
COFFE: Fully-Automated Transistor Sizing for FPGAs
Charles Chiasson and Vaughn Betz

Department of Electrical and Computer Engineering
University of Toronto, Toronto, ON, Canada
{charlesc,vaughn}@eecg.utoronto.ca

Abstract—In this paper, we present COFFE (Circuit Optimiza-
tion For FPGA Exploration), a new fully-automated transistor
sizing tool for FPGAs. Automated transistor-level CAD tools are
an important part of the architecture exploration flow because
they provide accurate area and delay estimates of low-level
FPGA circuitry, which must be obtained for each architecture.
We show that modeling transistors as linear resistances and
capacitances as has been done in previous FPGA transistor sizing
tools is highly inaccurate for fine-grained transistor-level design
in advanced process nodes. Therefore, COFFE’s transistor sizing
algorithm maintains circuit non-linearities by relying exclusively
on HSPICE simulations to measure delay. Area is estimated
with a transistor size-based model that incorporates a number
of improvements to enhance its accuracy in advanced process
technologies versus prior methods. In addition to more accurate
area and delay estimation, COFFE considers more layout effects
than prior published work by automatically accounting for tran-
sistor and wire loads, which are computed based on architectural
parameters and layout area. This new FPGA transistor sizing
tool requires only several hours to produce high-quality transistor
sizing results for an entire FPGA tile; a task that would normally
take months of manual effort. We demonstrate COFFE’s utility
in FPGA architecture studies by investigating an important new
architectural question at the logic-to-routing interface.

I. INTRODUCTION

When developing a new chip, FPGA architects are faced
with two main tasks: choosing an architecture for their FPGA
and performing the transistor-level design of that architecture.
Choosing an architecture is typically accomplished with archi-
tecture exploration tools such as VPR [1]. By implementing
benchmark circuits on a proposed FPGA, these tools allow
architects to evaluate the area, delay and power impact of
various architectural choices. Based on their observations,
architects can then select an FPGA architecture that meets
their design goals and constraints.

Transistor-level design consists of selecting circuit topolo-
gies for the various subcircuits that implement the chosen
architecture as well as sizing the transistors of those sub-
circuits. Transistor-level design is an essential precursor to
the evaluation of an architecture because it provides accurate
area, delay and power estimates of the underlying FPGA
circuitry; these estimates are required inputs to the architecture
exploration tools. Transistor sizing also provides an additional
opportunity to tune the area, delay and power of an FPGA.
Therefore, developing a new FPGA is an iterative process
that involves performing the transistor-level design of various
architectures before evaluating them through synthesis, place-
ment and routing experiments. This interdependence between
architecture exploration and transistor-level design necessitates
automated design tools if high-quality results are to be ob-
tained in reasonable amounts of time. In this paper, we de-
scribe COFFE (Circuit Optimization For FPGA Exploration),

a fully-automated transistor sizing tool for FPGAs that enables
the design flow detailed above by providing area, delay and
power estimates of properly sized FPGA circuitry. COFFE
also enables design exploration of FPGA circuitry, of which
we give an example in Section VIII.

Transistor sizing for custom circuits is a well-studied prob-
lem that consists of improving a circuit’s performance by
increasing the sizes of its transistors. This optimization prob-
lem is usually formulated in one of three ways: 1) minimize
some function of area and delay, 2) minimize area subject
to a delay constraint or 3) minimize delay subject to an
area constraint. In [2], it was shown that modeling transistors
as linear resistances and capacitances and calculating the
delay of the resulting RC circuits with the Elmore [3] or
the Penfield-Rubinstein [4] delay model allows the transistor
sizing problem to be formulated as a convex optimization
problem, which guarantees that any local minimum is the
global minimum. With this useful property, [2] develops
TILOS, a transistor sizing tool for custom circuits based on
a heuristic method that iteratively identifies a circuit’s critical
path and increases transistor sizes on that path until all timing
constraints are met. Despite the convexity of the problem,
TILOS’s heuristic is such that it can terminate with a sub-
optimal solution. Algorithms guaranteeing the optimal solution
have subsequently been proposed [5]–[7] but these algorithms,
along with TILOS, all suffer from their reliance on linear
device models and the Elmore delay, which have long been
known to be inaccurate [8], [9]. To enhance accuracy, at the
cost of increased computational complexity, some transistor
sizing algorithms have turned towards time-domain simulation
to obtain delay estimates [10], [11].

The programmability of FPGAs adds unique features to the
transistor sizing problem that Kuon and Rose tackle with an
FPGA-specific transistor sizing tool [12]. Their two-phased
algorithm consists of an exploratory phase that utilizes linear
device models and a TILOS-like transistor sizing heuristic
followed by an HSPICE-based fine-tuning phase that adjusts
the transistor sizes to account for the inaccuracies of linear
models. In [13], Smith et al. present a method that enables the
rapid and concurrent optimization of high-level architecture
parameters and transistor sizes for FPGAs through the use of
analytic architecture models, linear device models and a con-
vex optimization-based transistor sizing algorithm. They show
that this concurrent optimization can have a significant im-
pact on architectural conclusions versus separate optimization.
COFFE differs from both [12] and [13] because it completely
avoids the use of linear models and makes other modeling
improvements which are necessary for FPGAs in advanced
process nodes. Specifically, our contributions include:



LC

SB
CB

FPGA Tile

Routing Channel

CB

Fig. 1: Tile-based FPGA.

