
Efficient Methods for Out-of-Order Load/Store
Execution for High-Performance Soft Processors

Henry Wong, Vaughn Betz and Jonathan Rose
Department of Electrical and Computer Engineering, University of Toronto

Abstract—As FPGAs continue to increase in size, it becomes
increasingly feasible and desirable to build higher performance
soft processors. Preserving the familiar single-threaded program-
ming model can be done with an out of order processor. The
ability to execute memory loads and stores out of order has a
large impact on performance, but this is difficult to do because
the dependencies between stores and loads are not known until
addresses are computed. Out of order memory disambiguation
is traditionally done with CAMs in the load queue and store
queue, but large CAMs are inefficient on FPGAs. Store Queue
Index Prediction (SQIP) and NoSQ propose to replace CAMs
with store-load forwarding prediction and load re-execution.

We implement four memory disambiguation schemes (in-order,
CAM, SQIP, NoSQ) on a Stratix IV FPGA and evaluate the area
and delay trade-offs. We find that CAM area and delay degrade
quickly with load/store queue size, while SQIP and NoSQ have
little degradation with queue size but have area overhead for
prediction and predictor training hardware. SQIP and NoSQ
use less area than CAMs beyond 32 and 16 load/store queue
entries, respectively, and have higher maximum frequency beyond
4 entries.

I. INTRODUCTION

Many FPGA systems are comprised of both software and
hardware components, and the choice between the two is often
driven by performance requirements. In FPGA systems, pro-
cessing is sometimes done using soft processors, as software
requires lower development effort. However, the ability to
assign a greater portion of the processing to software is limited
by the performance of soft processors, which has been little
changed for more than a decade since soft processors have
been in use commercially. With FPGA capacity still continuing
to grow, it is possible to spend much more resources on a soft
processor on higher-performance soft processors.

There have been many proposed soft processor architectures
with improved performance, such as using multithreading [1],
VLIW processors [2], vector processors [3], and even archi-
tectures developed from a first-principles examination of an
FPGA’s capabilities [4]. However, in order to preserve the
familiar single-threaded programming model, superscalar and
out of order processors are required, even though they are
generally less efficient than specialized architectures.

In out-of-order processors, data dependencies between in-
structions are determined in hardware. Determining data de-
pendencies through registers is done using register renaming,
but determining data dependencies for memory operations
(“memory disambiguation”) is difficult because memory ad-
dresses are not known until they are computed during instruc-
tion execution.

Traditionally, memory disambiguation is performed using
CAMs (content addressable memory), by searching for stores
whose location overlaps with a load, or vice versa. Some recent
work has proposed to replace the address-based CAMs with
value-based load re-execution, which speculates on whether a
load is dependent on a store, then verifies this by re-executing
the load when it commits [5]. Since CAMs are particularly
expensive on FPGAs [6], re-execution based schemes are
attractive for FPGA soft processors. Due to the hardware cost,
early out-of-order processors executed arithmetic instructions
out-of-order, while still executing memory operations in-order.
As processors become more aggressive with larger instruction
windows, it becomes more important to be able to execute
memory operations out-of-order. We measured 40% improve-
ment in IPC between in-order and out-of-order memory exe-
cution in a cycle-level simulation of a two-issue out-of-order
processor. Other work has shown even more impressive gains
for more aggressive designs [7].

This work examines the suitability for FPGA implementa-
tion of four different memory speculation and disambiguation
schemes: In-order, Out-of-order using CAMs, Store Queue
Index Prediction (SQIP) [8], and NoSQ [9]. Both SQIP and
NoSQ are re-execution based and do not use CAMs. We
focus on the FPGA resource usage and maximum frequency of
these four schemes when implemented on an FPGA, as earlier
work has shown that the two re-execution based schemes have
similar IPC (instructions per cycle) to using CAMs [8], [9].

II. BACKGROUND

A. Memory Execution

In an out-of-order processor, memory execution is con-
cerned with performing loads and store operations after the
virtual address has already been computed (address genera-
tion). Figure 1 shows a typical processor pipeline with the
memory execution hardware highlighted. For load instructions,
the virtual memory address is translated to a physical address,
the L1 cache is accessed, and some memory dependence spec-
ulation or checking is performed, depending on the memory
disambiguation scheme. Stores work similarly, but data is
stored into a store queue rather than directly into the L1 cache.

