as packing more adders in one logic
element [33] or including explicit XOR gates to improve
compressor tree implementation [20]. However, current FPGA
architectures present a fundamental limitation: the adder carry
chain can only be driven by LUT outputs. Consequently, LUTs
and adder chains must implement closely related logic to effec-
tively utilize both resources. If a circuit is dominated by adder
chains—as is often the case with matrix multiply reduction
operations—the associated LUTs become unnecessarily occu-
pied. Conversely, if LUTs implement unrelated logic functions,
the adder chain remains inaccessible despite available inputs

and outputs within the very same logic block.

To address this shortcoming, we propose a modification to
FPGA logic blocks to more flexibly enable the concur-
rent use of adder chains and LUTs. We fully implement
our architecture—Double-Duty—in open-source FPGA CAD
tools, from circuit and architectural modeling, to synthesis al-
gorithms, to enable an extensive evaluation over three popular
FPGA benchmark suites. Our results consistently show that the
extra flexibility of enabling concurrent and independent use
of LUTs and adder chains makes Double-Duty significantly
more area-efficient compared to current FPGAs without com-
promising critical path delay. More concretely, we make the
following contributions:

1) We propose the Double-Duty FPGA logic block archi-
tecture, which decouples the connections between LUTs
and adders, enabling their independent and concurrent
usage.

2) We quantify the area and critical path delay of the
additional circuit components introduced by the Double-
Duty architecture using SPICE-based simulation and
transistor sizing with COFFE [34].

3) We integrate compressor tree algorithms into the open-
source FPGA CAD tool Verilog-to-Routing (VTR) [35],
significantly improving efficiency when synthesizing
adder chains, ensuring a strong baseline on which to
evaluate Double-Duty.

4) We evaluate our Double-Duty architecture on a suite of
comprehensive benchmarks, including the VTR standard
benchmarks, Koios ML benchmarks [36], and Kratos
unrolled DNN benchmarks [18], achieving an average
9.7% improvement in area-delay product over all cir-
cuits, and up to 80% increase in packing density in stress
tests.

II. BACKGROUND

A. FPGA Basics

FPGAs can implement any logic function through pro-
grammable Lookup Tables (LUTs), organized into large clus-
ters called Logic Blocks (LBs). Every LB contains multiple
(typically 10) smaller units, called Adaptive Logic Modules
(ALMs) or Fracturable Logic Elements (FLEs), connected to
a programmable interconnect network via a local crossbar.
Figure 2a shows the ALM design typical of Intel’s Stratix 10
series FPGAs. Each ALM typically consists of four 4-input
LUTs that can be combined with multiplexers to implement
two 5-input truth tables or a single 6-input truth table. In
addition to LUTs, each ALM contains two 1-bit full adders,
whose inputs are directly connected to the output of 4-LUTs.
This structure helps simplify logic before addition, and the
LUT can be used in many addition algorithms [30], [32].
Moreover, the carry-in and carry-out signals are connected
along multiple ALMs, forming a long carry chain, allowing
fast and high-bit-width integer addition.

Despite this versatility, a key limitation of this conventional
FPGA architecture is that the LUTs and adders are not
independent. When the adders are in use, the LUT outputs

provide inputs to the adder chain and thus cannot be used
to implement other logic functions. This dependence limits
the resource utilization in many arithmetic-heavy workloads.
Some of the recent commercial FPGAs from Xilinx [37]
have completely removed the 1-bit adders and instead use
LUTs to generate carry propagate and generate signals, which
further limits the ability of using arithmetic and logic resources
independently.

B. CAD Tools
VTR Verilog-to-Routing (VTR) [35], [38] is an open-source
FPGA CAD tool that takes Verilog design files with an FPGA
architecture description file and performs synthesis, placement,
routing, and timing analysis. By using a tree-structured XML
architecture description file, VTR allows users to experiment
with arbitrary FPGA architectures and quantitatively evaluate
new architectures and CAD algorithms.

Parmys VTR has undergone several enhancements over time.
Recently it changed the synthesis front-end from Odin II [39]
to Yosys [40], a more flexible and advanced RTL synthesis
tool that supports modern features like SystemVerilog generate
statements. However, as the Yosys front-end is a general-
purpose synthesis tool, VTR relies on a plugin called Parmys
(Partial Mapper for Yosys) to handle FPGA-specific technol-
ogy mapping [35]. Parmys has some significant limitations,
particularly in the optimization of arithmetic operations in-
cluding addition and multiplication. In this paper, we develop
adder chain synthesis within Parmys to significantly improve
its efficiency in synthesizing adder chains and compressor
trees, to be able to investigate our proposed Double-Duty
architecture using a strong CAD baseline.

COFFE 2 Circuit Optimization For FPGA Exploration
(COFFE) [34] is an automated transistor-level modeling tool
that provides accurate estimates of area, delay, and energy
consumption for FPGA tiles, by utilizing HSPICE simulations
and automated transistor sizing. Its successor, COFFE 2 [41],
extends these capabilities to heterogeneous FPGA architec-
tures, supporting complex logic blocks, fracturable LUTs, and
custom DSP tiles. In this work, we use COFFE 2 to model
our Double-Duty architecture for precise area and timing
estimation.