• An FPGA transistor sizing tool1 that sizes the transistors
of an entire FPGA tile by intelligently searching the design
space while modeling all circuit non-linearity. We show
in Section III that this full non-linear modeling is key.

• New and more accurate area and wire load models.
• An analysis of the effect of wire loading at the interface

between logic clusters and routing channels.

II. PROBLEM FORMULATION AND DESIGN FLOW

A. FPGA Architecture
An FPGA is composed of an array of tiles interconnected

by programmable routing channels (Fig. 1). Each tile consists
of a logic cluster (LC), a connection block (CB) and a switch
block (SB). The logic cluster implements a small amount of
logic and local routing while the connection block and switch
block provide connectivity between the logic cluster and the
routing channels. The switch block also provides connectivity
between wires within the routing channels.

Fig. 2 shows the tile architecture that COFFE supports in
its designs and Table I lists the architecture parameters that
COFFE expects as inputs. Parameters listed in the top portion
of Table I are commonly used in FPGA research [1], [14].
Parameters listed in the bottom portion are new and help
COFFE describe a more flexible basic logic element (BLE)
than the commonly used academic BLE [1]. The COFFE
BLE still consists of a K-input lookup table (LUT) and
flip-flop (FF) but has more flexible ways to use the LUT
and FF simultaneously. The Rfb parameter allows optionally
including a register feedback multiplexer (MUX-A in Fig. 2)
on a LUT input. Each input has an Rfb parameter. The FF can
be designed to accept its input either directly from the LUT
output or from either the LUT output or a BLE input (through
MUX-B) with the Rsel parameter. COFFE’s BLEs support
variable numbers of local feedback and general routing outputs
which are specified by the Ofb and Or parameters respectively.
All BLE outputs can be driven by either the LUT output or the
FF output (MUX-C and MUX-D). These extra 2:1 MUXes can
potentially help improve density and speed and are similar to
the ones used in Stratix [15]. COFFE currently only supports
one wire segment length (L) and uses directional, single-driver
routing wires [16].

B. Circuit Topologies
The architecture described in the previous section consists

entirely of LUTs, MUXes and FFs. COFFE assumes a two-
level MUX topology as shown in Fig. 3a for all its MUXes

1Available at: http://www.eecg.utoronto.ca/∼vaughn/software.html.

K-LUT FF

BLE with internal 
details shown

A
B C

D

Logic 
Cluster

BLE

BLE

Total of 
N BLEs

Switch 
block 
MUX

Vertical routing 
channel

N•Ofb local 
feedback 

wires

I cluster 
input wires

K local 
routing 
MUXes 

per 
BLE

Connection 
block MUX

Ofb

Or

Horizontal routing 
channel

Fig. 2: COFFE’s supported tile architecture.

TABLE I: COFFE’s expected input architecture parameters.

Parameter Description

K LUT size
N Cluster size
I Number of cluster inputs
Fcin Cluster input connection flexibility
Fcout Cluster output connection flexibility
W Routing channel width
L Wire segment length
FS Switch block flexibility
Fclocal Local interconnect to BLE input connection flexibility [14]

Rfb Register feedback per LUT input (on/off)
Rsel Register input select (LUT only/LUT and BLE input)
Ofb Number of local feedback outputs per BLE
Or Number of general routing outputs per BLE

except for the 2:1 MUXes inside the BLE, which are imple-
mented with a single MUXing level as shown in Fig. 3b. A
two-level topology is assumed because it is used in commercial
architectures [17] and has been shown to have the best area-
delay product in [18]. LUTs are implemented with a fully
encoded MUX tree topology. Fig. 4 shows the topology for a
6-LUT where internal buffering is included to minimize the
quadratically increasing delay of chains of pass-transistors.

C. Transistor Sizing for FPGAs
As described in Section II-A, an FPGA consists of an

array of tiles. Since these tiles are all identical, transistor-
level design only needs to be performed for one of them. This
design can then be replicated to obtain a complete FPGA.
Similar design space reductions can be found within a tile.
For example, a switch block can include over 100 logically
equivalent multiplexers whose transistor-level design should
be kept identical. Consequently, only ~80 unique transistors
need to be sized when designing an FPGA despite there being
millions of transistors on the chip, which is in contrast to
transistor sizing for custom circuits where the whole chip must
be considered. This reduced design space makes HSPICE-
based optimization practical for FPGAs, but as we show in
Section VI, we must still search this space intelligently with
COFFE to keep runtime reasonable.

There is another aspect of transistor sizing that is very
different for FPGAs. Because they are programmable, FPGAs
have application dependent critical paths which implies that



Level-restorer

lvl1

lvl2

buf1

buf2

out

SRAM cell

lvl1

2-stage buffer2-level MUX

(a)

Level-restorer

lvl1

buf1
buf2

out

SRAM cell

2-stage buffer2:1 MUX

(b)

Fig. 3: a) Two-level MUX topology. b) 2:1 MUX topology.

