
Comparing Performance, Productivity and Scalability
of the TILT Overlay Processor to OpenCL HLS

Rafat Rashid, J. Gregory Steffan, Vaughn Betz
Department of Electrical and Computer Engineering

University of Toronto, Ontario, Canada
rafat.rashid@utoronto.ca, {steffan,vaughn}@eecg.toronto.edu

Abstract—High-Level-Synthesis (HLS) tools translate a soft-
ware description of an application into custom FPGA logic,
increasing designer productivity vs. Hardware Description Lan-
guage (HDL) design flows. Overlays seek to further improve
productivity by reducing application compile times and rais-
ing abstraction by enabling the designer to target a software-
programmable substrate instead of the underlying FPGA. We
compare the performance, development effort and scalability
of two C-to-FPGA approaches: our TILT overlay processor
and Altera’s OpenCL HLS. Our application-customized TILT
implementations of five data-parallel benchmarks have from 41%
to 80% of the throughput per unit of layout area achieved by our
best OpenCL HLS designs. The time required for initial hardware
compilation of these TILT designs and configuration of the target
application onto the overlay is roughly comparable to the compile
times of the OpenCL HLS designs: 28 and 103 minutes on average
respectively. However subsequent reconfigurations due to changes
in the application that do not require re-synthesis of the overlay
are fast, taking 38 seconds on average. In contrast, OpenCL
HLS applications require full recompilation after every code
change. TILT also enables smaller, more area-efficient designs
than OpenCL HLS when low to moderate throughput is sufficient.
For high throughput, the larger spatially pipelined designs of
OpenCL HLS are preferable.

I. INTRODUCTION

Current FPGAs offer massive on-chip parallelism with low
power compared to other platforms such as CPUs or GPUs [1]–
[3] while providing the flexibility to implement any hardware.
However, FPGAs are a more difficult design target. First, the
compile time of design tools is typically hours for FPGAs vs.
minutes for CPUs and GPUs, lengthening design iterations and
reducing designer productivity. Second, most FPGA designs
are currently specified in Hardware Description Languages
(HDLs) such as Verilog and the cycle-accurate description
required in such languages is time-consuming to write.

To alleviate these problems, several High-Level-Synthesis
(HLS) techniques have been proposed that convert a high
level description of an application into custom logic, providing
high abstraction FPGA programming. These include FCUDA
[4], LegUp [5], Vivado [6] and compilers targeting OpenCL
[7], [8]. An alternative method to improve FPGA design
productivity is to target a software-programmable substrate, or
“overlay”, configured into the underlying FPGA. Many overlay
processors that execute applications on top of a configurable
execution unit have been proposed [9]–[11].

In general, overlay processors increase productivity by
eliminating the need to implement application-specific data-
paths in HDL while also providing the flexibility to execute

multiple similar applications without requiring recompilation
of the overlay. Software compilation of an application onto
the overlay is fast, usually taking a few seconds compared
to hours with direct hardware compilation onto the FPGA.
This abstraction is provided at the cost of lower performance
and more area. Some overlays provide software tools that
can analyze an application and suggest a suitably customized
architecture to reduce this overhead [12], [13].

In contrast, HLS tools such as Vivado [6] or OpenCL [7]
require full recompilation of the application into hardware after
any code change. Small changes in the input code can also lead
to large differences in the system area and performance so
many design iterations are often necessary to fully optimize
a system. Taken together, the combination of many design
iterations and long compile times can significantly increase
development time compared to using an overlay. However,
by generating custom logic, HLS tools generally offer higher
performance than overlay processors.

OpenCL is a popular open standard that enables parallel
programming across heterogeneous platforms [14]. The pro-
gramming model separates the application into two parts. The
first is the serial host program that executes on a CPU and
is responsible for managing data and control flow. The host
offloads the parallel compute intensive second portion defined
within kernels onto accelerator(s) such as CPUs, GPUs and
recently FPGAs [7].

In this paper, we compare an improved version of the
TILT overlay processor proposed in [15] with Altera’s OpenCL
HLS. TILT takes an algorithm description within a C function
and executes it on an application-customized soft processor.
Altera’s OpenCL HLS takes a similar kernel as input and
generates a custom pipelined accelerator on the FPGA that
can be executed from a host CPU program [7].

We have chosen Altera’s OpenCL HLS as our comparison
point because recent studies have shown it can generate FPGA
hardware with good performance relative to other platforms.
Chen and Singh report their OpenCL FPGA implementation of
a Fractal Video Compression algorithm is 3x faster than a high-
end GPU while consuming only 12% of the GPU’s power [3].
They also demonstrate a huge gain in productivity, with their
simplified and error-prone hand-coded FPGA implementation
taking a month to complete relative to the few hours it took
to develop a working OpenCL version.

We summarize the enhancements we have made to the
TILT architecture of [15] and comparison with OpenCL HLS
in our list of contributions below:

Memory Fetcher We implement a new configurable and
scalable Memory Fetcher unit that prefetches only the required
data from off-chip DDR memory through static compiler
analysis of the target application and is appropriate for use
with TILT and possibly other overlay processors.

TILT Enhancements We extend the TILT architecture of
[15] to support new application-specific functional units (loop
and indirect address) and create a new Predictor tool to quickly
choose the best TILT configuration for an application.

Comparison of TILT with OpenCL HLS We quantita-
tively compare the throughput and area of TILT with OpenCL
HLS implementations of five large memory (ie. off-chip DDR
required) data-parallel applications. We also compare the com-
pile time and development effort between these two methods.
Finally, we assess the ability of TILT and OpenCL HLS to
scale up or down to match compute and area requirements.

II. RELATED WORK

A. Soft Overlay Processors on FPGAs

Overlay processors seek to combine the fast compile time
of a software-programmable substrate with higher efficiency
than a basic soft processor such as Nios or Microblaze can
achieve. Several works use vector processors as their overlay
including VESPA [16], VEGAS [9] and VENICE [10]. Of
these VENICE currently achieves the highest performance; it
combines a scalar Nios II/f processor for control with wide
vector lanes feeding multi-function ALUs.