The memory execution system also has its own scheduler
(labeled “Replay”), as a memory operation can fail for a
number of reasons (L1 cache miss, TLB miss, load delayed
because it depends on a store, etc.) A separate scheduler is
used because memory scheduling waits for events such as



Front-end:

F
e
tc

h
B

ra
n

c
h
 p

re
d
ic

t
D

e
c
o
d
e

R
e
n
a
m

e

Reorder Buffer

S
c
h
e
d
u

le

ALU

AGU

St.Data

ALU

Memory Execution

S
Q

L
Q

L
1
D

T
L
B

R
e
g
is

te
r 

F
ile

Replay

C
o
m

m
it

In-order Out-of-order In-order

Figure 1. CPU Block Diagram. This work focuses on memory execution.

cache and TLB line fills rather than the availability of register
operands.

B. Out-of-Order Memory Execution

An aggressive memory execution scheme performs several
functions not found in a basic in-order execution scheme:
Store-to-load forwarding, out-of-order load execution, memory
dependence speculation, and memory disambiguation.

Executing load instruction out-of-order is desirable as it
reduces load latency. Out-of-order execution requires knowing
whether a load instruction depends on an earlier store. The
most basic form (no speculation) delays load instructions
until the load is known to be independent from all earlier
store instructions. More aggressive reordering is enabled by
memory dependence speculation, which speculates whether
a load is dependent on some earlier store and only delays those
that do. Earlier work has shown that memory dependencies are
highly predictable [7]–[10].

Using speculation creates a new requirement of needing
to verify the prediction using a memory disambiguation
scheme. There are two main classes of memory disam-
biguation schemes: Address-based, and value-based. Address-
based schemes compare the addresses of loads and stores
to determine whether memory locations overlap. Value-based
schemes re-execute (some) loads at instruction commit time
and compare whether the non-speculative (correct) load value
matches the speculative value loaded earlier. CAM-based
disambiguation is address-based, while SQIP and NoSQ are
value-based.

All three out-of-order schemes we evaluated perform store-
to-load forwarding, out-of-order load execution, memory de-
pendence speculation, and memory disambiguation. The in-
order scheme performs none of these.

C. In-order Memory Execution

The basic in-order memory execution scheme executes loads
in-order, delaying loads until all earlier stores have committed
into cache. Stores are held in a store queue RAM until they
are committed. This scheme does not require any CAMs to
check dependencies between stores and loads, thus it has a
low hardware cost.

SQ
address

RAM

TLB

Tag 
compare

Cache

SQ
data
RAM

Cache data Hit?

AGU

Cache

S
to

re
q

u
e
u

e

Figure 2. In-order Memory Execution

SQ
address

CAM

TLB

Tag 
compare

Cache

Match?

Priority
encoder

SQ
data
RAM

Tag match

C
A

M
 m

a
tc

h
lin

e
s

Partial
overlap?

=

Cache data

Forwarding
PFN match

Forwarding
fail

Forwarded
data

Align

Hit?

LQ
address

CAM

Store ordering
violation?

C
A

M
 m

a
tc

h
lin

e
s

LQ
IP

RAM

Load
wait?

AGU

Cache

Store
forward

Wait
predictor

RAM

Priority
encoder

SQ
addr[31:12]

RAM

Conflicting load IP

S
to

re
 q

u
e

u
e

W
a

it
 p

re
d

ic
to

r

L
o

a
d

 q
u

e
u

e

Figure 3. CAM Out-of-Order Memory Execution

Figure 2 shows our implementation of a hardware pipeline
needed to implement an in-order memory execution scheme.
A virtual addresses is used to look up a TLB for address
translation and a virtually-indexed, physically-tagged data
cache. Cache data is available the cycle after cache access,
for a total load latency of three cycles (AGU, cache/TLB,
writeback/bypass).

D. CAM-based Out-of-Order Memory Execution

Figure 3 shows our implementation of CAM-based memory
execution. The store queue now becomes a CAM to allow
load instructions to search for stores that overlap in memory
location. There is also a simple “wait” predictor for memory
dependence speculation, and a load queue CAM for memory
disambiguation.

When a load executes, the store queue is searched for
all earlier stores that overlap with the load. There are four
possible outcomes of this search: No match, match, ambigu-
ous, or conflict. Ambiguous loads are usually predicted to
not conflict, unless the wait predictor says that load has
been recently mispredicted. Mispredictions are detected when
stores search the load queue CAM for any later loads that
overlap in location and have already executed (i.e., improperly
reordered).

In our pipeline design, the cache, TLB, store queue, wait
predictor, and load queue accesses occur in parallel. The total
load latency is 3 cycles for cache hits (AGU, cache/TLB,
bypass/writeback), and 4 cycles for loads that require store-
to-load forwarding.

E. Store Queue Index Prediction

Store Queue Index Prediction (SQIP) replaces the CAMs
used for memory disambiguation with a predictor that predicts

2



TLB

Tag 
compare

Cache
SQ

RAM

Cache data

Forwarded
data

Align

Hit?

