
The Case for Embedding Networks-on-

Chip in FPGA Architectures

Vaughn Betz

University of Toronto

With special thanks to
Mohamed Abdelfattah, Andrew Bitar

and Kevin Murray

Overview

• Why do we need a new system-level interconnect?

• Why an embedded NoC?

• How does it work?

• How efficient is it?

• Future trends and an embedded NoC

– Data center FPGAs

– Silicon interposers

– Registered routing

– Kernels � massively parallel accelerators

Why Do We Need a System Level

Interconnect?

And Why a NoC?

4

Module

1

Module

2

Module

3

Module

4

Large Systems

High bandwidth

hard blocks &

compute modules

High on-chip

communication

P
C

Ie
P

C
Ie

5

Bus

1

Bus

2

Bus

3

Module

4

Module

1

Module

3

Module

2

Wide links from single bit-

programmable interconnect

Somewhat unpredictable

frequency � re-pipeline

100s of bits

Tough timing

constraints

Physical distance

affects frequency

Buses are unique to the

application � design time

Design soft bus per

set of connections

Muxing/arbitration/buffers

on wide datapaths � big

System-level buses � costly

P
C

Ie
P

C
Ie

100’s of

muxes

6

System-level interconnect in

most designs?

Costly in area & power?

�

�
Module

4

Module

1

Module

3

Module

2

dedicated

(hard)

wires
Muxing,

arbitration
Bus

1

Bus

2

Bus

3

Bus

1

Bus

2

Bus

3

Module

4

Module

1

Module

3

Module

2

P
C

Ie
P

C
Ie

Usable by many designs?

P
C

Ie
P

C
Ie

7

System-level interconnect in

most designs?

Costly in area & power?

�

�

Module

4

Module

1

Module

3

Module

2

Bus

1

Bus

2

Bus

3

Usable by many designs?

Module

4

Module

1

Module

3

Module

2 Module

5

Not Reusable!

Too design specific

�

Needed: A More General System-Level Interconnect

1. Move data between arbitrary end-points

2. Area efficient

3. High bandwidth � match on-chip & I/O

bandwidths

Network-on-Chip (NoC)

9

Module

4

Module

1

Module

3

Module

2

Data

Packet

flitflitflit

Data

NoC=complete interconnect

• Data transport

• Switching

• Buffering

Links Routers

P
C

Ie
P

C
Ie

10

Module

4

Module

1

Module

3

Module

2 Module

5

P
C

Ie
P

C
Ie

Data

Packet

flitflitflit

Data

NoC=complete interconnect

• Data transport

• Switching

• Buffering

1. Moves data

between

arbitrary end

points? �

Embedded NoC Architecture

How Do We Build It?

Routers, Links and Fabric Ports

• No hard boundaries

� Build any size compute modules in fabric

• Fabric interface: flexible interface to compute modules

Router

• Full featured virtual channel router [D. Becker,

Stanford PhD, 2012]

Must We Harden the Router?

• Tested: 32-bit wide ports, 2 VCs, 10 flit deep buffers

• 65 nm TSMC process standard cells vs. 65 nm Stratix III

Y Soft Hard

Area 4.1 mm2 (1X) 0.14 mm2 (30X)

Speed 166 MHz (1X) 943 MHz (5.7X)

Hard: 170X throughput per area!

Harden the Routers?

• FPGA-optimized soft router?

– [CONNECT, Papamichale & Hoe, FPGA 2012] and
[Split/Merge, Huan & Dehon, FPT 2012]

• ~2-3X throughput / area improvement with reduced
feature set

– [Hoplite, Kapre & Gray, FPL 2015]

• Larger improvement with very reduced features /
guarantees

• Not enough to close 170X gap with hard

• Want ease of use � full featured

Hard Routers

Fabric Interface

• 200 MHz module, 900 MHz router?