VENICE connects to a standard DMA engine that moves
data directly between the on-chip scratchpad memory and off-
chip DDR. The scratchpad is double-buffered with dedicated
ports to the DMA to overlap data movement with computation.
Unlike VENICE, the functional units (FUs) in TILT operate
on scalar data. TILT’s scratchpad is not double-buffered and
the off-chip memory transfers are interleaved into the compute
schedule using ports that are shared with the FUs.

Soft processors such as VLIW-SCORE execute Very-Long-
Instruction-Words (VLIW) stored in on-chip memory [11], like
TILT, instead of relying on a scalar processor such as Nios.
The instruction can specify a different operation per FU per
cycle. An earlier soft processor called CUSTARD features
the automatic generation of custom datapaths and instructions
intended to accelerate frequently performed computations of
the target application alongside standard operations such as
add and multiply [12]. TILT uses a weaker form of application
customization by varying the mix of pre-configured standard
FUs and optionally generating application-dependent custom
units to handle predication, loops and indirect addressing.

B. High-Level-Synthesis Tools for FPGAs

LegUp is an academic HLS tool that compiles a standard
C program onto a host/accelerator model similar to OpenCL
[5]. However, the partitioning of the host and kernel is done
automatically by the LegUp compiler. The host executes on an
FPGA-based 32-bit MIPS soft processor and communicates
with the custom accelerator using an on-chip bus interface.
TILT can be easily integrated into LegUp as an accelerator by
connecting TILT’s external data/address bus to the MIPS host,
enabling faster application compilation onto the overlay.

CUDA is a language for expressing parallel applications
on Nvidia GPUs that also shares the host/accelerator model
[17]. FCUDA transforms CUDA kernels into custom FPGA
logic using the AutoPilot HLS tool [18] and demonstrates
competitive performance on Virtex 5 FPGAs, outperforming
Nvidia’s G80 GPU in some cases [4]. Studies including
[19] demonstrate CUDA’s slightly higher performance when
compared to OpenCL. However, they also show it is rela-
tively easy to translate CUDA programs to OpenCL and that
OpenCL is portable, achieving good performance on other
platforms with only minor code modifications. This makes
OpenCL a compelling standard to compare against C-to-FPGA
approaches such as overlays.

Stitt and Coole compile OpenCL applications to a spa-
tial pipeline on their pre-compiled intermediate fabrics (IFs)
composed of fixed coarse computational resources and config-
urable interconnect instead of directly targeting the underlying
FPGA [13]. This approach is similar to TILT since the IF is
customized to the requirements of the kernel and allows rapid
kernel compilation and reconfiguration (seconds vs. hours)
while incurring a performance penalty and area overhead
compared to direct OpenCL synthesis. However, as we show in
Section VI-E, TILT also enables smaller implementations than
OpenCL HLS when a lower throughput is adequate, allowing
a larger range of the design space to be explored.

III. TILT-SYSTEM ARCHITECTURE

A. TILT Overlay Processor

TILT is a highly configurable overlay compute engine for
FPGAs with multiple, varied and deeply pipelined floating-
point FUs [15]. TILT is capable of supporting multiple in-
dependent thread contexts, each of which can issue multiple
operations every cycle. As illustrated in Figure 1, TILT has
read and write side crossbars that connect the array of FUs to
an explicitly managed banked multi-ported data memory built
using on-chip BRAMs [20]. TILT relies on static compiler
instruction scheduling to obtain high utilization of its FUs
and to reduce hardware complexity [21] and does not require
forwarding logic or dynamic data hazard detection.

...

...

I/O

C
T

R
L

C
T

R
L

C
T

R
L ...

IN
S

T
R

M
E

M

PC

ADDR,mEN RESULT

Banked
Multi-
Ported
Memory

...

...
Read bar

Write bar

FU FU FU

Fig. 1: TILT architecture [15].

TILT seeks to achieve a high computational throughput per
unit area on data parallel applications. We accomplish this by
customizing TILT’s architectural parameters (such as the FU
mix, organization of banked data memory, number of threads
and number of operations that can issue or complete in parallel)
to closely match the memory and compute requirements of the
target application. If the throughput is insufficient, TILT can

be scaled by instantiating multiple copies of the TILT core,
composed of the data memory, crossbars and FUs. All cores
share a single instance of the instruction memory and execute
in parallel in SIMD (single-instruction-multiple-data) fashion.
We call this architecture TILT-SIMD.

B. External Memory Fetcher Unit

The proposal of TILT in [15] did not include a mechanism
to communicate with off-chip DDR memory. The authors as-
sumed all data was present within TILT’s data memory prior to
computation and only the compute portion of the benchmarks
was scheduled and evaluated. To evaluate a more compelling
complete system on realistic, large memory applications, we
have designed a separate Memory Fetcher unit.

The Fetcher is responsible for efficiently moving data be-
tween multiple TILT cores via their external IO ports and off-
chip memory in between or during computation. The Fetcher is
aware of the computation’s off-chip data movement behaviour
through static compiler analysis of its accesses. The Fetcher
performs clock domain crossing between TILT-SIMD and the
DDR controller and provides deterministic external memory
latency guarantee to the processor by buffering data within
intermediate FIFOs. TILT-SIMD is connected to the Fetcher to
create the TILT-System as illustrated in Figure 2. By separating
the data movement and computation, we are able to optimize
the Fetcher and TILT-SIMD for their respective tasks.

TI
LT

...
 In

sn
M

em

DDR Wr

DDR Rd

TILT Rd

TILT Wr

cntrl

Insn Mem

cntrl

w
id

th
co

n
v

TI
LT

TI
LT

nExtW Ports

nExtR Ports

Fetcher

TI
LT

-S
IM

D
...