C. Arithmetic Optimizations
Integer multiplications are the core of computation workloads,
especially in machine learning. While DSPs are specialized
units dedicated to multiplication, they are a limited resource
and are usually better utilized with high bit width, and when
both operands are unknown at compile time. However, a
soft logic multiplier is still crucial to optimize resource uti-
lization, particularly for custom and low-bitwidth arithmetic,
and especially for unrolled DNNs [15], [17], [18] in which
one of the operands is known at compile time—the DNN
model parameters. This reduces a multiplication operation into
multiple additions of partial products. For an n-bit by n-bit
multiplication, n such rows are formed, which require n-1
summations. Using only full adders, an approach to reduce
latency is to use binary adder trees, which perform as many
summations as possible in parallel, requiring O(log n) time

(a) Cascade (b) Wallace (c) Dadda

Fig. 1: Conceptual diagram of a 4-bit multiplier using Cascade,
Wallace, and Dadda algorithms. Pill shapes represent LUT-
based compressors and rectangles represent full adder chains.
Each layer represents a reduction stage.

to obtain the final result. This is currently the default and
only approach taken by VTR to synthesize soft multipliers. To
exploit the available LUTs in FPGAs, compressor trees [30]–
[32] can also be used for efficient summation. Carry save logic,
implemented with LUTs, is used to compress the initial n rows
into 2 final rows that can be summed together with a fast
ripple carry chain. Figure 1 illustrates the conceptual diagrams
of two widely used algorithms, Wallace and Dadda, with
Cascade—a simple algorithm that only uses adder chains—
for comparison. Notably, compressor trees are currently not
supported in Parmys/VTR.

III. DOUBLE-DUTY ARCHITECTURE AND CIRCUIT-LEVEL
MODELING

This section presents our new architecture, Double-Duty, that
enables the concurrent use of logic block LUTs and adder
chains, resulting in denser FPGA placement. We describe the
architectural enhancements and variants, evaluate our proposal
at the circuit level, and present the CAD synthesis changes
that were needed to effectively and fairly assess our proposed
architecture.

A. Double-Duty Logic Block Architecture

To enable independent and concurrent use of both LUTs and
adders, we introduce two main changes to the ALMs and
local routing as described below. Furthermore, we present two
variants DD5 and DD6 which enable the use of 5-LUT and 6-
LUT modes concurrently with the adders, respectively.

AddMux In each ALM, we add extra multiplexers and four
additional ALM inputs (Z1–Z4), as highlighted in Figure 2b.
These modifications allow inputs to bypass the LUTs and
connect directly to the adder chain, enabling the use of adders
and LUTs concurrently and independently. In this revised
architecture, the ALMs support independent operation in 5-
LUT mode: two output pins are allocated for adder outputs
(O1 and O3), while the remaining two output pins can be
used for the 5-LUT outputs (O2 and O4).

AddMux Crossbar To accommodate the additional ALM
inputs (Z1–Z4), we introduce a secondary local interconnect,
which is sparsely populated and draws inputs from the existing
LB inputs as shown in Figure 3. Importantly, the total number
of input pins to the LB remains unchanged—this modification
leverages the same inputs of the original LB, and therefore

4-LUT

4-LUT

Cin

4-LUT

4-LUT

5-LU
T

5-LU
T

C
D

A
O1

B
O4

E

G
H
F

Cout

6-LU
T

A

B

O1

O2

O3

O4
5-LU

T
+

+

(a) Baseline Stratix-10 ALM.

4-LUT

4-LUT

Cin

4-LUT

4-LUT

5-LU
T

5-LU
T

C
D

A
O1

B
O4

E

G
H
F

Cout

6-LU
T

A

B

O1

O2

O3

O4

5-LU
T

+

+Z1
Z2

Z3
Z4

Addmux

(b) Double-Duty ALM. (DD5)

4-LUT

4-LUT

Cin

4-LUT

4-LUT

5-LU
T

5-LU
T

C
D

A
O1

B
O4

E

G
H
F

Cout

A

B

O1

O2

O3

O4

5-LU
T

+

+Z1
Z2

Z3
Z4

6-LU
TAddmux

(c) Double-Duty ALM with concurrent LUT6 mode. (DD6)

Fig. 2: Baseline (a) and Double-Duty ALM architectures. We
show two variants: the DD5 (b) supports concurrent 5-LUT
and adders usage while the DD6 (c) supports concurrent 6-
LUT and adder usage.

does not require any modifications to global routing. Notably,
the wires that our new crossbar connects to have connections
from LB-to-LB direct links [42]. Specifically, Stratix-10 ar-
chitectures include 40 LB-to-LB wires, 20 from the east LB
and 20 from the west LB. These enable direct connections
between adjacent LBs without needing to access the global
interconnect. As shown in Figure 3, these direct LB-to-LB

ALM (x10)

ALM

...

...

...

...

from Horizontal/vertical routing
and direct lab-to-lab links

Connection Block
(unchanged)

A
B
C
D
E
F
G
H
F

Z1
Z2
Z3
Z4

60 LAB Inputs
(unchanged)

AddMux Crossbar
(17% populated)

Local Crossbar
(unchanged)

...
...

...
...

...

Logic Block (LAB)

...

O1

O2

O3

O4

...

40 LAB Outputs
(unchanged)

Fig. 3: A new AddMux Crossbar connects existing LB inputs
to the new adder chain direct paths (Z1–Z4).

connections are multiplexed together with global routing into
the connection block multiplexers. These feed 60 LB inputs,
40 of which can be connected to LB-to-LB inputs. Our new
AddMux Crossbar connects to 10 out of those 40 LB inputs,
making this new crossbar only 17% populated (1060 inputs).
In contrast, the existing local crossbar is more than 50%
populated [42].

DD6 The AddMux and AddMux Crossbar allow the concur-
rent usage of 5-LUTs and adders; however, DD5 does not
support concurrent 6-LUT usage with the adders. To address
this, we propose an extended version, DD6, which modifies the
multiplexing of LUT and adder signals to the outputs, enabling
fully independent 6-LUT and adder operation, as shown in
Figure 2c. However, our preliminary analysis indicates that
the additional flexibility provided by DD6 yields marginal
benefits in practice. A detailed evaluation of these trade-offs
is presented in Section V.