LQ
RAM

AGU

Cache/SQ

S
to

re
 q

u
e

u
e

L
o

a
d

q
u

e
u

e

Load data

S
e
q
u
e

n
c
e
 n

u
m

 o
k
?

P
re

d
ic

te
d
 f
o
rw

a
rd

Figure 4. SQIP Memory Execution

TLB

Tag 
compare

Cache

SQ
address

RAM

Cache data Hit?

LQ
address

RAM

AGU

Cache
S

to
re

q
u

e
u

e

L
o

a
d

q
u

e
u

e

Physical
address

Figure 5. NoSQ Memory Execution

whether a load depends on a store, and also from which
entry in the store queue the load should forward, allowing
the store queue to be implemented in a RAM. A load that is
predicted to not need forwarding reads its data from the cache.
Correctness is ensured through in-order re-execution. Loads
are first filtered using a store vulnerability window (SVW)
filter [11] that allows most loads to skip re-execution.

Figure 4 shows our implementation of the load execution
portion of SQIP, shown here without the predictors. We
implemented the predictor and predictor training hardware
as well, but those are outside the critical memory execution
hardware and not shown in this figure.

The SQIP hardware we implemented has a 3-cycle load
latency for both cache hits and loads that are forwarded from
a store.

F. NoSQ

NoSQ goes further than SQIP by removing the store queue
out of the load critical path. This is done by using the memory
dependence predictor to rename store to load dependencies
through the register file (speculative memory bypassing [12]).
Instead of taking a data value from a register, storing it
to memory, then loading it into another destination register,
speculative memory bypassing uses the register renamer to
point the final destination register’s renamer table entry at the
source register of the store, thus bypassing the memory system
entirely.

Figure 5 shows the load hardware for NoSQ. Because all of
the loads that require forwarding have been bypassed, the load
pipeline is nearly identical to the in-order scheme: Only the

cache and TLB are accessed. We chose to include a load queue
and store queue address RAM to store addresses for use by re-
execution, which we believe is lower cost than recomputing
addresses for re-execution as originally proposed by NoSQ.
Like SQIP, the total load latency is 3 cycles for loads that hit
in the cache, but are even faster for loads that are bypassed.

III. METHODOLOGY

We performed both cycle-level simulation of the various
memory execution schemes and implemented the memory
execution hardware and associated predictors on an FPGA.

A. Cycle-Level Simulation

We simulated the memory execution schemes on a cycle-
level simulator derived from Bochs [13], a functional full-
system x86 emulator. We replaced the CPU simulation with
an execute-in-execute cycle-level model of an out-of-order x86
CPU. Since our focus in this work is on the area and delay
trade-offs of the various predictors, we omit further details
of our simulation setup. We note that our simulations agree
with the many IPC results that have already been published in
previous work [7]–[9].

B. Hardware

To make area and operating frequency measurements, we
implemented the memory execution portion of the processor
on a Stratix IV FPGA, using Quartus II 13.0 SP1. Because
the cache and TLB are closely coupled with the load and store
queues, we also implemented a mock-up of the cache and TLB
that includes the caches, read ports, and tag comparison logic,
but without the more complicated but less timing critical cache
miss handling and page table walking logic. In all cases, we
use a 2-way 8 KB cache (in M9K block RAM) with 64-byte
cache lines and a 2-way 64-entry TLB (in MLAB LUT RAM).
For SQIP and NoSQ, we default to predictor sizes roughly
1/16th the size as originally proposed1, as we found that this
gave significant area and frequency improvements with a 1-3%
loss in IPC.

We report FPGA resource utilization using the “Logic uti-
lization” metric reported by Quartus, which takes into account
how often logic functions of various sizes can be packed into
a dual-output fracturable LUT (Stratix IV ALM). We also
include the area of used memory blocks, based on Stratix III
relative tile areas reported in [6]. Frequency and area results
are the average over 20 random seeds.

IV. RESULTS

A. Performance over Varying Queue Sizes

Figures 6 and 7 show the maximum frequency and area
of the in-order, CAM-based out-of-order, SQIP, and NoSQ
memory execution schemes. We evaluated load queue and
store queue sizes from 2 through 128 entries. In the plot of area
(Figure 7), the area of the cache and TLB alone is also marked
with a dashed horizontal line. Table I gives a breakdown of

1SQIP: 256-entry FSP, SPCT, and SSBF, 32-entry SAT; NoSQ: 256-entry
predictor, untagged SSBF, 64-entry SRQ

3



Figure 6. Maximum Frequency for varying LQ and SQ size

Figure 7. Total area for varying LQ and SQ size

FPGA resource usage for the four schemes at 64 load queue
and store queue entries.