TILT clk DDR clk

FIFOs

FIFOs

Fig. 2: TILT-System - TILT-SIMD connected to off-chip DDR
via the Memory Fetcher.

Each TILT core computes on 32-bit words. The Fetcher
operates on 256-bit words, the same width as our interface to
DDR. This means 8 TILT cores can communicate with the
Fetcher in parallel in the same cycle. The widthconv module
converts the TILT-SIMD word to a multiple of 256-bits or
vice-versa. So for TILT-SIMD with 12 cores, data from the
first 8 will be sent to the Fetcher on the first cycle and data
from the remaining 4 cores will be sent on the next cycle.

We add to TILT the ability to halt the processor (temporar-
ily prevent execution of future instructions) if the Fetcher gets
too far behind or to halt the Fetcher unit if it gets too far
ahead. The synchronization logic is implemented within the
Fetcher. Otherwise the Fetcher and TILT-SIMD execute their
own respective instruction schedules, generated statically by
the compiler, to provide independent operation of computation
and data movement on the same memory address space.

The new instructions that move data between TILT-SIMD
and off-chip memory are decoupled into two sets of instruc-
tions. The first is the Fetcher-DDR instructions that facilitate
communication between DDR and the data FIFOs inside the
Fetcher. The second is scheduled as part of TILT-SIMD’s
instructions and are responsible for moving data between the
FIFOs and data memory of the TILT cores on cycles when the
memory’s read or write ports are not being used by compute
operations. The two sets of decoupled instructions execute in
the same order so the data does not need to be tagged with
where it is going when inserted into the FIFOs.

Decoupling the instructions allows the Fetcher to behave as
another FU to the TILT cores, providing deterministic latency
to TILT-SIMD while communication with off-chip memory
can remain non-deterministic. Further, several DDR read and
write bursts can be enqueued together to fetch data needed by
future computations into the FIFOs and flush results already
computed to external memory. The depth of the FIFOs and
burst sizes can be varied to improve DDR bandwidth and
mask latency, providing optimized communication with off-
chip memory while minimizing processor stalls.

Our approach is inspired by the Decoupled Access/Execute
processor proposed by James E. Smith [22] and Outrider which
splits a thread’s instruction context into memory-accessing and
memory consuming streams that execute in separate hardware
contexts [23]. The memory-accessing stream fetches data non-
speculatively substantially ahead of the memory-consuming
stream to tolerate memory latency.

C. TILT-System Simulation and Predictor Model

Due to the wide range of parameters that can be varied, it
can be difficult to determine the best TILT-System configura-
tion for a given application. It is infeasible to explore the entire
design space of thousands of configurations using Altera’s
hardware synthesis tools as each compilation can take hours.
Tili in [21] applied regression models on a varied suite of com-
piled TILT designs to quickly estimate the area cost of adding
an additional thread, memory bank, read/write port or an FU
without the need to synthesize each new design on Stratix
IV FPGAs. TILT’s compiler can also quickly calculate FU
utilization, throughput, scheduling conflicts and other metrics
by statically scheduling the application. We extend this work to
include the TILT-System components and develop a Predictor
model targeting Stratix V chips that can recommend the best
TILT-System configuration for an application using a heuristic
based exploration of the parameter space. The Predictor can
analyze in minutes thousands of potential TILT and Fetcher
configurations that would take weeks to compile in Quartus.

IV. IMPLEMENTATION

A. Benchmarks

We compare the efficiency of the TILT-System with Al-
tera’s OpenCL HLS [7] on the data parallel benchmarks
presented in Table I. TILT threads and OpenCL work-items
execute independently and perform the same computation.
Optimizations specific to TILT are discussed in Section IV-B
and IV-C below. Table I presents the FU operation usage
numbers taken from TILT’s compute schedule for each thread
of a benchmark, providing an estimate of their compute size.

Benchmark Functional Units TotalAddSub Mult Div Sqrt Exp Cmp Log Abs
BSc 23 30 9 4 4 4 1 2 77
HDR 6 4 3 1 0 0 0 0 14

Mandelbrot 177 142 0 0 0 210 0 0 529
HH 36 24 28 0 15 12 0 0 115

FIR 64-tap 64 64 0 0 0 0 0 0 128

TABLE I: TILT FU operation usages per thread.

Black-Scholes Option Pricing (BSc). The BSc model is
based on a partial differential equation that approximates the
prices of European call and put options given inputs such as
stock price, interest rate and volatility [24]. Each BSc thread
computes the call and put options for a single set of inputs.

High Dynamic Range (HDR). This benchmark takes 3
input images of the same scene captured by standard cameras
at 3 different exposures and produces a single output image
with a greater range of luminance than the input images [25].
Each HDR thread computes a single pixel component.

Mandelbrot Fractal Rendering. We use Altera’s Man-
delbrot implementation where each thread computes a single
pixel of a 800x640 image frame [26].

Hodgkin-Huxley (HH). This neuron simulation bench-
mark describes the electrical activity across a patch of a neuron
membrane [27]. The computation involves solving four first-
order differential equations using Euler’s method to iteratively
compute simple finite differences.

FIR Filter. We use the fully pipelined 64-tap Time-
Domain Finite Impulse Response filter benchmark from the
HPEC Challenge Benchmark suite [28]. The OpenCL HLS
implementation is provided by Altera [26].

B. Implementation on TILT

TILT’s schedule is configured to be cyclic for all bench-
marks, wrapping around to the start to execute the same
instructions on different data. Table II presents benchmark
memory requirements per thread on TILT. External inputs and
outputs define the number of data words that must be read or
written to off-chip memory per thread. One notable difference
in the Fetcher implementation for the FIR filter is that TILT-
SIMD is halted while loading the filter coefficients into the data
memory of the cores. The TILT-System then resumes normal
concurrent operation of the Fetcher and TILT-SIMD.

