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Abstract—Incorporating Networks-on-Chip (NoC) within
FPGAs has the potential not only to improve the efficiency
of the interconnect, but also to increase designer productivity
and reduce compile time by raising the abstraction level of
communication. By comparing NoC components on FPGAs and
ASICs we quantify the efficiency gap between the two platforms
and use the results to understand the design tradeoffs in that
space. The crossbar has the largest FPGA vs. ASIC gaps: 85×
area and 4.4× delay, while the input buffers have the smallest:
17× area and 2.9× delay. For a soft NoC router, these results
indicate that wide datapaths, deep buffers and a small number
of ports and virtual channels (VC) are favorable for FPGA
implementation. If one hardens a complete state-of-the-art VC
router it is on average 30× more area efficient and can achieve
3.6× the maximum frequency of a soft implementation. We show
that this hard router can be integrated with the soft FPGA
interconnect, and still achieve an area improvement of 22×. A
64-node NoC of hard routers with soft interconnect utilizes area
equivalent to 1.6% of the logic modules in the latest FPGAs,
compared to 33% for a soft NoC.

I. INTRODUCTION

The programmable interconnect is in many ways the heart of
an FPGA, but recently it has faced many challenges. First, in-
creasing wire resistance and decreasing pass transistor perfor-
mance in advanced process nodes lead to poor interconnect de-
lay scaling [1]. Second, the high interconnect delay increases
the time required to complete a design because it is difficult to
predict critical paths from a functional (e.g. RTL) description.
This necessitates time-consuming compile/analyze/re-pipeline
iterations. Third, modern FPGAs incorporate high-speed I/O
interfaces, such as DDR and PCIe. Distributing these data
streams requires wide and fast datapaths within the FPGA fab-
ric, consuming large amounts of interconnect and presenting a
further timing closure challenge. Fourth, the need to program
many individual switches to make each link leads to a large
CAD problem and long compilation times. The low level of
interconnect abstraction is also a barrier to dividing a design
into modules for independent optimization and compilation,
or partial reconfiguration.

One method to attack these problems is to use a higher-level
protocol for some of the communication within an FPGA, such
as that provided by networks-on-chip (NoC). With an NoC,
fixed wiring between communicating modules is replaced by
a network that routes packets to and from those modules. This

not only improves wire utilization but also raises the level
of abstraction and so facilitates modular design styles [2].
The network links in an FPGA design must be coded in
a latency-tolerant manner, as the exact latency of a packet
is usually not fixed. While this forces a change in design
style, it simplifies timing closure because interconnect delay no
longer affects the cycle time; instead it affects the number of
cycles a packet takes to reach its destination. Another attractive
FPGA application for NoCs is partial reconfiguration. When
swapping modules, the newly configured module will only
have to connect to an NoC interface to communicate to any
part of the FPGA as opposed to having to route each of its
nets in an already-functioning FPGA.

There are additional advantages to using a hard NoC on the
FPGA. A hard NoC will not require configuration onto the soft
fabric, making compilation simpler and faster. In addition, the
modules communicating via an NoC are disjoint which allows
their independent synthesis, placement, routing, and timing
closure. Communication bandwidth requirements can then be
used to determine the optimum position in the network for
each module. Hard interfaces on the FPGA such as DDR,
PCIe and gigabit Ethernet operate at high clock frequencies
and require low latency, high bandwidth communication to
various parts of the chip. A high-performance hard NoC is
a good match to these interfaces as it can distribute data
throughout the chip at similarly high rates without an excessive
number of wires. Of course, a hard NoC also has area and
delay advantages, which we explore in detail in this work.