B. Circuit-Level Modeling of Double-Duty

To model the delay and area overheads introduced by our
architectural modifications, we build upon the framework es-
tablished by Eldafrawy et al. [33], leveraging COFFE 2 [41] to
replicate the Stratix-10-like baseline architecture used in their
work. In particular, we create SPICE models for AddMux,
as well as the additional AddMux Crossbar. COFFE 2 is then
used to automatically size the transistors, and the resultant area
and delay characteristics are used in the VTR model for the
benchmark-level evaluations. Table I shows the area and delay
costs of each added component. Overall, our modifications
increase the tile area by 3.72% as compared to the baseline
architecture. Table II shows the delay impact of the added
components on several paths within the architecture. Although
these multiplexers cause a LUT-to-adder delay increase, the
delay of any signal feeding the adders directly is almost cut

TABLE I: Area and delay of added circuit components. The
area data are all shown per ALM.

Circuit Area (MWTAs) Delay (ps)

AddMux 1.698 68.77
Baseline Crossbar 289.6 72.61
AddMux Crossbar 77.91 77.05

Baseline ALM 2,167.3 -
DD5 ALM 2,366.6 (+3.72%) -

TABLE II: Delay impact of added circuits in the Double-Duty
architecture variants on data paths.

Architecture Path Delay (ps)

Baseline LB input → ALM inputs A-H 1 72.61
ALM inputs A-H → Adder input 2 133.4

LB input → ALM inputs Z1-Z4 77.05 (+6.11% vs. 1)
Double-Duty ALM inputs A-H → Adder input 202.2 (+51.6% vs. 2)

ALM inputs Z1-Z4 → Adder input 68.77 (-48.4% vs. 2)

in half, as now the signal does not need to go through the
LUT anymore. In addition, the delay of LUT output to ALM
output remains almost the same as the output circuitry is
largely unchanged. Note that Table II shows that the AddMux
Crossbar has higher delay than the existing Local Crossbar.
This may seem counterintuitive, as the AddMux Crossbar is
much smaller; however, this additional delay is an artifact of
transistor sizing in COFFE 2. COFFE 2 tries to optimize all
the paths going through an ALM, and the Z ALM inputs have
a much lower delay to the output of the ALM compared to
the conventional LUT inputs; therefore, COFFE 2 aggressively
optimizes the Local Crossbar for delay but the AddMux
Crossbar can afford to be much slower and thus use smaller
transistors.

IV. VTR CAD ENHANCEMENTS

Soft multiplication synthesis in VTR hasn’t been fully opti-
mized, which results in redundant and/or wasteful resource
usage. To tackle these shortcomings, we integrated several
optimization techniques into VTR’s synthesis. This ensured
a strong CAD baseline in the evaluation of our Double-Duty
architecture.

Unrolled Multiplication General multiplication treats each
partial product as a unique signal, since its value is unknown
during compilation. However, in the case of unrolled multi-
plication, the rows are shifted duplicates of the multiplicand,
and are included in the summation if the corresponding bit
of the known operand is ‘1’. We define this corresponding
bit as the “selector bit” of the row. When forming partial
sums from these rows, there can therefore be adder chains that
have identical input signals but sum different rows. Instead
of synthesizing duplicate adder chains, which is the current
VTR behaviour, a single adder chain can be used instead,
with its output signals fanned out as inputs for future adder
chains. Multiplicand rows can also be excluded if their selector
bits are ‘0’, reducing the initial number of rows to sum. For
a sample 8-bit multiplication with a (01010101)2 constant,

1 11 1 00✕
a1a2a3a4a5 a0

a1a2a3a4a5 a0
a1a2a3a4a5 a0

a1a2a3a4a5 a0
a1a2a3a4a5 a0

Unknown multiplicand
Known multiplier

a0p0p1p4 p2p3p5p6
a0p0p1p4 p2p3p5p6

a0p0p1q0q1q2q5 q3q4q6q7q8

Stage 1
Included inputs (by position) = 11 + 11 = 22
Produced outputs (by chain) = 7
Strength = 22/7 ≈ 3.14
Stage 2
Included inputs (by position) = 13
Produced outputs (by chain) = 9
Strength = 13/9 ≈ 1.44
Output

Duplicate chains

Fig. 4: A sample 6-bit by 6-bit unrolled multiplication. With
known multipliers, it is possible to have duplicate adder chains
in reduction stages. The strength of each reduction stage is
computed with input signals unique by position, and output
signals unique by chain.

baseline VTR uses 2.85× more full adders than in the optimal
case which exploits adder chain redundancy.

Improved Binary Adder Tree Synthesis For n rows to sum,
it is possible to insert ⌊n/2⌋ parallel adder chains at stage
1 of the addition operation, whose k rows of outputs form
the next k rows to reduce in stage 2. Adder chains need not
necessarily be formed from adjacent rows, which presents
many possible adder chain combinations. To find the best
combination at every stage, a strength heuristic is defined to
reduce the ratio of included signals by the adder chains to
the number of output signals generated in this stage. Included
signals are counted by position, meaning that a duplicate input
signal in different rows can be counted multiple times. The
heuristic thus rewards adder chain placements with duplicate
adder chains that can be replaced with a single adder chain.
Figure 4 demonstrates this concept. To determine the optimal
placement, a dynamic programming approach (Algorithm 1)
is used to find a placement that gives maximum strength for
each stage.

Compressor Tree Synthesis Instead of relying solely on
adders, compressor trees implement reduction operations using
both LUTs and adder chains. Current compressor tree imple-
mentations on FPGAs rely on generalized parallel counters
(GPCs) specific to each architecture [32]. To implement com-
pressor trees for any arbitrary architecture, each output signal
of a compressor can be viewed as the result of a boolean
equation of the GPC’s input signals. After inserting compres-
sors at each reduction stage, the final two rows are summed
together with an adder chain. The intermediate combinational
logic can then be optimized as part of logic synthesis, and
then packed into LUTs. ABC synthesis [43] is responsible for
this logic packing within the VTR suite, and thus only the
initial boolean logic mapping from the soft multiplier’s input
signals to the final adder chain’s input signals needs to be
implemented in VTR. To achieve this, we make use of two
compressor tree algorithms, the Proposed-Wallace (PW) and
Dadda trees [44]. PW and Dadda have been empirically shown
to minimize and maximize the number of full adders required
in the final adder chain, respectively. Both of these trees use
only full and half adders as compressors, for which the boolean
relationships between their inputs and outputs are well-known.
Whenever the algorithm requires the use of a compressor,