Benchmark Data Words Ext Inputs Ext Outputs
BSc 38 5 2

HDR 18 6 1
Mandelbrot 25 6 1

HH 86 5 4
FIR 64-tap 192 1* 1

TABLE II: TILT data memory requirements per thread (in 32-
bit words). *Filter coefficients are loaded initially.

Some of the FUs share both their operation field in TILT’s
instruction and their read and write ports with another FU
(usually the least utilized) to generate a more computationally
dense schedule and to reduce the size of the crossbars. In this
case, only one of the two FUs can issue and/or complete an
operation per cycle. TILT’s software compiler ensures there
are no scheduling conflicts. This is summarized in Table III.

As an example, the Mult and Cmp units for the Mandelbrot
benchmark share the same operation field and ports since they
have similar FU latencies and because all multiplies precede
compare operations for a given thread. The latencies of the
TILT FUs vary between 1 cycle for Abs to 28 cycles for Sqrt.

Benchmark FUs - Operation Field / Port Sharing
BSc Exp+Cmp and Log+Abs

Mandelbrot Mult+Cmp
HH Exp+Cmp

TABLE III: TILT FUs that share their operation field and ports.

C. TILT Efficiency Enhancements

The TILT-System architectural parameters presented thus
far provide a high degree of flexibility to closely suit the needs
of different applications. We further extend TILT with looping
support for Mandelbrot and shift register addressing mode for
the FIR filter to obtain a more area-efficient design than can
be generated with the TILT architecture of [15]. Note that as
TILT is an application customized “family” of compute cores,
these enhancements are optionally configured and generated
for the benchmarks that benefit from them.

1) Looping Support: The TILT compiler is capable of fully
unrolling loops prior to scheduling. However this results in a
very long schedule and a large instruction memory in hardware
for loops that iterate many times. As an alternative, we have
implemented the LoopUnit FU which contains an iteration
counter. Loop start and end operations are inserted into TILT’s
compute schedule to mark the loop boundaries and update the
counter. The LoopUnit operations are shared with another FU
as they show up only twice for each loop in the computation.

Due to the static nature of the schedule, only loops with
known bounds at compile time are supported and the scheduled
instructions must not cross loop boundaries, resulting in less
dense schedules than a fully unrolled schedule. However, with
this approach, the loop body needs to be scheduled only once,
resulting in fewer instructions and shorter schedules. Control
logic inside the LoopUnit updates TILT’s program counter
(PC) to either jump to the start of the loop or continue ex-
ecuting the next instruction after the loop body. The LoopUnit
is used to implement the Mandelbrot application on TILT as
it features a loop that iterates a maximum of 1000 times.

FU operation

Operand B
Read Addr

Operand A
Read Addr

Result
Write Addrvalid Read

bank id

...

Write
bank id

thread
id

opcode

+

Counter

cntrl
+ +

Write bar Read bar

TILT VLIW Instruction

offset

Fig. 3: Shift register indirect addressing mode.

2) Shift Register Addressing Mode: The FIR filter is most
effectively implemented with input and output data placed
inside shift registers. It is possible to model this behaviour on
the TILT architecture of [15] but it will be extremely inefficient
as separate operations must be scheduled to read data from

the TILT data memory and move them to adjacent locations
between the computation of each output. As illustrated in
Figure 3, by adding an offset to the static memory addresses
using a counter controlled by the operation’s opcode, we can
obviate the need for these data movement operations. Figure
3 shows all 3 operand addresses being shifted. However, the
FIR filter is configured to shift only the result.

V. METHODOLOGY

Platform. TILT and OpenCL HLS designs were generated
using Altera’s Quartus 13.1 and OpenCL SDK targeting the
Stratix V 5SGSMD5H2F35C2 FPGA with 2 banks of 4 GB
DDR3 memory on the Nallatech 385 D5 board.

Metrics. We measure computational throughput in millions
of work-items per second (M wips). An work-item in OpenCL
is analogous to a thread in TILT. We report area in equivalent
ALMs (eALMs) which accounts for the total layout area of the
FPGA resources consumed by our designs. An M20K BRAM
on Stratix V costs 40 eALMs as its layout area is 40x that of
an ALM [29]. Similarly, a DSP block has 30x the layout area
of an ALM so it costs 30 eALMs [29]. We compare different
designs using a ratio of throughput per unit of area (M wips /
10k eALMs) which we define as compute density.

A. TILT-System Evaluation

For each benchmark, the Predictor model of Section III-C
is used to predict the TILT-System configurations with the
highest compute densities. The Predictor selects the Fetcher
configuration with the smallest area that is able to meet the ex-
ternal input and output bandwidth requirements of the selected
TILT design. The top 10 TILT-System configurations ranked by
compute density are compiled in Quartus to obtain their actual
area. Throughput is obtained through cycle accurate simulation
in ModelSim 10.1d assuming all input data is initially available
in DDR3. The configuration with the highest compute density
is then selected as the TILT result.

B. OpenCL HLS Evaluation

Quartus designs are generated using Altera’s OpenCL HLS.
The OpenCL host program is developed using Visual Studio
2013 and compiled into an executable with default Release
configuration. To obtain throughput numbers, the input data of
the entire benchmark workload is flushed to DDR3 prior to
the execution of the kernel across the entire workload. This is
to ensure a fair comparison with TILT by excluding the host-
accelerator transfer time. Elapsed time is obtained by capturing
the wall clock time before and after kernel execution using
Windows high resolution timers with a precision of <1 µs. The
number of work-items is increased until throughput saturates.

VI. EVALUATION

A. Top TILT-System Configurations

Table IV provides the top (most computationally dense)
TILT configurations for the benchmarks of Table I. The Fetcher
configurations used with these TILT designs are provided in
Table V. As shown in Figure 2, external write and read ports
determine the number of 256-bit words that can be written to
or read from the TILT cores per cycle. Similarly, the depths

in Table V correspond to the incoming and outgoing data
FIFOs respectively. Appropriate FIFO depths are a function
of the bandwidth requirements of TILT-SIMD which can be
accurately predicted when the number of TILT cores, threads,
port dimensions and the number of words each thread reads
or writes to external memory (Table II) are known.