There is prior work both in FPGA-ASIC comparison and on
FPGA-based NoCs. A comparison of FPGAs and ASICs by
Kuon and Rose is based on a set of benchmarks with different
logic/memory/multiplier ratios [3]. We perform a narrower but
more detailed comparison based on a high performance NoC
router. Similar work by Wong et al. compares microprocessors
on FPGAs vs. custom CMOS [4]. Lee and Shannon explore
how topology parameters impact the frequency of a soft
NoC [5]. LiPar [6], NoCem [7] and CONNECT [8] are three
virtual channel (VC) NoCs implemented efficiently in soft
logic on FPGAs. While architectural decisions were based
on FPGA utilization in prior work, we give recommendations
based on FPGA silicon area. There has also been interest in
a hard NoC on an FPGA. Francis and Moore suggest that a
circuit-switched network with time-division multiplexed links
should be hardened on the FPGA [9]. Goosens et al. propose978-1-4673-2845-6/12/$31.00 © 2012 IEEE
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Fig. 1: A virtual channel router with 5 ports, 2 VCs and a 5-word
input buffer per VC.

use of a hardwired NoC for both functional communication
and FPGA configuration programming [10]. Chung et al.
present a programming model that abstracts the distribution of
data from external memory throughout the FPGA and mention
that their application could benefit from a hard NoC [11].
The literature has shown both the implementation of soft
NoCs and the desire for hard NoCs on FPGAs but there
has not been a detailed comparison of soft (FPGA) and
hard (ASIC) NoCs to date. We make that comparison on
the router component level and use this data to give design
recommendations for soft networks, and quantify the gains of
hardening. Our contributions include:

• Quantify the area and performance gap of NoC compo-
nents between FPGAs and ASICs.

• Investigate how these area and performance results impact
router microarchitecture design decisions.

• Show how to integrate a hard NoC into the FPGA and
quantify the overall gains.

II. ROUTER MICROARCHITECTURE

We use a parametrized open-source state-of-the-art virtual
channel router [12]. We focus on this full-featured router
for two reasons. First as FPGAs increase in capacity and
hence contain larger applications, it will often be necessary to
traverse many network nodes to communicate across the chip,
and consequently we expect routers with low latency, such as
the chosen router, to be important. As we show in Section V,
this router can also achieve high clock frequencies, helping it
keep up with the throughput demands of the high bandwidth
I/O interfaces on modern FPGAs. Second, since our focus is
quantitatively examining the speed and area of hard and soft
implementations of a wide variety of NoC components, use
of a more full-featured router with more components yields a
more thorough study; simpler routers would use a subset of
the components we study.

The router operates in a 3 stage pipeline that can be reduced
to 2 stages if speculation succeeds [12]. Ingress flits are stored
in the input buffers and immediately bid for VC allocation;
this is followed by switch allocation and switch traversal.
Lookahead routing is done in parallel to switch allocation
and is appended to the head flit immediately before traversing
the crossbar switch. Finally, flits are registered at the output
modules and then traverse inter-router links.
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Fig. 2: Input module for one router port and “V” virtual channels.
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Fig. 3: A 5-port multiplexer-based crossbar switch.

Fig. 1 shows a block diagram of the router. For each of
the presented router components there are different imple-
mentation variants. We restrict our discussion to architectures
that satisfy current NoC cost limitations and bandwidth de-
mands; that is, current implementation norms. The following
references provide an in-depth discussion of implementation
variations for each component [13–16].

A. Input Module

The main function of the input module is to buffer incom-
ing flits until routing and resource allocation are complete.
Depending on the VC identifier of the packet, it is stored
in a different part of the input buffer. Routing information,
already computed by the preceding router hop, is decoded and
forwarded to the VC and switch allocators to bid for VCs and
switching resources. The flit remains in the buffer until both a
VC is allocated and the switch is free for traversal, at which
point route lookahead information is attached to the head flit
and it is ejected from the input module onto the switch.

Since route computation is done one hop earlier and
in parallel to switch allocation, it does not impede router
latency and effectively removes this step from the router
pipeline [14]. Moreover, the low-overhead route computation
logic is replicated for each VC to compute the route for all
input ports simultaneously and support the queuing of multiple
packets per VC [17]. A two-phase routing algorithm, known
as Valiant’s, routes first to a random intermediate node then
to the destination node to improve load balancing [18]. The
algorithm used to route each of the two phases is dimension-
ordered routing which routes in each dimension sequentially
and deterministically [13].

Dual-ported memory implements the input buffer. Internally,
it is organized as a statically allocated multi-queue (SAMQ)
buffer which divides the memory into equal portions for each
VC [16]. Memory width is always the same as flit width
to allow reading and writing flits in one cycle [17]. In this
implementation, the memory buffer has one write port and
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two read ports to allow the queuing of more than one packet
in a VC buffer. This is required for simultaneous loading of a
packet’s tail flit and the next packet’s head flit to update the
destination port for the new route. Without this optimization,
a pipeline stall is introduced between packets.