 Adders Used ALMs Used Critical Path Delay Area-Delay Product0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Va

lu
es

1.00 1.00 1.00 1.00

0.73 0.76

0.91

0.69

0.61

0.70

0.90

0.630.63

0.71

0.91

0.65

0.53

0.71

Baseline
Cascade
Wallace
Dadda
Quartus

Fig. 5: Normalized adders, ALMs, critical path delay, and area-
delay product (ADP) comparison between baseline VTR and
our improved Cascade, Wallace, and Dadda adder synthesis
algorithms on the Kratos benchmark set. Quartus area results
are also displayed for comparison.

it is inserted as its logically equivalent combinational logic,
constructed with boolean gates. The final compression logic
is thus a combinational circuit that can be optimized as a whole
and then synthesized into LUTs by ABC.

CAD Improvement Validation After implementing the pro-
posed synthesis algorithms and integrating them into VTR,
we validated the changes using the Kratos benchmark suite.
Figure 5 summarizes the geometric mean of adder usage,
ALM usage, critical path delay, and area-delay product across
various benchmarks and operand widths on the Stratix 10
FPGA. For reference, we also include the results of adder and
ALM utilization from Intel Quartus Prime Pro 23.1 to compare
resource efficiency with a commercial-grade tool. The goal
is not to outperform Quartus which uses more advanced
optimizations that we have not implemented. Instead, it is

Algorithm 1 Adder row selection for maximum strength.
CS ← empty collection ▷ empty solution cache
procedure BESTPLACEMENT(Rn) ▷ n-subset of rows

if n = 2 then return Rn

end if
if CS(Rn) exists then return CS(Rn)
end if
Sbest ← null ▷ best solution
if n is even then

for p← all pairs in Rn do
SRn−2

← BESTPLACEMENT(Rn−2 ← Rn\{p})
Ap ← adder chain with p as inputs
Ip, Op, IS , OS ← input, output signals of Ap, SRn−2

IS ← IS + Ip
if Ap is not used in SRn−2

then OS ← OS +Op

end if
if HS = IS/OS > HSbest or Sbest is null then

Sbest ← S{Ap, SRn−2
}

end if
end for

else if n is odd then
for r ← Rn do ▷ for each row

SRn−1
← BESTPLACEMENT(Rn−1 ← Rn\{r})

if HSRn−1
> HSbest or Sbest is null then Sbest ← SRn−1

end if
end for

end if
Add Sbest to CS , return Sbest

end procedure

TABLE III: Key statistics of our three benchmark suites,
measured on the baseline Stratix 10 architecture with VTR.

Benchmark Num.
Circuits

ALMs (×103) Adder Percent Avg. Fmax
(MHz)Avg. Max Avg. Max

VTR [45] 19 10.2 59.7 19.5% 47.7% 109.5
Koios [36] 20 64.3 360.7 22.5% 50.2% 70.9
Kratos [18] 7 59.6 208.2 61.4% 70.7% 103.7

to validate whether our CAD flow generates realistic FPGA
resource utilization and is representative of a commercial
FPGA CAD flow. We omit Quartus timing results as it uses
a different timing model, and the open-source Stratix-10-like
architecture in VTR does not provide accurate timing data.
Overall, our updates to VTR improve upon the baseline by
∼37% in terms of area-delay product, and closely match
Quartus in terms of resource utilization. This provides a solid
foundation for fair and realistic comparisons in our end-to-end
evaluations presented in the next sections.

V. EVALUATION

A. Experimental Setup
VTR Setup The baseline FPGA architecture used for evalua-
tion is modeled after Intel’s Stratix 10 architecture, with a 20-
nm technology node for delay and area estimation. This model
is directly available from the Verilog-to-Routing (VTR) repos-
itory and was developed in prior work [33]. We build upon
this Stratix-10-like architecture by modeling the AddMux,
AddMux Crossbar, and different output multiplexing to get the
DD5 and DD6 architectures. Timing models for these compo-
nents are obtained from COFFE 2. The number of ALMs per
LB is fixed at 10, as in the original architecture, and all other
FPGA components remain unchanged. We fix the channel
width at 400, and we set the VTR target_ext_pin_util
to 0.9 for both inputs and outputs—this allows the VTR packer
to use up to 90% of the inputs and outputs of a logic block.
The adder synthesis algorithm is set to use “Wallace” as this
gives the best results in all metrics, as shown in Figure 5. The
placement and routing are all timing-driven, and we run every
experiment three times with three different seeds and take the
average to get representative results.

Benchmark Selection To assess the impact of our architec-
tural modifications, we evaluate our designs across the three
benchmark suites shown below. Table III also summarizes key
information about each benchmark.

• Kratos: A specialized set of circuits designed for unrolled
deep neural networks (DNNs) [18]. Kratos allows cus-
tomized circuit sizes and varying computation sparsity
levels, making it ideal for studying the effects of our
optimizations. In this evaluation , we used the same size
of the “small-size” set of benchmarks as in the original
Kratos paper.

• Koios: A benchmark suite focusing on machine learning
designs implemented on FPGAs [36]. This benchmark set
helps to assess how well our architecture adapts to typical
ML workloads beyond Kratos.