Benchmark FU Mix Threads Mem Bank W/R Ports Insn Mem
Banks Depth / Bank WidthxDepth

BSc 2-3-1-1-1-1 64 4 1024 2-4 476 x 933
HDR 2-2-1-1-0-0 64 4 512 2-4 318 x 304

Mandelbrot 1-2* 8 1 256 3-6 140 x 103
HH 3-2-2-2-0-0 32 4 1024 2-4 467 x 611

FIR 64-tap 1-1-0-0-0-0 2 1 512 2-4 76 x 144

TABLE IV: Top TILT configurations with highest compute
density for each benchmark. FU Mix: AddSub/Mult/Div/Sqrt/
ExpCmp/LogAbs *AddSubLoopUnit/MultCmp.

Benchmark ExtW/R W/R FIFO Depths Area Fmax
Ports 256-bit words eALMs MHz

BSc 1-1 2048 / 1024 1,995 354
HDR 2-1 1024 / 512 1,816 343

Mandelbrot 1-1 256 / 128 934 385
HH 1-1 512 / 512 1,413 386

FIR 64-tap 2-1 128 / 128 1,321 357

TABLE V: Fetcher designs (for the top TILT configurations).

The external bandwidth of the FIR benchmark after the
filter coefficients are initially loaded is low: 2 input and output
256-bit words every 144 cycles. However, the relatively deep
FIFO depth of 128 is selected to prefetch the coefficients ahead
of time and communicate with DDR in bursts. As the M20K
BRAMs used to build the FIFOs support a minimum depth of
512, using a smaller depth does not save area.

B. TILT Core and System Customization

We seek to maximize throughput per unit area by customiz-
ing the TILT core and system architecture to the compute and
bandwidth requirements of the application. Table VI presents
the improvement in performance and area achieved with the
tuned TILT configurations of Table IV relative to the baseline
which is composed of 1 of each required FU with 1 thread
and 1 data memory bank with 2 read and 1 write ports.

TILT-System with 1 TILT core

Benchmark Throughput Area Compute Density
M wips eALMs Mwips/10keALMs

Top / Base Top / Base Top / Base
BSc 16.3 / 0.48 13,930 / 5,567 11.7 / 0.87
HDR 46.9 / 1.54 8,231 / 3,128 57 / 4.91

Mandelbrot 0.76 / 0.14 3,320 / 1,987 2.3 / 0.69
HH 11.8 / 0.61 13,718 / 3,590 8.6 / 1.71

FIR 64-tap 3.8 / 2.06* 2,674 / 1,909 14 / 10.8*

TABLE VI: Comparison of top TILT-System designs with
minimal area baseline. *FIR throughput is in M inputs/sec.

As an example, the minimal BSc TILT-System with 1 TILT
core computes 0.48 M wips at the cost of 5,567 eALMs. An
additional 63 threads and 3 data memory banks with 2 extra
read and 1 extra write ports improves throughput by 17x by
executing many threads in parallel but requires 2x more area.
An extra AddSub and 2 more Mult FUs improves throughput
further by 2x, at a cost of 1.1x more area, resulting in an
overall 13.5x improvement in compute density.

We can improve the throughput of the TILT core further
with diminishing returns by adding more FUs, threads, data
memory banks and/or read/write ports to allow more opera-
tions to issue and complete every cycle but at an increasingly
higher area cost, causing the compute density to decrease. As
was shown in [15], the area of large TILT cores is dominated
by the quadratic increase in the crossbar area, making large
number of FUs or memory ports unwise.

Beyond customizing the TILT core’s mix of standard FUs,
we can now add application targeted FUs to improve compute
density further. For example, the addition of the new LoopUnit
for Mandelbrot significantly reduces the size of the instruction
memory, requiring 4 BRAMs for the top Mandelbrot design in
Table VI instead of the 527 that would be needed if the loop
was fully unrolled. The required bank depth is also reduced to
256 words from 512. However, the compute schedule becomes
35% less dense, contributing to a throughput drop of 20%.
Overall, the LoopUnit improves compute density by 6.1x,
while consuming only 9.8 ALMs.

Similarly for the top FIR design in Table IV, a conventional
TILT core without an indirect addressing mode will require
64 reads and writes per thread between the computation of
each output, resulting in a 415 cycle instruction schedule. The
addition of the mode costs only 54 eALMs but shortens the
schedule to 144 cycles, improving compute density by 2.9x.

As illustrated by the tuning of the BSc TILT core to maxi-
mize compute density and the optionally generated application-
dependent custom units to more efficiently handle loops (Man-
delbrot) and indirect addressing (FIR), the TILT core presents
multiple degrees of freedom to the designer to reduce area or
to increase throughput and compute density. The significant
performance improvement that can be achieved demonstrates
the value of our Predictor tool. The minimal TILT-Systems in
Table VI are small, consuming between 1.9k and 5.6k eALMs.

Beyond customizing the TILT core, we can improve the
throughput and compute density further by connecting multiple
area-efficient TILT cores to operate in SIMD. This is preferable
to increasing the throughput by making the TILT core larger
which will result in a less computationally dense design. The
improvement can be observed for the TILT-Systems in Table
VII where the TILT core of Table VI is replicated 7 more times,
allowing us to achieve near-linear growth in throughput. The
area cost of the TILT instruction memory (provided in Table
VIII) and the Fetcher (Table V) becomes amortized, causing
the overall increase in compute density.