a) In-order: This scheme has a low hardware cost. Its
operating frequency of around 400 MHz is limited by the delay
through the TLB for the range of queue sizes we evaluated.
Area usage does not noticeably grow until additional MLABs
are needed for store queues beyond 64 entries.

b) CAM: Not surprisingly, the CAM-based load/store
queues are sensitive to the number of queue (and CAM)
entries. The delay increases slightly quicker than logarithmic
in the number of entries, while area use grows linearly with
the number of CAM entries.

c) SQIP and NoSQ: SQIP and NoSQ behave similarly
with varying queue size. The critical path is through various
sequence number and tag comparisons, which grow slowly
with increasing queue size. The predictor tables and associated
logic to do prediction, re-execution, and predictor training adds
a considerable amount of area independent of queue length,
thus NoSQ and SQIP have greater area usage than the CAM-
based scheme below 16 and 32 entries, respectively.

V. CONCLUSIONS

As single-threaded soft processors increase in performance
and complexity, there will be a need for out-of-order execution
of memory operations and memory dependence speculation.

Scheme
Logic

Utilization
(ALUTs)

M9K

Total
Area

(Equiv.
ALUTs)

fmax

(MHz) µPC

Cache and
TLB only 570 8 1029 395 –

In-order 789 8 1248 394 0.86
CAM 7529 8 7988 184 1.21
SQIP 3746 16 4664 305 1.13

NoSQ 2678 12 3367 298 1.19
Table I

AREA AND µPC FOR OUR DEFAULT CONFIGURATION: 256 PREDICTOR
ENTRIES, 64 LQ AND SQ ENTRIES.

However, the traditional method of using load queue and store
queue CAMs is particularly inefficient on FPGAs. In this work,
we evaluated four memory execution schemes on a Stratix IV
FPGA: In-order, CAM-based out-of-order, and two schemes
that do not use CAMs: SQIP and NoSQ. Previous work has
shown, and we have confirmed, that in-order execution of
memory operations significantly reduces IPC.

We find that the area of the CAM-based scheme grows
quickly with the number of load queue and store queue entries,
while SQIP and NoSQ have a greater fixed area overhead
independent of queue size, with NoSQ being more efficient. In
our implementations, SQIP and NoSQ are more area efficient
than using CAMs beyond 32 and 16 entries, respectively.
We observe similar trends in maximum frequency, where the
CAM-based frequency decreases more than SQIP or NoSQ
with increasing queue size, with a break-even point at around
4 queue entries. For high-performance soft processors, in-order
memory execution is unattractive because even if the rest of
the processor could be designed to run at 400 MHz, the higher
clock frequency does not make up for the loss in IPC (21%
vs 40% for 64-entry LQ/SQ).

Finally, this work demonstrated practical methods to
build aggressive out-of-order memory execution hardware
on FPGAs, a key piece of a high-performance FPGA soft
processor.

REFERENCES

[1] M. Labrecque and J. Steffan, “Improving pipelined soft processors with
multithreading,” in Proc. FPL, 2007, pp. 210–215.

[2] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, “An FPGA-
based VLIW processor with custom hardware execution,” in Proc.
FPGA, 2005, pp. 107–117.

[3] A. Severance and G. Lemieux, “VENICE: A compact vector processor
for FPGA applications,” in Proc. FPT, 2012, pp. 261–268.

[4] C. E. LaForest and J. G. Steffan, “Octavo: an FPGA-centric processor
family,” in Proc. FPGA, 2012, pp. 219–228.

[5] H. W. Cain, “Memory ordering: A value-based approach,” in Proc. ISCA,
2004, pp. 90–101.

[6] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. Custom CMOS
and the Impact on Processor Microarchitecture,” in Proc. FPGA, 2011,
pp. 5–14.

[7] A. Moshovos and G. Sohi, “Memory dependence speculation tradeoffs in
centralized, continuous-window superscalar processors,” in Proc. HPCA,
2000, pp. 301–312.

[8] T. Sha, M. M. K. Martin, and A. Roth, “Scalable store-load forwarding
via store queue index prediction,” in Proc. Micro, 2005, pp. 159–170.

[9] ——, “NoSQ: Store-load communication without a store queue,” in
Proc. Micro, 2006, pp. 285–296.

[10] A. Moshovos, “Dynamic speculation and synchronization of data de-
pendencies,” pp. 181–193, 1997.

[11] A. Roth, “Store vulnerability window (SVW): A filter and potential
replacement for load re-execution,” JILP, vol. 8, 2006.

[12] A. Moshovos and G. S. Sohi, “Speculative memory cloaking and
bypassing,” Int. J. Parallel Program., vol. 27, no. 6, Dec. 1999.

[13] K. P. Lawton, “Bochs: A portable pc emulator for unix/x,” Linux J., vol.
1996, no. 29es, Sep. 1996.

4