• VTR Standard: A general-purpose FPGA benchmark
suite from the VTR repository [45]. This benchmark

LU32PEEng

LU8PEEng bgm

blob_merge
boundtop

ch_intrin
sicsdiffeq1

diffeq2
mcml

mkDelayWorker32B

mkPktMerge

mkSMAdapter4B
or1200

raygentop sha

stereovision0

stereovision1

stereovision2

stereovision3
Geomean0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

VT
R

 0
.9

2×
 1

.0
2×

 0
.9

4×

Area Critical Path Delay Area-Delay Product

attention_layer bnn

bwave_like
.fixed.L

bwave_like
.float.S

clst
m_like

.large

conv_layer

conv_layer_hls

dla_like
.large

dnnweaver

eltwise_layer

gemm_layer
lenet

lstm

reductio
n_layer

robot_rl
softm

ax
spmv

tdarknet_lik
e.large

tpu_like
.large.os

tpu_like
.large.ws

Geomean0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Ko
io

s 0
.9

1×
 1

.0
0×

 0
.9

1×

conv1d-FU

conv1d-PW

conv2d-FU

conv2d-PW

gemmt-FU

gemmt-RP

gemms-RP
Geomean0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
Kr

at
os

 0
.7

8×
 1

.0
3×

 0
.8

1×

Geomean0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Al
l C

irc
ui

ts

 0
.8

9×
 1

.0
1×

 0
.9

0×

Fig. 6: Normalized ALM area usage, critical path delay,
and area-delay product of Double-Duty DD5 Architecture,
evaluated on the Koios, VTR, and Kratos benchmarks.

set ensures that our modifications do not degrade the
versatility of the FPGA in broader application scenarios.

B. Experiment Results

Area and Delay Evaluation Figure 6 presents the normal-
ized results of our proposed DD5 architecture compared to
the baseline Stratix 10 architecture across the Koios, VTR,
and Kratos benchmark suites. In terms of ALM area usage,
DD5 consistently reduces resource consumption, achieving an
average reduction of 10.9%. This improvement is particularly
substantial in the Kratos benchmark suite, where arithmetic
operations dominate, showing an average of 21.6% area sav-
ings. While the average of critical path delay remains the same
level as the baseline, a few circuits do exhibit an increase of
up to 16%. These cases are likely due to suboptimal packing,
increased routing congestion, and routing heuristics that are
not yet optimized for our modified architecture. Lastly, when
considering the area-delay product (ADP), DD5 demonstrates
an average improvement of 9.7%, indicating the effectiveness
of our new Double-Duty Architecture.

Kratos VTR
Koios

All Circu
its

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Ar
ea

 0
.7

8×

 0
.9

2×

 0
.9

1×

 0
.8

9×

 0
.7

3×

 0
.9

2×

 0
.9

1×

 0
.8

9×

Kratos VTR
Koios

All Circu
its

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Cr
iti

ca
l P

at
h

De
la

y 1
.0

3×

 1
.0

2×

 1
.0

0×

 1
.0

1×

 1
.0

4× 1
.1

0×

 1
.0

9×

 1
.0

9×

Kratos VTR
Koios

All Circu
its

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Ar
ea

-D
el

ay
 P

ro
du

ct

 0
.8

1×

 0
.9

4×

 0
.9

1×

 0
.9

0×

 0
.7

7×

 1
.0

2×

 0
.9

9×

 0
.9

6×

DD5 DD6

Fig. 7: Normalized ALM area used, critical path delay, and
area-delay product (ADP) comparison between DD5 and DD6
architectures on the geometric means of 13 VTR standard
benchmarks, 18 Koios benchmarks and 7 Kratos benchmarks
set at data width of 6 and sparsity of 50%.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Routing Channel Utilization

0
5

10
15
20

Pe
rc

en
ta

ge
 (%

)

55
60

Baseline
DD5

Fig. 8: Histogram of routing channel utilization averaged over
the Kratos benchmark set. DD5 increases routing congestion
on average as the diagram shows a shift of the histogram to
higher channel utilization ranges.

DD5 vs. DD6 We additionally evaluate the second variant
DD6, which allows concurrent and independent usage of 6-
LUT and adders, and should bring more flexibility compared
to DD5. Figure 7 shows the comparison between DD5 and
DD6. While DD6 provides minor additional area savings in
Kratos benchmarks, no noticeable gains are observed in Koios
or VTR benchmarks. This can be attributed to two factors:
(1) the current CAD tools are not optimized for architectures
supporting concurrent 6-LUT usage, and (2) the utilization
of 6-LUTs is inherently low. On average only 7% of ALMs
across these benchmarks make use of 6-LUTs, making the
opportunity for concurrent usage limited. Additionally, the
added complexity of the output multiplexers in DD6 leads to
higher critical path delays, with an average frequency penalty
of approximately 8%. Consequently, the area-delay product
also increases, suggesting that the added flexibility of DD6
does not offer practical benefits for general workloads.

Routing Congestion To analyze the routing impact of the
proposed DD5 architecture, we examined the distribution of
routing channel utilization using the Kratos benchmark set,
which showed the largest area saving (22%), and the highest
critical path delay penalty (3%) on average. The result is
shown in Figure 8. While the portion of underutilized channels
slightly increased, the majority of the channel utilization
shifted towards a higher range, especially the portion between
0.3 and 0.6. This pattern suggests that by packing the same
amount of logic into fewer logic blocks (LBs), routing chan-

0 100 200 300 400 500

0.6

0.8

1.0

1.2

To
ta

l A
re

a
(M

W
TA

s)

1e6
Baseline
DD5

0 100 200 300 400 500
0

100

200

300

400

500

Nu
m

be
r o

f C
on

cu
rre

nt
 5

-L
UT

s

375

Number of 5-LUTs

Fig. 9: Results of Packing Stress test. It starts with a circuit of
500 adders, and we pack an increasing number of LUTs into
the circuit. The x-axis is the number of LUTs packed which
saturates at 375 concurrent LUTs.

nels become more congested, leading to denser usage. For all
the circuits in these benchmarks, none failed to route, and the
critical path delay impact is not too high, suggesting that this
additional routing congestion is well within the range of what
the FPGA’s routing network can handle.