Fig. 2 shows a block diagram of the input module used in
this study. The VC control units include the route-computation
logic and state registers to keep track of the input VC status,
the destination output port and the assigned output VC [17].
The SAMQ controller governs the read and write ports of the
flit buffer. It selects the read and write addresses depending on
the input VC and the granted output VC from switch allocation
respectively. A backpressure control unit tracks buffer space
availability per VC and transmits credits to upstream router
ports on dedicated flow control links.

B. Crossbar

We use a multiplexer-based crossbar, as depicted in Fig. 3,
rather than a tri-state buffer crossbar. Moderns FPGAs can
only implement crossbars with multiplexers, and modern ASIC

crossbars are also usually implemented this way. In the best-
case scenario, five flits may traverse the crossbar simultane-
ously if each of them is destined for a different output port.
However this rarely occurs, thus requiring the queuing of flits
in the input module buffers until the output port is free and
the flit can proceed. We found the ASIC crossbar area to be
gate limited and not wire limited for the range of parameters
considered here; other recent work has shown that crossbars
as large as 128 ports are also gate limited [19].

C. Virtual Channel Allocator
VC allocation is performed at packet granularity. Like route

computation, the body flits inherit the decision made for the
head flit. The route computation unit selects an output port
for a packet, and any available VC on that output port is a
candidate VC for the packet.

Fig. 4 shows the separable input-first VC allocator used in
this study. The first stage filters requests for output VCs by
selecting a single output VC request for each input VC. This
ensures that each input VC will be allocated a maximum of
one output VC, which is necessary for correctness. The second
stage ensures that each output VC is not over-allocated. For
each output VC, where P is the number of ports and V is
the number of VCs per port, the second stage takes P×V
requests from all input VCs and grants one request. A virtual
connection is established from the granted input VC to the
output VC for the duration of one packet.

Arbiters grant requests in a round robin fashion which
ensures that the most-recently granted requester has the lowest
priority in the next round of arbitration [13]. For a large
number of inputs, arbiters have long combinational delays. To
circumvent this limitation, arbiters are organized hierarchically
as tree arbiters, trading area for delay [15].

D. Switch Allocator
A switch allocator matches requests from P×V input VCs

to P crossbar ports. Unlike routing and VC allocation, this is
done on the flit granularity in a wormhole-switched router [13].
Fig. 5 shows a separable input-first switch allocator. In the first
stage of switch allocation, VCs in a single input port compete
among themselves for a crossbar input port. The granted VC
forwards its requests to the second stage of arbitration which
selects between all input ports bidding for each of the output
ports. This ensures that only one VC can attempt to access
the crossbar from each input port, and that only one crossbar
input can connect to a crossbar output at a given time.

Speculative switch allocation can reduce the router latency
from 3 cycles to 2 by performing VC and switch allocation
together, provided that a VC is allocated in this cycle [20].
Architecturally, this duplicates the switch allocator; one in-
stance handles non-speculative requests and the other handles
speculative ones. Priority is given to non-speculative requests
using reduction logic and selection circuitry [15].

E. Output Module
The crossbar output can be connected to the outgoing wires

and the downstream routers directly. However, to improve



TABLE I: Estimated FPGA Resource Usage Area [4]

Resource Relative Area Tile Area
(LAB) (mm2)

LAB/MLAB 1 0.0221
ALM 0.10 0.0022
ALUT (half-ALM) 0.05 0.0011
BRAM - 9 kbit 2.87 0.0635
BRAM - 144 kbit 26.7 0.5897
DSP Block 11.9 0.2623

clock frequency a pipeline stage is placed at the crossbar out-
puts [17]. Furthermore, the output registers are replicated per
VC to buffer an additional flit before proceeding downstream
allowing one extra flit to traverse the crossbar before receiving
credits from the downstream router.