IN_A IN_B IN_C IN_D IN_E IN_F

SRAM

LUT input 
drivers

Fig. 4: Fully-encoded MUX tree 6-LUT topology with internal
buffering (partial view).

at design time, there is no clear critical path to optimize for
delay. To deal with this issue, [12] optimizes a representative
path that contains one of each type of FPGA subcircuit (LUTs,
MUXes, etc.). Delay is taken as a weighted sum of the delay
of each subcircuit and the weighting scheme is chosen based
on the frequency with which each subcircuit was found on the
critical paths of placed and routed benchmark circuits. In [19],
the lack of a critical path is confronted by simply optimizing
each subcircuit individually. As we will describe in more detail
in Section VI, COFFE can be configured to use either of these
two approaches.

D. Design Flow

Fig. 5 shows the FPGA design flow we wish to enable.
COFFE is used to perform transistor-level optimization for
some architecture of interest thus producing accurate area
and delay estimates for the subcircuits of this architecture.
These estimates are used by VPR to evaluate the architecture
through place and route experiments. Based on the results of
the assessment, the architecture parameters are adjusted and
sent back to COFFE to begin a new iteration of optimization
and evaluation.

COFFE’s transistor-level optimization makes area and
performance tradeoffs through transistor sizing. Like [12],
COFFE’s optimization objective is of the form AreabDelayc

thus allowing for different area and performance tradeoffs
by varying b and c. Creating a complete layout is the most
accurate way to obtain the area and delay measurements
needed during transistor sizing. However, for the iterative
design flow of Fig. 5, this approach is impractical as layout
is a very time consuming task. Instead, COFFE estimates

Wire load model

Circuit Optimizer
Area model

HSPICE

Subcircuit 
SPICE netlists

Generate 
subcircuit SPICE 

netlists

COFFE

Optimization 
objective

Process 
models

Subcircuit areas 
and delays 

(VPR arch. file)

Typical critical 
path 

(delay weights)

Architecture 
parameters

VPR

Pack

Place

Route

Benchmark 
circuits

Analyze 
timing 

and area

Fig. 5: FPGA design flow.

Cdiff CdiffReq

Cgate

S D

G

S D

G
S D

G

Fig. 6: A switch-level model.

area with the predictive model described in Section IV and
measures delay with HSPICE simulations. Although previous
FPGA transistor sizing tools have used linearized models
of transistors to measure delay during certain phases of the
optimization, we show in Section III that such models are
highly inaccurate for the fine-grained transistor-level design
we wish to undertake.

COFFE automatically generates the SPICE netlists required
for delay measurement based on the input architecture (Table
I) and the circuit topologies described in Section II-B. To ob-
tain meaningful delays, COFFE is careful to ensure that these
netlists include realistic transistor and wire loads. Transistor
loads are easy to determine based on architecture parameters
and circuit topologies. Wire loads, on the other hand, are
layout dependent making them more difficult to determine
since the exact layout is not known. COFFE estimates wire
loads with the model described in Section V.

III. THE PROBLEM WITH SWITCH-LEVEL MODELING

We define switch-level modeling as the characterization
of complex, non-linear MOSFET transistors into a set of
linear resistances and capacitances (Fig. 6). Although they
are less accurate at modeling transistor behavior than circuit
simulators like SPICE, switch-level models are often used
for delay estimation [2], [8], [12], [13] because the delay of
the equivalent RC circuits can be computed with the Elmore
[3] or the Penfield-Rubinstein [4] delay models which are
much quicker than the time-domain simulations required to
measure delay with SPICE. In addition, [2] showed that when
transistors are treated as linear resistances and capacitances,
the transistor sizing problem can be formulated as a convex
one thus guaranteeing that a local minimum is always the
global minimum.

The resistive and capacitive behavior of a transistor is
influenced by a variety of factors such as its operating-point, its
size and the shape of the input waveform. Therefore, switch-
level models are most accurate when estimating delay for
circuits that exhibit a high degree of regularity (e.g. a circuit
composed of a few basic gates with a limited number of



CloadCloadCloadCloadCload

trise
tfall

(a)

Cload

trise

(b)

Cload

tfall

(c)

Cload

trise

(d)

Cload

tfall

(e)

Fig. 7: Circuits used to measure transistor resistance.

0 5 10 15 20 25 30 35
Transistor Width (xMin. width)

650

700

750

800

850

900

950

R
es

is
tiv

ity
(Ω
µ

m
)

NMOS
PMOS

Fig. 8: Inverter NMOS and PMOS resistivity vs. transistor width.

P/N ratios) because many transistors will experience simi-
lar operating conditions. Different resistance and capacitance
values (Req , Cgate and Cdiff ) can be used for each group
of transistors experiencing similar operating conditions to
construct a reasonably accurate switch-level model.

FPGA circuit design consists of custom, fine-grained
transistor-level design which can lead to a large variation in
transistor operating conditions. Using PTM 22nm HP device
models [20] and HSPICE, we experimented with switch-level
modeling for some of the circuit topologies commonly used
in FPGAs. In the following sections, we highlight some of
the reasons why we found that switch-level models were not
suitable for our purposes.