Packing Stress Test To quantify the limits of concurrent 5-
LUT usage in DD5, we performed an artificial packing stress
test. In this test, we constructed a synthetic circuit with 500
adders and incrementally added 5-LUT logic to the circuit, up
to 500 LUTs in total. Under perfect concurrency conditions,
this would be the maximum number of LUTs that could
be absorbed into ALMs, concurrently with adders, without
increasing utilization. We enabled the “allow unrelated clus-
tering” option in VPR to encourage maximum packing density
at the cost of ignoring timing, hence the “artificial” nature of
this test. Figure 9 shows the results. The left plot presents
total area usage in minimum-width transistor areas (MWTAs).
When only adders are present, the baseline architecture has a
slight area advantage since the DD5 architecture has a small
area overhead in each ALM. However, when LUTs are added,
the DD5 architecture shows a significant advantage as it can
absorb LUTs into existing ALMs with adders, keeping the area
the same until the ALMs are saturated. The right plot shows
the number of concurrently packed 5-LUTs, which saturates
at 375, corresponding to 75% of the theoretical maximum.
This indicates that up to 75% concurrency between LUTs and
adders is achievable, before becoming constrained by other
factors like the global and local interconnect.

End-to-End Stress Test In this realistic stress test, we aim
to evaluate how effectively the Double-Duty architecture im-
proves packing density under constrained FPGA resources.
The procedure is as follows: we implement a circuit from the
Kratos benchmarks to determine the FPGA size needed for
a successful implementation. Then, keeping this FPGA size
fixed, we incrementally add instances of a small SHA circuit
from the VTR standard benchmark suite, until VTR can no
longer complete placement and routing. This is indeed how
new FPGA architectures are stress-tested in industry [46]. We
conducted this experiment using both the baseline architecture
and the DD5 architecture on three different Kratos circuits, and

TABLE IV: Results of the End-to-End stress tests. The table compares the maximum number of additional SHA instances
packed into a fixed-size FPGA for three Kratos circuits using both the baseline and the DD5 architecture. The DD5 architecture
enables significant improvements in packing density and slight reductions in critical path delay.

Base Kratos Circuit conv1d-FU-mini conv2d-FU-mini gemmt-FU-mini

Architecture Base DD5 ∆% Base DD5 ∆% Base DD5 ∆%

Maximum SHA instances 5 9 +80.0% 3 5 +66.7% 11 13 +18.2%

Adders (×103) 37.55 38.79 +3.29% 18.86 19.48 +3.28% 14.35 14.97 +4.31%
5-LUTs (×103) 9.21 15.90 +72.5% 5.30 8.82 +66.5% 19.74 23.54 +19.2%

Concurrent 5-LUTs 0 4397 +27.7%∗ 0 2458 +27.9%∗ 0 3790 +16.1%∗

Critical Path Delay (ns) 15.81 15.05 -4.81% 16.07 15.01 -6.60% 16.27 15.16 -6.82%
ALM Count (×103) 27.93 27.08 -3.04% 14.16 13.79 -2.64% 18.45 18.04 -2.27%

Logic Block Count 2947 2946 -0.03% 1474 1498 +1.63% 1895 1870 -1.32%
Total ALM Area (MWTAs ×106) 60.54 60.88 +0.57% 30.69 30.99 +0.98% 40.00 40.55 +1.37%

∗Denotes the percentage of 5-LUTs in which LUTs and adders are used concurrently. This is impossible in the baseline architecture.

all experiments are performed with timing-driven placement
and routing to better reflect a realistic scenario. Table IV shows
the results, indicating that DD5 enables significant improve-
ments in packing density. For instance, the maximum number
of SHA instances that can be implemented in the same FPGA
area increased by 80% for conv1d-FU-mini and by 66.7%
for conv2d-FU-mini, compared to the baseline. This is
achieved through significant 5-LUT concurrency: 27.7% for
conv1d-FU-mini, 27.8% for conv2d-FU-mini, and
16.1% for gemmt-FU-mini. Additionally, the critical path
delay also shows slight improvements; this is because the
critical path lies in the multiple adder region, and our AddMux
in DD5 architecture reduced the delay from ALM input to
the adder, resulting in a lower overall critical path delay.
These results demonstrate that DD5 not only allows for
denser packing but can also improve timing in certain stress
scenarios.

VI. DISCUSSION

Related Works There are two closely-related works targeting
the arithmetic efficiency of the FPGA’s soft logic. Eldafrawy et
al. [33] proposed modifications to the ALM microarchitecture
with an additional adder chain. However, their work’s main
focus is on low-bit multiply-accumulate (MAC) only, and
lacks end-to-end evaluations on circuit benchmarks, making
it challenging to compare directly to their work. Furthermore,
our approach is synergistic with this prior work as we can
bypass the LUTs to access one or more adder chains within
the ALM. Similarly, LUXOR [20] achieves higher arithmetic
efficiency of compressor trees by improving the expressiveness
of each ALM through an extra XOR gate. This approach
is also orthogonal to ours, as LUXOR focuses on gate-
level function enhancement, whereas Double-Duty focuses
on improving data path flexibility and resource utilization.
Therefore, both enhancements can be applied to the same
FPGA simultaneously.

Compatibility with Other Architectures Our architectural
exploration and evaluation are based on an Intel Stratix-10-
like FPGA, as its open-source architectural models are readily
available [33]. However, modern FPGA families—such as the
AMD Versal series [37]—feature different design paradigms:

they use LUTs as full adders and include dedicated carry-
lookahead logic, fundamentally different from the Stratix 10.
To adapt the Double-Duty architecture to these FPGAs, several
function unit augmentations would be necessary, including
reintroducing explicit 1-bit full adders. While this requires
some additional logic, the relative area cost of full adders
in modern technologies is negligible and unlikely to cause
substantial overhead. As a result, we believe our Double-
Duty architecture is adaptable to modern devices with minimal
design changes and without compromising its core efficiency
benefits. We plan to more accurately compare to these alter-
native logic block architectures in future work.