III. METHODOLOGY

The router is implemented both on the largest Stratix III
FPGA (EP3SL340) and TSMC’s 65 nm ASIC process tech-
nology. This allows a direct FPGA vs. ASIC comparison since
Stratix III devices are manufactured in the same 65 nm TSMC
process technology [21]. Moreover, the area for Stratix III
resources is publicly available [4]. Table I shows the area,
including interconnect, of various FPGA blocks.

A. FPGA CAD Flow

Altera Quartus II v11.1 software is used with the highest
optimization options to implement the router components. This
excludes physical synthesis which reduced critical path delay
by 5% and increased area by 15% on average. We set an
impossible timing constraint of 1 GHz to force the tools to
optimize for timing aggressively and report the maximum
achievable frequency. While 1 GHz is clearly not a realizable
constraint, we found it achieved timing and area optimization
results comparable to those obtained with a timing constraint
that is difficult, but just barely achievable. Clock jitter and on-
die variation are modeled using the “derive clock uncertainty”
command which applies clock uncertainty constraints based on
knowledge of the clock tree [22].

All the circuit I/Os, except the clock, are tied to lookup
tables (LUT) using the “virtual pin” option. This mimics the
actual placement of an NoC router, and avoids any placement,
routing or timing analysis bias that could result from using
actual FPGA I/O pins. For example, the placement of the NoC
component could be highly distorted by a large number of
connections to I/Os located around the device periphery, when
in a real system the input and outputs of the component would
be within the fabric. Additionally, the use of virtual pins allows
the compilation of designs with more I/Os than physically
available on the FPGA.

Resource utilization is used to calculate the occupied FPGA
silicon area by multiplying the used resource count by its
physical area in Table I. Simply counting the used logic
array blocks (LABs) or adaptive logic modules (ALMs) can
overestimate the area required, as many LABs and ALMs are
only partially occupied, and could accept more logic in a very
full design. Instead, we use the post-routing area utilization

from the resource section in the fitter report which accounts
for the porosity in packing, thereby giving a realistic area
estimate for a highly utilized FPGA. Note that the LUTs used
for “virtual pins” are subtracted out.

The fastest FPGA speed grade corresponds to typical tran-
sistors, whereas the slowest FPGA speed grade matches the
worst-case transistors of a process. For the best comparison,
we use the fastest FPGA speed grade and the typical transistor
model for the ASIC tools. For purely combinational modules,
such as the crossbar, registers are placed on the inputs and
outputs to force timing analysis. Maximum delay is extracted
from the timing reports using the most pessimistic (slow,
85 oC) timing model, assuming a 1.1 V power supply.

B. ASIC CAD Flow

Synopsys Design Compiler vF-2011.09-SP4 is used for
synthesis, and area and delay estimation. The general-purpose
typical process library is used with standard threshold voltage
and 0.9 V supply voltage. Unlike the FPGA CAD flow, timing
constraints and optimizations impact the ASIC area dramat-
ically. This is because timing optimizations entail standard
cell upsizing and buffer insertion whereas FPGA subcircuits
are fixed. For this reason, a two-step compilation procedure,
described below, is used to reach a realistic point in the large
tradeoff space between area and delay.

We perform compilation using a top-down flow, with “Ultra-
effort” optimizations for both area and delay. This turns
on all optimization options in the synthesis algorithm and
accurately predicts post-layout critical path delay and area
using topographical technology [23]. All registers are replaced
with their scan-enabled equivalent to allow the necessary post-
manufacturing testing for ASICs. In modeling the wire delay,
a conservative wire model from TSMC is used. Capacitance
and resistance per unit length are used together with a fanout-
dependent length model to estimate the wire delay. Addition-
ally, these parameters are automatically adjusted based on the
area of the design hierarchy spanned by each net.

In step one, we perform an ultra-effort compilation with
an impossible 0 ns timing constraint and extract the nega-
tive slack of the critical path from the timing report. Area
numbers are bloated when trying to satisfy the impossible
timing constraints and are discarded from this compilation.
The negative slack from step one is used as the target clock
period in step two of the ASIC compilation. This provides
a reasonable target for the CAD tools and results in realistic
cell upsizing, logic duplication and buffer insertion, and hence
realistic area numbers. With the clock period adjusted, the
design is recompiled and the implementation area and delay
are extracted from the synthesis reports. Note that any positive
or negative slack in this step is also added to the critical path
delay measurement.