A. Non-Linearity of Transistor Resistance and Capacitance
We use a chain of five loaded inverters (Fig. 7a) to find

the equivalent switching resistance for the NMOS and PMOS
of an inverter. Using a large Cload to minimize the effects of
transistor capacitances, we simulate this circuit with HSPICE
for several transistor widths and measure the rise and fall
times of the third inverter in the chain (to avoid end-effects).
The rise time, trise, is measured as the time it takes for the
inverter output to rise from 0V to VDD/2 and the fall time,
tfall, the time it takes for the output to fall from VDD to
VDD/2. Delay measurement in both cases starts when the
input of the inverter is at VDD/2. With the rise and fall times,
NMOS and PMOS switching resistances can be computed as
RN = tfall/Cload and RP = trise/Cload. As shown in Fig.
8, our experiments show that transistor resistance varies with

TABLE II: Resistance of a 4× minimum-width NMOS transistor for
different circuit topologies (Fig. 7) and switching-thresholds.

Circuit Topology Transition Switching- Resistance (kΩ)Type Threshold

Chain of 5 inverters fall VDD/2 3.8
Single pass-tran. fall VDD/2 1.9
Single pass-tran. rise VDD/2 13.7
Single pass-tran. fall VDD/3 2.7
Single pass-tran. rise VDD/3 2.2
2 series pass-tran. fall VDD/3 2.8
2 series pass-tran. rise VDD/3 3.3

transistor width, particularly for smaller transistors. We found
the same to be true for transistor capacitance. This implies that
transistor resistance and capacitance are non-linear functions
of transistor width and as a result, an accurate switch-level
model would require a table of pre-computed resistances and
capacitances for many different transistor widths.

B. Topology Dependence of Transistor Resistance
The switching resistance of an NMOS pass-transistor, a key

building block for FPGA circuitry, is different than that of an
NMOS in an inverter. Furthermore, the resistance of a pass-
transistor is different during rising and falling transitions due
to the NMOS’s inability to propagate a full rising transition.
Using HSPICE simulations, we measure the resistances of an
NMOS pass-transistor by charging and discharging a large
capacitor through a single pass-transistor (Figures 7b and 7c).
Again, trise and tfall are measured from VDD/2.

In Table II, we compare the rising and falling resistance of
a pass-transistor to the resistance of an NMOS in an inverter
for a 4× minimum-width transistor. We can clearly see that
the resistance of the NMOS in the inverter (3.8k) is different
from the rising (13.7k) and falling (1.9k) resistances of a
pass-transistor. The very large rising resistance is caused by
the pass-transistor’s degraded output voltage. It is possible
to achieve more balanced rising and falling resistances by
measuring trise and tfall at VDD/3 instead of VDD/2 which in
terms of circuit design, corresponds to lowering the switching-
thresholds of downstream inverters by skewing their P/N
ratios. As shown in Table II, at VDD/3 the rising and falling
resistances of a pass-transistor are 2.2k and 2.7k respectively.
Table II also shows that the resistance of an NMOS in a chain
of 2 series connected pass-transistors (Figures 7d and 7e) is
different from both the single pass-transistor and the inverter.

The results of Table II demonstrate that the custom pass-
transistor based topologies of FPGA circuitry do not lend
themselves well to switch-level modeling. Not only does
resistance depend on circuit topology, it also depends on the
switching-threshold of downstream inverters and on transistor
dimensions (Section III-A). The complexity of a switch-
level model sufficiently accurate for the type of fine-grained
transistor level design we wish to undertake is impractical so
we rely solely on circuit simulation to estimate delay.

IV. AREA MODELING

The most accurate way to determine the area of an FPGA is
to create a complete layout, as FPGAs are generally transistor
area limited [1]. However, as described in Section II-D,
designing an FPGA is an iterative process, making layout
of each iteration impractical. A fast to compute but accurate
estimate of transistor layout area is needed. The minimum-
width transistor area model of [1] is such an area estimation



Minimum-width 
transistor

Minimum-width 
transistor area

Space to 
neighboring 
transistors

Metal/polysilicon gate

Metal contact

Diffusion

Fig. 9: Minimum-width transistor area model.

1x minimum 
contactable 

width

(a)

2x minimum 
contactable width

(b)

1x minimum 
contactable 

width

2 parallel diffusions

(c)

5
x 

m
in

im
u

m
 

co
n

ta
ct

ab
le

 w
id

th

3 parallel diffusions

(d)

Fig. 10: (a) A minimum drive-strength transistor. (b) A 2× minimum
drive-strength transistor obtained by diffusion widening. (c) A 2×
minimum drive-strength transistor obtained by parallel diffusion
regions. (d) A 15× minimum drive-strength transistor with square
layout. Note: Although not shown in the figure for simplicity, parallel
diffusions must be connected together.

technique frequently used in FPGA research [1], [12]. In this
model, layout area is expressed in units of minimum-width
transistor areas. A minimum-width transistor is defined as the
smallest possible contactable transistor for a specific process
technology and one minimum-width transistor area is the area
of this transistor plus the spacing to neighboring transistors as
shown in Fig. 9.