VII. CONCLUSION

We presented Double-Duty, a novel FPGA logic block ar-
chitecture that enables the concurrent and independent usage
of adders and LUTs within the same ALM, significantly
improving arithmetic density with minimal area overhead and
a negligible impact on critical path delay. Together with
the architectural innovations, we enhanced the VTR CAD
toolchain [35] with optimized synthesis algorithms for adder
chains, substantially improving its efficiency and providing us
with a baseline that is representative of commercial CAD tools
like Quartus. We evaluated Double-Duty across three diverse
benchmark suites, achieving an average 9.7% improvement
in area-delay product and up to 21.6% area savings on the
arithmetic-heavy Kratos benchmarks [18]. Although denser
packing may introduce routing pressure, we found the increase
in routing congestion to be relatively low and well within the
capabilities of modern FPGA routing fabrics. Lastly, two stress
tests show the potential of Double-Duty in achieving higher
density and resource utilization.

ACKNOWLEDGMENT

This project is supported by Intel Corporation, the National Science
Foundation under Grant No. 2303626, and the CN Yang Scholars Pro-
gramme, Nanyang Technological University. We would like to thank
Sergey Gribok, Ilya Ganusov, Martin Langhammer, Sadegh Yazdan-
shenas, and Susanne Balle for discussion and feedback.

REFERENCES

[1] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al., “Azure
accelerated networking: SmartNICs in the public cloud,” in Proceedings
of the 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2018.

[2] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia, and
P. Chow, “Enabling flexible network FPGA clusters in a heterogeneous
cloud data center,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2017.

[3] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached
FPGAs for data center applications,” in 2016 International Conference
on Field-Programmable Technology (FPT), 2016.

[4] T. Havinga, X. Jiao, W. Liu, and I. Moerman, “Accelerating FPGA-
based WI-FI transceiver design and prototyping by high-level synthesis,”
in Proceedings of the 31st IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2023.

[5] G. Li, S. Wu, C. You, W. Zhang, G. Shang, and X. Zhou, “Cell-
free massive MIMO-OFDM: Asynchronous reception and performance
analysis,” IEEE Internet of Things Journal, vol. 11, no. 7, 2023.

[6] M. W. Hassan, H. Ltaief, and S. A. Fahmy, “High throughput massive
MIMO signal decoding using multi-level tree search on FPGAs,” in
Proceedings of the 32nd IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2024.

[7] M. S. Abdelfattah, D. Han, A. Bitar, R. DiCecco, S. O’Connell,
N. Shanker, J. Chu, I. Prins, J. Fender, A. C. Ling et al., “DLA: Compiler
and FPGA overlay for neural network inference acceleration,” in Pro-
ceedings of the 29th International Conference on Field programmable
Logic and Applications (FPL), 2018.

[8] S. Zeng, J. Liu, G. Dai, X. Yang, T. Fu, H. Wang, W. Ma, H. Sun, S. Li,
Z. Huang et al., “Flightllm: Efficient large language model inference
with a complete mapping flow on fpgas,” in Proceedings of the 2024
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA), 2024.

[9] E. Wang, J. J. Davis, G.-I. Stavrou, P. Y. Cheung, G. A. Constantinides,
and M. Abdelfattah, “Logic shrinkage: Learned FPGA netlist sparsity
for efficient neural network inference,” in Proceedings of the 2022
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA), 2022.

[10] Q. Wang, L. Zheng, Z. An, S. Xiong, R. Wang, Y. Huang, P. Yao,
X. Liao, H. Jin, and J. Xue, “A scalable, efficient, and robust dynamic
memory management library for HLS-based FPGAs,” in Proceedings of
the 2024 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), 2024.

[11] M. Langhammer, E. Nurvitadhi, B. Pasca, and S. Gribok, “Stratix 10 NX
architecture and applications,” in Proceedings of the 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA),
2021.

[12] A. Arora, S. Mehta, V. Betz, and L. K. John, “Tensor slices to the
rescue: Supercharging ML acceleration on FPGAs,” in Proceedings of
the 2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), 2021.

[13] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx adaptive
compute acceleration platform: Versal architecture,” in Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), 2019.

[14] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for
particle physics,” JINST, vol. 13, no. 07, p. P07027, 2018.

[15] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides, “LUT-
Net: Rethinking inference in FPGA soft logic,” in IEEE International
Symposium on Field-Programmable Custom Computing Machines, 2019.

[16] M. Andronic and G. A. Constantinides, “PolyLUT: Learning piecewise
polynomials for ultra-low latency FPGA LUT-based inference,” in 2023
International Conference on Field Programmable Technology (ICFPT),
2023, pp. 60–68.

[17] S. Tridgell, M. Kumm, M. Hardieck, D. Boland, D. Moss, P. Zipf,
and P. H. W. Leong, “Unrolling ternary neural networks,” ACM Trans.
Reconfigurable Technol. Syst., vol. 12, no. 4, oct 2019.

[18] X. Dai, Y. Chen, and M. S. Abdelfattah, “Kratos: An FPGA benchmark
for unrolled DNNs with fine-grained sparsity and mixed precision,”
in Proceedings of the 35th International Conference on Field pro-
grammable Logic and Applications (FPL), 2024.

[19] A. Boutros, M. Eldafrawy, S. Yazdanshenas, and V. Betz, “Math
doesn’t have to be hard: Logic block architectures to enhance low-
precision multiply-accumulate on FPGAs,” in Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA), 2019.

[20] S. Rasoulinezhad, Siddhartha, H. Zhou, L. Wang, D. Boland, and P. H.
Leong, “LUXOR: An FPGA logic cell architecture for efficient com-
pressor tree implementations,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA),
2020.

[21] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“Nvidia tensor core programmability, performance & precision,” in
2018 IEEE international parallel and distributed processing symposium
workshops (IPDPSW), 2018.

[22] Intel Corporation, Intel Arria Native Fixed Point DSP IP Core User
Guide: Functional Description, Intel Corporation.

[23] AMD, Versal Adaptive SoC Technical Reference Manual (AM011)
Digital Signal Processor, AMD, 2025.