Generally ASICs are not routable if they are 100% filled
with cells. To account for whitespace, buffers inserted during
placement and routing, and wiring, we assume a 60% rule-of-
thumb fill factor and so inflate the area results by 66.7%. Fill
factors as low as 10% and as high as 90% have been used in



the literature [3, 19] but we chose 60% to model the typical
case after conversations with ASIC design engineers.

C. Methodology Verification

To verify the methodology, we compare the results obtained
with our methodology to those of Kuon and Rose on their
largest benchmark, raytracer [3]. As shown in Table II, the area
and delay ratios are quite close; we expect some difference as
our results are from a 65 nm process while theirs are from
90 nm.

TABLE II: Raytracer area and delay ratios.

Kuon and Rose [3] This Work

FPGA Device Stratix II Stratix III
ASIC Technology 90 nm 65 nm
Area Ratio 26.0 25.6
Delay Ratio 3.5 4.1

IV. RESULTS

Figures 6 and 7 show the FPGA/ASIC area and delay
ratios for the router components as they vary with the four
main router parameters: flit width, number of ports, number
of VCs and input buffer depth. These results are summarized
in Table IV and V in which the minimum, maximum and
geometric mean is given for each component. Additionally we
give the results for a complete VC router built out of those
components. We choose a realistic range of router parameters,
based on a study of the literature, such that the geometric
average of the area or delay ratio is indicative of the FPGA-
to-ASIC gap for an NoC that is likely to be constructed.

A single parameter is varied in each experiment to study the
effect of this parameter in isolation. The rest of the parameters
are set to the default values for a “baseline” router shown
in Table III. One exception is that the buffer depth is varied
proportionally when the number of virtual channels is swept.

TABLE III: Baseline router parameters.

Width Num. of Ports Num. of VCs Buffer Depth

32 5 2 10 (5/VC)

In our comparison, we investigate the NoC’s logic, that is,
the network router and we omit the FPGA:ASIC comparison
of NoC links. Nevertheless, in Section V we show how to in-
tegrate the hard router logic with the FPGA’s soft interconnect
including the analysis of these links.

A. Input Module

The input module consists of a memory buffer and mixed
logic for routing and control. To synthesize an efficient FPGA
implementation, the memory buffer is modified to target the
three variants of RAM on FPGAs: registers, LUTRAM1 and
block RAM (BRAM). LUTRAM uses FPGA LUTs as small
memory buffers and BRAMs are dedicated hard memory
blocks that support tens of kilobits. Both LUTRAM and

1Stratix IV was used for LUTRAM experiments because Stratix III suffers
from a bug that halves LUTRAM capacity.

BRAM can implement dual-ported memories (1r1w) and a
second read port (2r1w) is added by replicating the RAM
module. Registers are more flexible and can construct multiple
read ports by replicating the read port itself and not the
storage registers. On ASICs, the memory buffer is always
implemented using a 2D flip-flop array which is the norm
for building small memories. Fig. 8 shows the FPGA area of
various buffers when implemented using the three alternatives
mentioned. The minimum-area implementation is selected for
the comparison against ASICs. In all the data points when
varying the buffer depth (equal to #VCs×buffers/VC), the
BRAM-based implementation has the lowest area. In fact, the
area remains constant since the 9-kbit BRAM can handle up to
256 memory words. LUTRAM is slightly less efficient than
BRAM with shallow buffers, but the area increases rapidly
when the LUTRAM uses all of its storage bits at steps of
32 words deep. At these points, another LUTRAM module is
combined using multiplexers to extend buffer depth. BRAMs
and LUTRAMs have width limitations but can be grouped
together to implement wider memories. This explains the
linear area increase with width shown in Fig. 8.

When the memory buffers are built out of registers, there
are no bits wasted. LUTRAM can only be instantiated in
quantized steps of the LUTRAM size (640 bits); hence some
bits can go unused. This is more true for BRAM which can
only be instantiated in steps of 9 kbits for the considered
architecture. Nevertheless, the bit density for a register-based
memory buffer is 0.77 kbit/mm2 compared to 23 kbit/mm2

for LUTRAM and 142 kbit/mm2 for the 9-kbit BRAM [4].
This means that a 9-kbit BRAM with only 16% of its bits
used is just as area-efficient as a fully utilized LUTRAM on a
Stratix III FPGA. Although prior work has gravitated towards
the use of LUTRAM [8], when looking at it from a silicon
perspective, the high density of BRAM makes it more area-
efficient for most width×depth combinations. However, in
architectures with deeper BRAM, such as Virtex 7, LUTRAM
would be the more efficient alternative for shallow buffers.