A transistor’s drive-strength can be increased by either
widening its diffusion region (Fig. 10b) or by adding parallel
diffusion regions (Fig. 10c). The widely-used area model of
[1] estimates the layout area of a transistor with drive-strength
x, in units of minimum-width transistor areas, with (1) and
calculates the area of an FPGA subcircuit by simply summing
the areas of all the transistors in that subcircuit.

Area(x) = 0.5 + 0.5x (1)

However, Fig. 11 shows that (1) over-predicts transistor area
by as much as 143% compared to our manual layouts with
TSMC’s 65nm layout rules (which were the most advanced
layout rules to which we had access). In [12], the constants in
(1) were adjusted to match more advanced process rules but its
area estimates for our 65nm layouts are still inaccurate (Fig.

0 5 10 15 20 25 30 35
Drive Strength (xMin.)

0

2

4

6

8

10

12

14

16

18

M
in

im
um

W
id

th
Tr

an
si

st
or

A
re

as

Layout
Original Model [1]
Kuon and Rose [12]
Improved Model

Fig. 11: Transistor area prediction accuracy of original (1) and
improved (2) area models against TSMC 65nm layouts.

11). Therefore, COFFE uses a new version of the minimum-
width transistor area model whose accuracy is improved in
two ways. First, we assume reasonably square layouts. To
obtain (1), [1] averages the layout areas that result from either
widening the diffusion region or adding parallel diffusion re-
gions to increase drive-strength. For large transistors, however,
both approaches yield layouts with very high aspect-ratios.
We found that smaller area can be obtained by keeping a
reasonably square transistor layout, which is accomplished
by combining both diffusion widening and parallel diffusion
regions to increase a transistor’s drive-strength as in Fig. 10d.
Therefore, our manual layouts in Fig. 11 use square layouts.

Second, we develop a new transistor area equation tailored
towards more advanced process technologies by using a least-
square fit of our 65nm layout areas versus drive-strengths to
obtain area as a function of drive-strength.

Area(x) = 0.447 + 0.128x+ 0.391
√
x (2)

Fig. 11 shows that (2) predicts transistor area with much
more accuracy than prior models. We make two further en-
hancements to the model to better estimate the layout density
of different structures. The area model described thus far does
not account for the fact that in a design with both NMOS
and PMOS transistors, extra spacing is required for N-wells.
It would be pessimistic to assume that each PMOS transistor
is in a separate well as the amount of N-well spacing required
can be reduced by placing multiple PMOS transistors in the
same well. Although it is difficult to predict how much well
sharing is possible in a given layout, our sample layouts
suggest that well sharing can reduce the per-transistor well
spacing required by approximately 75%. With this estimate,
we derive the following equation to calculate the area of
transistors requiring N-well spacing.

Area(x) = 0.518 + 0.127x+ 0.428
√
x (3)

COFFE calculates the area of NMOS pass-transistors with
(2) and the area of CMOS transistors (e.g. inverters) with (3).
We find that accounting for N-well spacing increases our tile
area estimates by ~2% for a pass-transistor based FPGA.

Finally, despite the fact that 6 small transistors are required
per SRAM cell, COFFE uses an area of 4 minimum-width
transistors because a denser, more optimized layout is typical
for such a frequently used cell.

V. WIRE LOAD MODELING

Past FPGA transistor sizing efforts have often only ac-
counted for the loading effects of long wires such as the



routing wires or the cluster local interconnect wires. In reality,
an FPGA contains much more metal wiring. Ignoring this
extra metal is increasingly problematic as the impact of
wires is becoming ever more important with shrinking feature
sizes [21]. Accordingly, COFFE models all wire loading even
including the relatively short metal connecting two transistors
inside a multiplexer.

COFFE estimates wire lengths based on area estimates ob-
tained with the model of Section IV along with the following
set of general layout assumptions. The layout of a sub-block
(e.g. a MUX, a BLE, a logic cluster, etc.) is assumed to be
square such that its width is equal to its height. The length of a
wire that broadcasts a signal across a sub-block is equal to the
width (which equals the height) of that sub-block. The length
of a point-to-point wire between two sub-blocks is equal to
1/4 the sum of the width of both sub-blocks. For example,
cluster local interconnect wires are broadcast wires so they
span the height of a logic cluster. Wires that connect two
inverters together inside a buffer are point-to-point wires; they
span 1/4 the width of each inverter.

The resistance and capacitance of a wire are obtained
from its length estimate as well as its metal layer. COFFE
implements most wires in the lowest metal layer, with the
exception of routing wires, which are placed in a higher
metal layer as they benefit from its lower resistance. With the
resistance and capacitance values of a wire, COFFE includes
its equivalent π-model in the generated SPICE netlists.