C. TILT-System and OpenCL HLS Performance Comparison

Table VII compares the performance of the 8 core TILT-
Systems using the top TILT and Fetcher configurations of
Table IV and V with our best OpenCL HLS designs. The
compute density of these TILT-Systems is 41% (HH) to 80%
(HDR) of the density of the OpenCL designs. The reported
Fmaxes are those of TILT-SIMD and the OpenCL kernel
system. Both achieve similar Fmax values of over 200 MHz.
The DMA area of our OpenCL designs is 4,367 eALMs on
average, roughly 3x larger than the relatively small Fetcher
which consumes between 1k to 2k eALMs (Table V). Both
the DMA and Fetcher serve the same purpose: moving data
between off-chip DDR and on-chip memory.

For the top TILT-Systems of Table VII, the area breakdown
of the TILT cores is presented in Table VIII. The average area
of the core varies widely between 1,358 (FIR) and 11,713
(HH) eALMs, showing the different benchmarks prefer quite
different TILT cores. This further highlights the utility of our
Predictor as determining the top TILT-System design is non-
trivial. To achieve the most area-efficient design, our objective
is to minimize the non-FU area, comprising the crossbars,
instruction and data memory. The purpose of these components
is to keep the FUs busy with minimal area. The average FU
area for our benchmarks is 41% of the total.

Benchmark Fmax Tput Area Compute Density
MHz M wips eALMs Mwips/10keALMs
TILT-System with 8 TILT cores

BSc 220 121 95,893 12.6
HDR 223 359 51,163 70.1

Mandelbrot 246 6.1 19,051 3.2
HH 215 90 96,073 9.4

FIR 64-tap 270 30* 12,187 24.6*

OpenCL HLS - Kernel System with DMA
BSc 221 153 51,982 29.5
HDR 234 231 26,246 88.1

Mandelbrot 268 23 46,204 5.0
HH 236 116 50,571 23.0

FIR 64-tap 274 239* 51,577 46.4*

TABLE VII: Top TILT-System and OpenCL HLS performance
numbers. *FIR throughput is in M inputs/sec.

Benchmark Insn Average Area (eALMs) per TILT Core Total FUs/
Mem Mem FUs Rd Xbar Wr Xbar eALMs Total

BSc 961 2,560 5,016 3,070 971 12,578 40%
HDR 321 1,280 2,489 1,738 621 6,449 39%

Mandelbrot 161 720 1,049 396 80 2,406 44%
HH 961 2,560 4,777 3,391 985 12,674 38%

FIR 64-tap 81 320 624 296 108 1,429 44%

TABLE VIII: Area breakdown of the TILT cores for the TILT-
Systems in Table VII.

D. Designer Productivity

TILT-System with 8 cores OpenCL
Initial Setup Kernel Kernel

Benchmark Kernel Predictor Overlay Update Compile
secs mins mins secs mins

BSc 0.66 4.7 53 39 108
HDR 0.15 0.4 31 38 86

Mandelbrot 0.10 0.5 16 38 111
HH 0.52 2.8 52 39 106

FIR 64-tap 0.10 0.2 13 38 107

Geomean 0.22 0.9 28 38 103

TABLE IX: Runtime of TILT-System and OpenCL HLS tools.

The runtime of the TILT and OpenCL HLS tools for the
designs in Table VII are summarized in Table IX. For the initial
setup of the TILT-System, the TILT and Fetcher instruction
schedules are first generated from the C kernel using our com-
piler. Then the top TILT-System configuration recommended
by our Predictor is synthesized into hardware using Quartus,
with the schedules loaded into the instruction memories during
compilation. The initial setup is dominated by the compilation
of the overlay, with an average runtime of 28 mins. After
a kernel code change that does not require the overlay to
be recompiled, determined by running the Predictor on the
modified kernel, the instruction memories of TILT and the

Fetcher are updated with the regenerated schedules, taking only
38 secs on average. By comparison, any change made to an
OpenCL kernel requires full recompilation, taking an average
of 103 mins, a 163x increase. Moreover, the fast runtime of
our Predictor enables us to obtain a suitably customized, high
performance design for an application significantly faster than
would be possible through an exhaustive search using Quartus.

E. TILT-System and OpenCL HLS Scalability

Many applications combine several kernels with different
throughput requirements and need to fit them all on a chip
with a finite area budget. In this section, we scale the HH and
FIR benchmarks to show how efficiently the TILT-System and
OpenCL HLS scale up or down to meet such requirements.

We scale up the TILT-System of HH up to chip capacity in
Figure 4 and compare with OpenCL HLS where the computa-
tion is replicated to execute in parallel. The maximum size of
our designs is limited by the ALMs available on our FPGA.
Each TILT core requires 19 DSPs for FUs, with each spatially
pipelined instance in OpenCL HLS requiring 143 DSPs.

0

40

80

120

160

200
100%Chip5ALM5Utilization0%100%Chip5ALM5Utilization0%

M
 w

ip
s

OpenCL5Replication5Factor
1 2 4 8 10 12 14 16 18 20

TILT5Cores
6

0
50

100
150
200
250
300

1 2 3 4 5

(a) TILT-System (left) and OpenCL HLS (right) throughput.

0

50

100

150

200

250

1 2 3 4 5
OpenCLIReplicationIFactor

100%ChipIALMIUtilization0% 100%ChipIALMIUtilization0%

1k
 e

A
LM

s

1 2 4 8 10 12 14 16 18 20
TILTICores

6
0

50

100

150

200

250

(b) TILT-System (left) and OpenCL HLS (right) area.

100%Chip5ALM5Utilization0% 100%Chip5ALM5Utilization0%

M
 w

ip
s

/ 1
0k

 e
A

L
M

s

OpenCL5Replication5Factor
1 2 4 8 10 12 14 16 18 20

TILT5Cores
6

0

2

4

6

8

10

0

5

10

15

20

25

1 2 3 4 5

8.6
9.6

8.3

23

13

(c) TILT-System (left) and OpenCL HLS (right) compute density.

Fig. 4: Scaling HH on TILT-System and OpenCL HLS.