As Tables IV and V show, the input module has the lowest
area and delay gaps of the presented components. The area gap
varies from 8-36× with a geometric mean of 17×. The lower
gap occurs when a deep buffer is used and the FPGA BRAM
is well-utilized. Width is found to have only a small effect
on the input module area and delay ratios, but varying the
number of VCs presents a more interesting result. The input
module consists of both control logic, which is inefficient on
FPGAs, and memory buffers implemented as compact hard
blocks. As we vary the number of VCs in Fig. 6 the FPGA
implementation becomes twice as efficient between 1 and 6
VCs because we are able to pack more buffer space into the
same BRAM module. However, as we increase the number of
VCs further, the efficiency drops because the control logic for
a large number of VCs becomes the dominant area component.
The FPGA-to-ASIC delay ratio is 2.9× and is always limited
by the logic component of the input module and not the fast
memory modules.
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Fig. 6: FPGA/ASIC area ratios.
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Fig. 7: FPGA/ASIC critical path delay ratios.

TABLE IV: Summary of FPGA/ASIC area ratios.

Module Min. Max. Geometric
Mean

Input Module 8 36 17
Crossbar 57 169 85
VC Allocator 27 76 48
Switch Allocator 24 94 56
Output Module 30 47 39

Router 13 64 30

TABLE V: Summary of FPGA/ASIC delay ratios.

Module Min. Max. Geometric
Mean

Input Module 2.2 4.0 2.9
Crossbar 3.3 6.9 4.4
VC Allocator 2.0 4.8 3.9
Switch Allocator 1.9 4.2 3.3
Output Module 3.1 3.7 3.4

Router 2.4 5.5 3.6
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B. Crossbar

Crossbars show the largest area gap; a minimum of 57×, a
maximum of 169× and a geometric average of 85×. It is worth
noting that there is a 2× FPGA efficiency loss for crossbars
with 10 or more ports. This is due to two causes. First, the
required FPGA LUTs per multiplexer port increases faster than
the ASIC gates per port. Second, there is an increased demand
for interconnect ports at the logic module inputs causing LUTs
in that logic module to be unusable; the ratio of LUTs that are
unused for this reason grows from 1% to 10% between 9 and
10 multiplexer ports. When the width is varied however we
see very little variation between a 16-bit and a 256-bit wide
crossbar.

The crossbar delay gap grows significantly from 3.3-6.9×
with increasing port count. This trend is due to the increase in
FPGA area, which causes the multiplexers to be fragmented
over multiple logic modules thus extending the critical path.
Overall, the average delay gap is 4.4× for the crossbar; the
largest out of all the components.

The results show that crossbars are inefficient on FPGAs and
their scaling behavior is also much worse than ASICs. This is
a prime example of a circuit that would bring area and delay
advantages if it were hardened on the FPGA. In this scenario,
the crossbar can be overprovisioned with a large number of
ports so that it can support different NoC organizations. If a
small number of router ports are required but a large number
of ports are available, the additional ports can be used towards
crossbar speedup which relieves crossbar traffic by allowing
multiple VCs from the same input port to traverse the switch
simultaneously. This also simplifies switch allocation [13].

C. VC and Switch Allocators

Allocators are built out of arbiters which consist of combi-
national logic and some registers. Ideally the ratio of LUTs to
registers should match the FPGA architecture; for Stratix III
a 1:1 ratio would use the resources most efficiently. Deviation
from this ratio means that some logic blocks will have either

registers or LUTs used but not both. The unused part of the
logic block is area overhead when compared to ASICs.