VI. TRANSISTOR SIZING ALGORITHM

When transistors are treated as linear resistances and ca-
pacitances, the transistor sizing problem can be formulated as
a convex optimization problem [2]. Such a formulation has
the highly useful property that there is only one minimum:
the global minimum. Past transistor sizing algorithms have
exploited this fact by either making a series of local opti-
mizations in hopes of eventually reaching the global minimum
[2], [12] or by making use of mathematical programming
techniques [5]–[7], [13]. In Section III, we showed that it is
very difficult to obtain linear models of transistors that are
sufficiently accurate for the fine-grained transistor-level design
of FPGA circuitry in advanced process nodes. Instead, we
chose to use HSPICE simulations to measure delay, which
produces more accurate delay estimates, but also makes the
shape of the optimization space more ambiguous. Therefore,
COFFE takes a more exhaustive approach and searches for a
minimal cost solution by simulating many possible transistor
sizing combinations over a range of transistor sizes. Exhaus-
tively searching the entire optimization space in this way
would lead to prohibitively long runtimes because there are
~80 unique transistors to size in one FPGA tile and sweeping
each transistor over ~10 sizes would require 1080 HSPICE
simulations. COFFE uses two techniques to confront this
problem: divide-and-conquer and inverter rise-fall balancing.

A. Divide-and-Conquer
COFFE reduces the transistor sizing combinations to exam-

ine by sizing loosely coupled subcircuits individually. This
divide-and-conquer approach reduces the search space but
requires iteration to account for changes in loading. More
specifically, since subcircuits are usually loaded by other
subcircuits, changing the transistor sizes of one subcircuit will

Subcircuit Sizing

FPGA Sizing Iteration

Yes

No

Yes

No Yes

No

Find initial transistor 
sizing ranges

Transistor 
sizes on range 
boundaries?

Equalize rise-fall for 
mid-range combo 

Get area and delay 
for each combo

Minimum 
cost combo

Subcircuit

Adjust ranges 
around current 

solution

Equalize rise-fall for 
M best combos

Select first 
subcircuit

Split into 
subcircuits

Next subcircuit

Still 
subcircuits left to 

size?

No more cost 
reductions or max 

iterations?

Transistor 
sizing solution

FPGA 
architecture

Fig. 12: COFFE’s transistor sizing algorithm.

change the load on another. Because of this, COFFE performs
multiple FPGA sizing iterations in which it sizes each sub-
circuit once with the loading coming from the last sizing of
the other subcircuits. FPGA sizing iterations are performed
until no reduction in cost is achieved (implying loading has
stabilized) or until a maximum number of iterations have been
completed. In our experience, COFFE finds a transistor sizing
solution after 2-4 iterations.

Sizing a subcircuit proceeds as follows. Based on the current
sizes of transistors in the subcircuit, COFFE selects initial
transistor sizing ranges that place the current sizes near the
center. Then, for each sizing combination within these ranges,
the area of the subcircuit is calculated with the model of
Section IV, wire loading is determined with the model of
Section V and delay is measured with HSPICE. COFFE can be
configured to choose transistor sizes that minimize either the
global cost or the local cost. The global cost is some product of
total tile area and representative path delay (as in [12]) while
the local cost is a product of this particular subcircuit’s area
and delay (as in [19]). Once the best cost sizing combination
has been selected, COFFE checks if the solution is on the
boundaries of the initial sizing ranges. If it is, we may not
have explored a large enough size range, so the sizing ranges
are adjusted around the current solution and the process is
repeated until a solution that is contained entirely within the
ranges is found. Fig. 12 shows the flow of COFFE’s transistor
sizing algorithm.

B. Inverter Rise-Fall Balancing
COFFE further reduces the number of transistor sizing

combinations evaluated by using pre-determined P/N ratios
to size the NMOS and PMOS transistors of inverters as a unit
instead of as individual transistors. As shown in Fig. 12, the
initial P/N ratios of inverters in a subcircuit are obtained by
equalizing their rise and fall times for a mid-range transistor
sizing combination. These P/N ratios are used to calculate area
and measure delay for all transistor sizing combinations. Since
the rise and fall times will not remain perfectly balanced as
we evaluate different transistor sizing combinations, COFFE



TABLE III: Architecture parameters used for wire load experiments.

Parameter Value Parameter Value

K 6 FS 3
N 10 Fclocal 0.5
I 40 Rfb “on” for LUT-input C
Fcin 0.2 “off” for all other LUT inputs
Fcout 0.025 Rsel LUT & BLE input
W 320 Ofb 1
L 4 Or 2

uses the average of rise and fall times in this phase because
we will later balance the rise and fall time and, for small
perturbations, this re-balancing makes the worst of the rise and
fall delays close to this average. COFFE re-balances the rise
and fall times on a user-specified M number of top-ranked
transistor sizing combinations before selecting its final best
transistor sizing solution as this re-balancing may re-order the
final ranking. Thus, COFFE’s final transistor sizing solution
always has balanced inverter rise and fall times and we use
the maximum of the rise and fall delays as the final delay.

With divide-and-conquer and inverter rise-fall balancing,
we reduce the number of transistor sizing combinations to
examine from ~1080 to the much more tractable number of
~3 × 12 × 104. That is, for ~12 subcircuits containing ~4
sizeable items (transistors or inverters), we try ~10 possible
sizes per sizeable item. This is done ~3 times to account
for changes in loading (i.e. an FPGA sizing iteration). Total
runtime is ~4h for M = 1 or ~10h for M = 5 on a single
Intel Xeon E5-1620 3.6GHz processor core. This runtime is of
the same rough magnitude as [12], however we cannot make
detailed quality comparisons as the CAD tool of [12] is not
available.