In Figure 4(a), we observe near-linear scaling in the TILT-
System throughput, with the small drop from 16 to 20 cores
caused by a drop in Fmax from 201 to 181 MHz. In Figure
4(b), the OpenCL HLS design cannot scale below 51k eALMs
while the TILT-System is able to scale down to 14k eALMs. In
Figure 4(c), the compute density of the TILT-System remains
fairly constant (from 9.6 at 12 cores to 8.3 at 20) but is lower
than the OpenCL HLS designs.

In Figure 5, we study the OpenCL HLS compiler’s ability
to scale down the spatially pipelined 64-tap FIR design. With
1 pipeline stage, a single multiply-add (MA) unit is shared by
all 64 filter coefficients to produce an output every 64 cycles.

The availability of two parallel units with 2 stages allows an
output to be computed every 32 cycles. The first MA takes 32
cycles to apply the first 32 coefficients before forwarding the
sum to the second MA and receiving a new input to compute.

OpenCL’s fully unrolled FIR design with 64 stages in
Figure 5 provides the best throughput with a comparatively low
area as the overhead of forwarding the MA output back to its
input or to select between multiple coefficients are eliminated.
Between 1 and 32 stages, this overhead grows with the number
of MAs, resulting in an overall growth in area, with the design
consuming 86% of the chip’s ALMs at 32 stages. The drop in
Fmax from 221 MHz at 4 stages to the lowest 142 MHz at 32
also results in a sub-linear growth in throughput at that range.
The net result is a low compute density for all but the fully
unrolled implementation (Figure 5(c)).

M
 in

pu
ts

/s
ec

Pipeline Stages

3
70

239

0

50

100

150

200

250

1 2 4 8 32 64
0

65
130
195
260
325
390

1 8 24 40 56 72 88 104 120
TILT Cores

354

(a) TILT-System (left) and OpenCL HLS (right) throughput.

1k
 e

A
LM

s

Pipeline Stages

0
25
50
75

100
125
150

1 2 4 8 32 64

41k

35k

147k

52k

0
30
60
90

120
150
180

1 8 24 40 56 72 88 104 120
TILT Cores

(b) TILT-System (left) and OpenCL HLS (right) area.

Pipeline StagesM
 in

pu
ts

/s
 /

10
k

eA
LM

s

0

10

20

30

40

50

1 2 4 8 32 64

0.7 4.8

46

0
5

10
15
20
25
30

1 8 24 40 56 72 88 104 120
TILT Cores

14

28
22

(c) TILT-System (left) and OpenCL HLS (right) compute density.

Fig. 5: Scaling 64-tap FIR on TILT-System and OpenCL HLS.

In comparison, the small FIR TILT configuration of Table
IV provides near-linear scaling in throughput and area, also
shown in Figure 5. The TILT-System was scaled by connecting
multiple TILT-SIMDs to the Fetcher in parallel, each with a
maximum of 24 TILT cores. In Figure 5(c), the sharp increase
in the TILT compute density from 1 to 8 cores is due to the
amortization of the Fetcher area. TILT enables small, area
efficient design choices, scaling down to 2.7k eALMs with
1 TILT core compared to the 52k eALMs of the unrolled
OpenCL design. The OpenCL design is smallest at 2 stages,
consuming 35k eALMs but has a low throughput of 8.3 M
inputs/sec. For the same area, a 25 core TILT-System achieves
a throughput of 96 M inputs/sec. Further, we are able to exceed
the throughput of 239 M inputs/sec of the unrolled OpenCL
FIR design with roughly 70 TILT cores but at 1.9x more area.

VII. FUTURE WORK

The discussion on tuning the TILT-System thus far was lim-
ited to a target application. However, most applications can be
grouped into categories that are representative of their compute

and memory access patterns [30]. This observation suggests we
can customize the TILT-System to a class of applications, with
a single configuration that will perform reasonably well across
multiple benchmarks. This is useful because it will reduce
the need to recompile the TILT-System if the computation is
modified or replaced with a similar application. Instead, we
will only need to regenerate the schedules and update the
instruction memories which is much faster than recompiling
the overlay (Table IX). We plan to investigate this in future
work. We would also like to integrate the TILT overlay as
an optional OpenCL HLS compute component. A few small
TILT cores can be used to perform specialized calculations
for a larger computation, enabling the OpenCL HLS to take
advantage of TILT’s high FU reuse capability and its ability
to scale down to very small implementations.

VIII. CONCLUSION

The TILT overlay is an area-efficient method to implement
shared operator, application customizable, execution units. We
extend the TILT architecture of [15] to allow use of off-chip
memory with the scalable Memory Fetcher. We also enable
the generation of more area-efficient designs with new custom
units to support loops and indirect addressing. These are
optionally generated for applications that benefit from them,
improving compute density by 6.1x for the Mandelbrot and
2.9x for the FIR applications respectively. We also provide
designers the ability to quickly explore a large design space of
throughput and area trade-offs without requiring the overlay
to be synthesized with our new Predictor tool. Further, TILT
can be configured for higher throughput or lower area without
requiring the application code to be changed. Configuration of
an application onto an existing TILT design is also fast, taking
an average of 38 seconds. In contrast, OpenCL kernels must
be recompiled into hardware to observe the changes in perfor-
mance and area after any application code change, lengthening
design time considerably. TILT’s higher productivity comes at
a reasonable price; it achieves 41% to 80% of the compute
density of our best OpenCL HLS designs.

We recommend Altera’s OpenCL HLS for the generation of
high throughput systems. OpenCL HLS maximizes throughput
at the cost of more resources by generating a heavily pipelined,
spatial design and by executing many threads in parallel. Deep
FIFOs and interconnect buffer the thread data and stream it into
the compute units. The resulting designs are large, about 3.2x
(HDR) to 19x (FIR) bigger than the top (most area-efficient)
single core TILT designs. If a kernel requires more modest
throughput, the OpenCL HLS has difficulty generating an area-
efficient, lower throughput system. Therefore when a low to
moderate throughput is sufficient, we instead recommend TILT
as it is capable of generating smaller but still computationally
dense designs. The top TILT-Systems with 1 core require 2.7k
to 14k eALMs (with 1.9k to 5.6k for minimal designs) com-
pared to 26k to 52k eALMs for the smallest, computationally
dense OpenCL HLS systems. Hence, we see the TILT overlay
paradigm as an useful complement to OpenCL HLS.