Although there are other sources of FPGA inefficiencies,
there is a direct correlation between the LUT-to-register ratio
and the FPGA-to-ASIC area gap. For the VC allocator the
average LUT-to-register ratio is 8:1 and the area gap is 48×,
while the speculative switch allocator has an average LUT-to-
register ratio of 20:1 and the area gap is higher; approximately
56×. This difference between the two allocators is due to the
selection logic which is used in the speculative switch allocator
and absent from the VC allocator.

Allocator delay increases with circuit size for both hard and
soft implementations; however, the delay rises more rapidly for
the soft version. Consequently, the delay ratio of the allocators
is proportional to the circuit size, and grows with increasing
port or VC count. We suspect this is because the fixed FPGA
fabric restricts the placement and routing optimizations that
can be performed on large circuits while ASIC flows have
more options, such as upsizing cells or wires on critical paths.
Overall, the delay gap was around 3.6× for the allocators.

D. Output Module

The output module is the smallest router component and is
dominated by the output registers. Indeed, the LUT-to-register
ratio is 0.6:1 contributing to its smaller area gap of 39× when
compared to the allocators. The average delay ratio of 3.4× is
also relatively low because the simple circuitry does not stress
the FPGA interconnect.

E. Router Area Composition on FPGA and ASIC

Figures 9 and 10 show the router area composition on
FPGAs and ASICs respectively. Moreover, the total router area
of select data points is given on the top axes.

The main discrepancy between the FPGA and ASIC router
composition is the proportion of the input modules and the
crossbar. The input modules are the largest components for
most router variants on both the soft and hard implementations.
It follows from the area ratios that the input modules are
relatively larger on ASICs than on FPGAs; in fact, they occupy
36-83% of the ASIC router area compared to 14-60% on the
FPGA. The crossbar is the smallest component of an ASIC VC
router. On FPGAs, however, it becomes a critical component
with a wide datapath or a large number of ports where it
occupies up to 26% of the area.

With an increasing number of VCs, the VC allocator area
becomes the dominant one on both FPGAs and ASICs. In-
creasing the number of ports also increases the VC allocator
area but to a lesser extent. This is due to the second stage
of VC allocation which occupies most of the area and is
constructed out of P×V :1 arbiters. They require an additional
P inputs per arbiter when the number of VCs is increased
whereas only V additional inputs are required when the
number of ports is raised. Since P is larger than V for the
baseline router, the VC allocator’s area grows more slowly
with the number of ports than it does with the number of VCs.
The speculative switch allocator also grows with increasing
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Fig. 9: FPGA router area composition by component and total router area. Starting from the bottom(red): Input module, crossbar, switch
allocator, VC allocator and output module.
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Fig. 10: ASIC router area composition by component and total router area. Starting from the bottom(red): Input module, crossbar, switch
allocator, VC allocator and output module.

port and VC counts but is more affected by the number of
ports. With 15 router ports, the switch allocator makes up
22% of the FPGA router area.

V. ARCHITECTURAL IMPLICATIONS

The strengths of a soft NoC lie in its reconfigurability.
Based on the results in Section IV, we summarize the design
recommendations for a soft NoC:

1) BRAM was most efficient for memory buffer implemen-
tation even for shallow buffers, so buffer depth is free
until the BRAM is full.

2) To increase bandwidth, it is efficient to increase the flit
width rather than the number of ports or VCs. As the
width is increased the area ratio falls from 32× to 26×.

3) The number of ports and number of VCs scale poorly
on FPGAs because of the quadratic increase of allocator
and crossbar area.

We now look at the gains of hardening NoC components. One
viable option is to harden the crossbar and allocators and leave
the input and output modules soft. This solution moves the
critical path from the switch allocator to the input module
allowing the router to run at 386 MHz compared to 153 MHz
for a fully soft implementation. Such a heterogeneous router
occupies 2.335 mm2 for the baseline parameters. The 1.8×
area improvement over a soft implementation is, however,
unconvincing. Furthermore we have not yet accounted for
the area of the interconnect ports; that is, the switch and
connection blocks that would route wires into, out of and
around the hard component.