VII. IMPACT OF IMPROVED WIRE LOAD MODELING

To examine the impact of improved wire load modeling on
the area and delay of an FPGA, we use COFFE to perform
transistor sizing under different wire loading scenarios. The
architecture parameters used for these experiments are shown
in Table III and were selected based on [19]. We use PTM
22nm HP predictive SPICE models [20] and we extract wire
resistance and capacitance per unit length from ITRS 2011
[22]. Pass-transistor gate voltages are boosted 200mV above
the nominal VDD of 0.8V as this was shown to be a good
choice in [19]. Finally, we set COFFE’s optimization objective
to minimize the product of tile area and representative path
delay and we re-balance the rise and fall times of the 5 top-
ranked transistor sizing combinations (M = 5).

We begin by sizing transistors without including the effects
of any wires. The resulting tile area and representative path
delay are shown in the first row of Table IV. Then, we
gradually add groups of wires to our FPGA, re-sizing its
transistors after every addition. As shown in Table IV, each
time we add wires, we observe an increase in delay as well
as an increase in tile area because COFFE chooses larger
transistor sizes in an effort to cope with the extra wire loading.

Table IV clearly shows that it is important to account for the
effects of more than just the routing wires. In fact, 24% of the
delay comes from two groups of wires that have often been
overlooked in prior academic work: logic-to-routing wires and
smaller wires like those inside MUXes and LUTs (which are
included in the All wires row of Table IV). The logic-to-
routing wires are those that connect specific routing tracks

TABLE IV: Impact of wire loading.

Wire load Tile area Delay
(µm2) (ps)

No wires 836 58
Routing only 899 79
Routing & cluster local interconnect 905 85
Routing, local interc. & logic-to-routinga 919 98
All wires 938 112

aWe use an input track-access span of 0.5 and an output track-access span
of 0.25 for logic-to-routing wires in this section. See Section VIII.

to cluster inputs (through connection block MUXes) as well
as cluster outputs to specific routing tracks (through switch
block MUXes) and they can span a significant fraction of a
tile. We study the impact of the lengths of these wires in more
detail in Section VIII.

VIII. ARCHITECTURE STUDY: TRACK-ACCESS LOCALITY

In the previous section, we showed that wire loading at the
logic-to-routing interface has a considerable impact on delay.
Prior academic work has implicitly assumed that logic cluster
pins can access all the routing tracks in an adjacent channel
but has not considered the large logic-to-routing wire loading
that this creates. It is possible to reduce this wire load by
imposing limits on the lengths of logic-to-routing wires. We
refer to this concept as track-access locality and we define
track-access span as the portion of a routing channel that can
be accessed by a logic cluster input or output. A large span
implies little locality and vice-versa. Fig. 13 illustrates this
concept for logic cluster outputs. In the figure, output A can
only reach half of the routing tracks in a channel (the 50%
physically close to it) while output B can reach all of them.
Output A has a track-access span of 1/2; output B has a track-
access span of 1. Clearly, output B has twice as much wire
load as output A. Thus, output A is faster than output B. Fig. 14
illustrates the same concept as it applies to logic cluster inputs.
The wire loading associated with cluster inputs comes from
the wires required to connect routing tracks to the connection
block multiplexers. This wire loading is seen by the routing
wire drivers and will tend to slow down the general routing
tracks. Note that, as shown in Fig. 14, COFFE does not include
the track buffers that have often been used in academic work
[1] because they are difficult to lay out and are not used in
modern commercial architectures.

We use COFFE to size the transistors of the FPGA archi-
tecture described in Table III for different degrees of track-
access locality. Table V shows the effect of cluster output
locality on tile area and representative path delay while Table
VI shows results for cluster input locality. The results suggest
that reducing the input track-access span can lead to a large
reduction in loading (~17% delay reduction for a span of 0.25).
The effect is lesser for cluster outputs but we still observe a
small reduction in overall area-delay product. Although track-
access locality seems beneficial from a delay perspective, it
could have a negative impact on routability since increasing
locality could reduce the interconnect flexibility. It follows
that the ideal track-access span will likely also depend on the
values of Fcin and Fcout. For example, for our Fcin = 0.2
and Fcout = 0.025 architecture, cluster outputs may be better
suited for high locality given the fact that they connect to
relatively few routing multiplexers due to a low Fcout value.



Logic 
Cluster

Wire load spans 
½ tile (locality)

Cluster 
output A

Switch block multiplexer

Cluster 
output B

Wire load spans 1 
tile (no locality)

Routing Channel

Fig. 13: Cluster output wire load for different locality.

Logic Cluster

MUX input wire 
load can span up 

to ½ tile

Cluster 
input A

Cluster 
input B

MUX input wire 
load can span 

up to 1 tile R
o

u
ti

n
g 

C
h

an
n

el

Fig. 14: Cluster input wire load for different locality.

A detailed analysis of these tradeoffs was not performed in this
work but merits future research. When used with an architec-
ture exploration tool such as VPR, COFFE enables a thorough
evaluation of such architectural issues which combine changes
in connectivity, loading and transistor sizing.