ACKNOWLEDGEMENT

We thank NSERC and Altera for funding support and
Kalin Ovtcharov, Ilian Tili and Charles Eric LaForest for their
feedback on this work.

REFERENCES

[1] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,”
Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 2, pp. 203–215, 2007.

[2] H. Wong, V. Betz, and J. Rose, “Comparing fpga vs. custom cmos and
the impact on processor microarchitecture,” in FPGA. ACM, 2011,
pp. 5–14.

[3] D. Chen and D. P. Singh, “Fractal video compression in OpenCL: An
evaluation of CPUs, GPUs, and FPGAs as acceleration platforms.” in
ASP-DAC, 2013, pp. 297–304.

[4] A. Papakonstantinou, K. Gururaj, J. A. Stratton et al., “FCUDA:
Enabling efficient compilation of CUDA kernels onto FPGAs,” in
Application Specific Processors. IEEE, 2009, pp. 35–42.

[5] A. Canis, J. Choi, M. Aldham et al., “LegUp: An open-source high-
level synthesis tool for FPGA-based processor/accelerator systems,”
Transactions on Embedded Computing Systems (TECS), vol. 13, no. 2,
p. 24, 2013.

[6] T. Feist, “Vivado design suite,” White Paper, 2012.
[7] Altera. (2014) Altera SDK for OpenCL. [Online]. Available:

http://www.altera.com/literature/lit-opencl-sdk.jsp
[8] K. Shagrithaya, K. Kepa, and P. Athanas, “Enabling development

of OpenCL applications on FPGA platforms,” in Application-Specific
Systems, Architectures and Processors (ASAP). IEEE, 2013, pp. 26–30.

[9] C. H. Chou, A. Severance, A. D. Brant et al., “VEGAS: Soft vector
processor with scratchpad memory,” in FPGA. ACM, 2011, pp. 15–24.

[10] A. Severance and G. Lemieux, “VENICE: A compact vector processor
for FPGA applications,” in Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2012, pp. 245–245.

[11] N. Kapre and A. DeHon, “VLIW-SCORE: Beyond C for sequential con-
trol of spice FPGA acceleration,” in Field-Programmable Technology
(FPT). IEEE, 2011, pp. 1–9.

[12] R. Dimond, O. Mencer, and W. Luk, “CUSTARD-a customisable
threaded fpga soft processor and tools,” in Field Programmable Logic
and Applications. IEEE, 2005, pp. 1–6.

[13] J. Coole and G. Stitt, “Fast and flexible high-level synthesis from
OpenCL using reconfiguration contexts,” 2013.

[14] K. O. W. Group. (2009, October) The OpenCL specification. [Online].
Available: http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf

[15] K. Ovtcharov, I. Tili, and J. G. Steffan, “TILT: A multithreaded VLIW
soft processor family,” in Field Programmable Logic and Applications
(FPL), Sept 2013, pp. 1–4.

[16] P. Yiannacouras, J. G. Steffan, and J. Rose, “VESPA: portable, scalable,
and flexible FPGA-based vector processors,” in Compilers, Architec-
tures and Synthesis for Embedded Systems. ACM, 2008, pp. 61–70.

[17] C. Nvidia, “Programming guide,” 2008.
[18] Z. Zhang, Y. Fan et al., “AutoPilot: A platform-based ESL synthesis

system,” in High-Level Synthesis. Springer, 2008, pp. 99–112.
[19] J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive performance

comparison of CUDA and OpenCL,” in Parallel Processing (ICPP),
2011 International Conference on. IEEE, 2011, pp. 216–225.

[20] C. E. LaForest and J. G. Steffan, “Efficient multi-ported memories for
FPGAs,” in FPGA. ACM, 2010, pp. 41–50.

[21] I. Tili, “Compiling for a multithreaded horizontally-microcoded soft
processor family,” Master’s thesis, University of Toronto, Nov 2013.

[22] J. E. Smith, “Decoupled access/execute computer architectures,” Com-
puter Architecture News, vol. 10, no. 3, pp. 112–119, 1982.

[23] N. C. Crago and S. J. Patel, “OUTRIDER: efficient memory latency
tolerance with decoupled strands,” in Computer Architecture News,
vol. 39, no. 3. ACM, 2011, pp. 117–128.

[24] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” The journal of political economy, pp. 637–654, 1973.

[25] S. Mann and R. W. Picard, “On being ‘undigital’ with digital cameras:
Extending dynamic range by combining differently exposed pictures,”
in Proceedings of IS&T, 1995, pp. 442–448.

[26] Altera. (2014) OpenCL design examples. [Online]. Available: http:
//www.altera.com/support/examples/opencl/opencl.html

[27] A. L. Hodgkin and A. F. Huxley, “A quantitative description of
membrane current and its application to conduction and excitation in
nerve,” vol. 117, no. 4. Blackwell Publishing, 1952, p. 500.

[28] A. R. James Lebak and E. Wong. (2006) HPEC challenge benchmark
suite. [Online]. Available: http://www.omgwiki.org/hpec/files/hpec-
challenge/

[29] D. Lewis and T. Vanderhoek, “Stratix V block areas,” personal com-
munication, January 2014.

[30] K. Asanovic, R. Bodik, B. C. Catanzaro et al., “The landscape of
parallel computing research: A view from berkeley,” Technical Report
UCB/EECS-2006-183, EECS Department, University of California,
Berkeley, Tech. Rep., 2006.