Alternatively, if the baseline router were to be completely
hardened on the FPGA it could run at 807 MHz which would
saturate the FPGA’s clocking network; limited to 730 MHz for

the fastest speed grade on Stratix III FPGAs [24]. At this fre-
quency, 3 short (length=4) vertical wires or 7 short (length=4)
horizontal wires could be used to connect the routers using
general interconnect without degrading the frequency. This
corresponds to approximately 1/9 of the FPGA’s vertical
dimension and 1/6 of the horizontal dimension suggesting that
such spacing of hard routers would allow them to operate at
the FPGA’s peak frequency even when using the plentiful
but slow short wires for connection. The hard router core
occupies 0.137 mm2. In the following, we derive a first-
order approximation of the area required for the hard router’s
interconnect ports to find the total area for a hard router.

50% of the LAB area (0.011 mm2) consists of pro-
grammable interconnect and supplies 52 input ports and
40 output ports [25]. The baseline router has 32 data plus
2 backpressure inputs and output per port, for a total of
34×5=170 inputs and outputs. This is conservatively 4.25
times that of a LAB making the interconnect ports area of the
hard router equal to 0.047 mm2 with the same connectivity
flexibility as a LAB. The total hard router area is now
0.137 mm2+0.047 mm2=0.184 mm2, which is equivalent to
8.3 LABs. We round it up to 9 LABs, a 21× area improvement
over the soft router implementation.

Fig. 11, drawn to scale, shows the floorplan of the hard
router embedded in the FPGA fabric; on Stratix III FPGAs, the
ratio of height to width for a LAB is 2:1 [26]. The hard router
is laid out such that it occupies the width and height of 3 LABs
and connects its inputs to programmable wiring using two
levels of multiplexers and its outputs using one level, similarly
to LABs. This ensures equivalent interconnection flexibility
thereby keeping the FPGA routable.

Finally we must ensure a sufficient number of interconnect
wires intersect the hard router to connect to all of the intercon-
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Fig. 11: Floor plan of a hard router embedded in the FPGA fabric.

nect ports. The router occupies an area equivalent to 9 LABs,
and its perimeter intersects 8 interconnect switch boxes. This
means it could make 8× the number of connections a LAB
would make, of which only 4.25× are needed, indicating that
the router has lower local interconnect stress than a LAB. We
repeat this analysis for all of the data points in this study and
find that the geometric mean area gap drops from 30× to 22×
after accounting for interconnect ports.

To see the cost of a complete system, consider hardening
a 64-node NoC on the FPGA. This will occupy the area
equivalent to 9 LABs × 64 nodes = 576 LABs. We envision
such a network to be implemented on large, high performance
FPGAs such as Stratix V or Virtex 7. A 64-node hard NoC
composed of state-of-the-art VC routers will occupy 1.6%
of the LAB area (~0.6% of total chip area) of the largest
Stratix V FPGA, compared to 33% of the LABs (~12% of
total area) for a soft implementation. Despite its low area, this
NoC provides significant communication bandwidth. Each link
has a peak bandwidth of 2.9 GB/s in each direction, yielding a
total bisection bandwidth up to 46.7 GB/s across any vertical
or horizontal line that partitions the chip.

VI. CONCLUSION

Augmenting future FPGAs with NoCs would facilitate
interfacing to high-speed I/Os, simplify compilation and partial
reconfiguration via modularity, and ease the timing closure
bottleneck. To inform the architecture of such an NoC we
have investigated the area and delay gap per NoC component
for hard versus soft implementation.

The area ratio of 13-64× is largest when the area is
dominated by allocation logic and when the buffers are not
well-utilized. The delay gap is smaller and ranges between
2.4-5.5×. Soft NoCs were found to be more efficient when
implemented using BRAMs for memory buffers, and scaling
the width is a more efficient way of increasing bandwidth than
increasing the number of ports or VCs. Finally, we showed
how a hard router could be integrated with the programmable
interconnect of the FPGA fabric. Including programmable
interconnect, it is on average 22× more area efficient than
a soft implementation. A 64-node hard NoC has lower area
overhead than a 3-node soft NoC.

To fully reap the benefits of a hard NoC, future work
includes analysis of dedicated inter-router interconnect. Per-
taining to that, clock rate conversion circuitry may be required
to take advantage of the speed gains of hardening the NoC
and to allow flexibility in selecting the clock frequency of
each network node. We will also investigate how NoC design
choices will be influenced by important traffic hot spots such
as DDR interfaces.
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