IX. CONCLUSION

We presented COFFE, a new fully automated transistor
sizing tool for FPGAs. We showed that for fine-grained
transistor-level design in advanced process nodes, modeling
transistors as linear resistances and capacitances as in previous
FPGA transistor sizing tools is highly inaccurate. For that
reason, COFFE maintains all circuit non-linearities by relying
exclusively on HSPICE simulations to measure delay. COFFE
estimates area with a version of the minimum-width transistor
area model to which we’ve made a number of improvements to
enhance its accuracy in advanced process nodes. We showed
that only accounting for the loading effects of long wires
as has often been done in prior work can lead to delay
under-predictions of 24%. To ensure realistic transistor sizing,
COFFE automatically models all transistor and wire loads.
These models have an important architectural impact: they
favor larger transistors in FPGA LUTs and MUXes.

COFFE can size the transistors of an entire FPGA tile in
~10 hours, which is a task that would normally take months
of manual effort. We illustrate COFFE’s use by investigating a
new architectural question concerning the wire loading at the
interface between routing channels and logic clusters. We find
that, at a possible cost in routability, restricting the portion of

TABLE V: Effect of cluster output track-access locality on area and
delay. Input track-access span is set to 0.5.

Cluster Output Tile Area Delay Area-Delay
Track-Access Span (µm2) (ps) Product

1.00 959 113 1.08
0.75 934 115 1.07
0.50 930 114 1.06
0.25 938 112 1.05

TABLE VI: Effect of cluster input track-access locality on area and
delay. Output track-access span is set to 0.25.

Cluster Input Tile Area Delay Area-Delay
Track-Access Span (µm2) (ps) Product

1.00 952 127 1.21
0.75 953 117 1.11
0.50 938 112 1.05
0.25 955 105 1.00

a routing channel that can be accessed by a logic cluster input
can reduce delay by up to 17%.

ACKNOWLEDGEMENT

The authors thank David Lewis for insightful discussions,
NSERC and Altera for funding and CMC for CAD tools.

REFERENCES

[1] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer, 1999.

[2] J. P. Fishburn and A. E. Dunlop, “TILOS: A Posynomial Programming
Approach to Transistor Sizing,” in ICCAD 1985, pp. 326–328.

[3] W. C. Elmore, “The Transient Response of Damped Linear Networks
with Particular Regard to Wideband Amplifiers,” Journal of Applied
Physics, pp. 55–63, 1948.

[4] J. Rubinstein, P. Penfield and M. Horowitz, “Signal Delay in RC Tree
Networks,” TCAD, pp. 202–211, July 1983.

[5] S. Sapatnekar et al., “An Exact Solution to the Transistor Sizing Problem
for CMOS Circuits Using Convex Optimization,” TCAD, pp. 1621–1634,
1993.

[6] C.-P. Chen, C. Chu, and D. Wong, “Fast and Exact Simultaneous Gate
and Wire Sizing by Lagrangian Relaxation,” TCAD, pp. 1014–1025,
1999.

[7] V. Sundararajan, S. Sapatnekar, and K. Parhi, “Fast and Exact Transistor
Sizing Based on Iterative Relaxation,” TCAD, pp. 568–581, 2002.

[8] J. K. Ousterhout, “Switch-Level Delay Models for Digital MOS VLSI,”
in DAC 1984, pp. 542–548.

[9] K. Kasamsetty, M. Ketkar, and S. Sapatnekar, “A New Class of Convex
Functions for Delay Modeling and its Application to the Transistor
Sizing Problem,” TCAD, pp. 779–788, 2000.

[10] Conn, A. R. et al., “JiffyTune: Circuit Optimization Using Time-Domain
Sensitivities,” TCAD, pp. 1292–1309, 1998.

[11] ——, “Gradient-Based Optimization of Custom Circuits Using a Static-
Timing Formulation,” in DAC 1999, pp. 452–459.

[12] I. Kuon and J. Rose, “Exploring Area and Delay Tradeoffs in FPGAs
With Architecture and Automated Transistor Design,” TVLSI, pp. 71–84,
2011.

[13] A. Smith, G. Constantinides, and P. Y. K. Cheung, “FPGA Architecture
Optimization Using Geometric Programming,” TCAD, pp. 1163–1176,
2010.

[14] G. Lemieux and D. Lewis, “Using Sparse Crossbars within LUT
Clusters,” in FPGA 2001, pp. 59–68.

[15] D. Lewis et al., “The Stratix™ Routing and Logic Architecture,” in
FPGA 2003, pp. 12–20.

[16] G. Lemieux et al., “Directional and Single-Driver Wires in FPGA
Interconnect,” in FPT 2004, pp. 41–48.

[17] D. Lewis et al., “The Stratix II™ Logic and Routing Architecture,” in
FPGA 2005, pp. 14–20.

[18] C. Chen et al., “Efficient FPGAs using Nanoelectromechanical Relays,”
in FPGA 2010, pp. 273–282.

[19] C. Chiasson and V. Betz, “Should FPGAs Abandon the Pass-Gate?” in
FPL 2013.

[20] Predictive Technology Model (PTM), http://ptm.asu.edu/, 2012.
[21] R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” Proceedings

of the IEEE, pp. 490–504, 2001.
[22] ITRS, Interconnect Chapter, 2011.