[24] A. Boutros, S. Yazdanshenas, and V. Betz, “Embracing diversity: En-
hanced DSP blocks for low-precision deep learning on FPGAs,” in Pro-
ceedings of the 29th International Conference on Field programmable
Logic and Applications (FPL), 2018.

[25] A. Arora, A. Bhamburkar, A. Borda, T. Anand, R. Sehgal, B. Hanindhito,
P.-E. Gaillardon, J. Kulkarni, and L. K. John, “CoMeFa: Deploying
compute-in-memory on FPGAs for deep learning acceleration,” in
Proceedings of the 30th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2022.

[26] Y. Chen and M. S. Abdelfattah, “BRAMAC: Compute-in-BRAM archi-
tectures for multiply-accumulate on FPGAs,” in Proceedings of the 31st
IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2023.

[27] Y. Chen, J. Dotzel, and M. S. Abdelfattah, “M4BRAM: Mixed-precision
matrix-matrix multiplication in FPGA block RAMs,” in Proceedings of
the 34th International Conference on Field programmable Logic and
Applications (FPL), 2023.

[28] M. Langhammer, G. Baeckler, and S. Gribok, “Fractal synthesis: Invited
tutorial,” in Proceedings of the 2019 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, ser. FPGA ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 202–211.

[29] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson,
and D. Kudithipudi, “Deep positron: A deep neural network using the
posit number system,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2019, pp. 1421–1426.

[30] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Efficient synthesis of
compressor trees on FPGAs,” in 2008 Asia and South Pacific Design
Automation Conference, 2008, pp. 138–143.

[31] M. Kumm and P. Zipf, “Pipelined compressor tree optimization using
integer linear programming,” in 2014 24th International Conference on
Field Programmable Logic and Applications (FPL), 2014, pp. 1–8.

[32] K. Hoßfeld, H. J. Damsgaard, J. Nurmi, M. Blott, and T. B. Preußer,
“High-efficiency compressor trees for latest AMD FPGAs,” ACM Trans.
Reconfigurable Technol. Syst., vol. 17, no. 2, apr 2024.

[33] M. Eldafrawy, A. Boutros, S. Yazdanshenas, and V. Betz, “FPGA logic
block architectures for efficient deep learning inference,” ACM Trans.
Reconfigurable Technol. Syst., vol. 13, no. 3, jun 2020.

[34] C. Chiasson and V. Betz, “COFFE: Fully-automated transistor sizing for
FPGAs,” in International Conference on Field-Programmable Technol-
ogy (FPT), 2013, pp. 34–41.

[35] M. A. Elgammal, A. Mohaghegh, S. G. Shahrouz, F. Mahmoudi,
F. Koşar, K. Talaei, J. Fife, D. Khadivi, K. Murray, A. Boutros, K. B.
Kent, J. Goeders, and V. Betz, “VTR 9: Open-source CAD for fabric
and beyond FPGA architecture exploration,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), May 2025. [Online].
Available: https://doi.org/10.1145/3734798

[36] A. Arora, A. Boutros, S. A. Damghani, K. Mathur, V. Mohanty,
T. Anand, M. A. Elgammal, K. B. Kent, V. Betz, and L. K. John, “Koios
2.0: Open-source deep learning benchmarks for FPGA architecture
and CAD research,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 42, no. 11, pp. 3895–3909, 2023.

[37] AMD, Versal Adaptive SoC Configurable Logic Block Architecture
Manual (AM005), AMD, 2024. [Online]. Available: https://docs.amd.
com/r/en-US/am005-versal-clb/CLB-Architecture

[38] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. ElDafrawy, J.-
P. Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng,
P. Patros, J. Luu, K. B. Kent, and V. Betz, “VTR 8: High performance
CAD and customizable FPGA architecture modelling,” ACM Trans.
Reconfigurable Technol. Syst., 2020.

[39] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin ii -
an open-source verilog HDL synthesis tool for CAD research,” IEEE
Annual International Symposium on Field-Programmable Custom Com-
puting Machines, pp. 149–156, 2010.

[40] C. Wolf, “Yosys open synthesis suite,” 2012. [Online]. Available:
https://yosyshq.net/yosys/

[41] S. Yazdanshenas and V. Betz, “COFFE2: Automatic modelling and
optimization of complex and heterogeneous FPGA architectures,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 12, no. 1, pp. 3:1–3:27, January 2019.

[42] K. T. Khoozani, A. A. Dehkordi, and V. Betz, “Titan 2.0: Enabling open-
source CAD evaluation with a modern architecture capture,” in Proceed-
ings of the 34th International Conference on Field programmable Logic
and Applications (FPL), 2023.

[43] R. Brayton and A. Mishchenko, “ABC: an academic industrial-strength
verification tool,” in Proceedings of the 22nd International Conference
on Computer Aided Verification, ser. CAV’10. Berlin, Heidelberg:
Springer-Verlag, 2010, p. 24–40.

[44] S. Asif and Y. Kong, “Low-area wallace multiplier,” VLSI Design, vol.
2014, pp. 1–6, 05 2014.

[45] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B.
Kent, P. Jamieson, and J. Anderson, “The VTR project: architecture
and CAD for FPGAs from verilog to routing,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. New York, NY, USA: Association for Computing Machinery,
2012, p. 77–86.

[46] I. Ganusov, Altera Corp. San Jose, CA. Private communication. March
2025.

https://doi.org/10.1145/3734798
https://docs.amd.com/r/en-US/am005-versal-clb/CLB-Architecture
https://docs.amd.com/r/en-US/am005-versal-clb/CLB-Architecture
https://yosyshq.net/yosys/

	Introduction
	Background
	FPGA Basics
	CAD Tools
	Arithmetic Optimizations

	Double-Duty Architecture and Circuit-Level Modeling
	Double-Duty Logic Block Architecture
	Circuit-Level Modeling of Double-Duty

	VTR CAD Enhancements
	Evaluation
	Experimental Setup
	Experiment Results

	Discussion
	Conclusion
	References