• Configurable time-domain mux / demux: match bandwidth

• Asynchronous FIFO: cross clock domains

� Full NoC bandwidth, w/o clock restrictions on modules
16

Hard Routers/Soft Links

17

Router

Logic

Programmable

Interconnect

Router

• Same I/O mux structure as a logic block – 9X the area

• Conventional FPGA interconnect between routers

Logic clusters

FPGA

Router

Hard Routers/Soft Links

18

• Same I/O mux structure as a logic block – 9X the area

• Conventional FPGA interconnect between routers

730 MHz

	
1

9
th	of	FPGA	vertically	�~2.5	mm�

Faster, fewer wires (C12)

	
1

5
th	of	FPGA	vertically	�~4.5	mm�

Router

Hard Routers/Soft Links

19Assumed a mesh � Can form any topology

FPGA

Hard Routers/Hard Links

20

Router

Logic

Dedicated

Interconnect

Router

• Muxes on router-fabric interface only – 7X logic block area

• Dedicated interconnect between routers � Faster/Fixed

Logic blocks

FPGA

Router

Hard Routers/Hard Links

21

• Muxes on router-fabric interface only – 7X logic block area

• Dedicated interconnect between routers � Faster/Fixed

900 MHz

Dedicated Interconnect (Hard Links)

~ 9 mm at 1.1 V or ~ 7 mm at 0.9V

Soft Hard (+ Soft Links) Hard (+ Hard Links)

Area 4.1 mm2 (1X) 0.18 mm2 = 9 LABs (22X) 0.15 mm2 =7 LABs (27X)

Speed 166 MHz (1X) 730 MHz (4.4X) 943 MHz (5.7X)

Power -- (9X less) (11X – 15X)

Router

Logic

Programmable

Interconnect

Router

22

Hard NoCs

Router

23

Soft Hard (+ Soft Links) Hard (+ Hard Links)

Area 4.1 mm2 (1X) 0.18 mm2 = 9 LABs (22X) 0.15 mm2 =7 LABs (27X)

Speed 166 MHz (1X) 730 MHz (4.4X) 943 MHz (5.7X)

Power -- (9X less) (11X – 15X less)

Hard NoCs

2. Area Efficient?

24

64-node, 32-bit wide NoC on Stratix V

Very Cheap! Less than cost of 3 soft nodes

Soft Hard (+ Soft Links) Hard (+ Hard Links)

Area ~12,500 LABs 576 LABs 448 LABs

%LABs 33 % 1.6 % 1.3%

%FPGA 12 % 0.6 % 0.45%

����

Power Efficient?

25Hard and Mixed NoCs � Power Efficient

Length of 1 NoC Link

200

MHz

Compare to best

case FPGA

interconnect: point-

to-point link

64 Width, 0.9 V, 1 VC

3. Match I/O Bandwidths?
• 32-bit wide NoC @ 28

nm

• 1.2 GHz � 4.8 GB/s

per link

• Too low for easy I/O

use!

3. Match I/O Bandwidths?

• Need higher-bandwidth links

– 150 bits wide @ 1.2 GHz

�22.5 GB/s per link

– Can carry full I/O bandwidth on one link

• Want to keep cost low

– Much easier to justify adding to an FPGA if cheap

• E.g. Stratix I: 2% of die size for DSP blocks

• First generation: not used by most customers, but 2% cost OK

– Reduce number of nodes: 64 � 16

• 1.3% of core area for a large Stratix V FPGA

����

NoC Usage & Application Efficiency Studies

How Do We Use It?

FabricPort In

29

Ready/Valid

Any* width

0-600 bits

Frequency

1.2 GHz

Credits

Fixed Width

150 bits

Frequency

100-400 MHz

FPGA

Module

Embedded

NoC

Width # flits

0-150 bits 1

150-300 bits 2

300-450 bits 3

450-600 bits 4

FabricPort In

30

3Ready/Valid

Any* width

0-600 bits

Frequency

1.2 GHz

Credits

Fixed Width

150 bits

Frequency

100-400 MHz

FPGA

Module

Embedded

NoC

Time-domain multiplexing:

• Divide width by 4

• Multiply frequency by 4

FabricPort In

31

3Ready/Valid

Any* width

0-600 bits

Frequency

1.2 GHz

Credits

Fixed Width

150 bits

Frequency

100-400 MHz

FPGA

Module

Embedded

NoC

Asynchronous FIFO:

• Cross into NoC clock

• No restriction on module

frequency

Time-domain multiplexing:

• Divide width by 4

• Multiply frequency by 4

FabricPort In

32

3Ready/Valid

Any* width

0-600 bits

Frequency

1.2 GHz

Credits

Fixed Width

150 bits

Frequency

100-400 MHz

FPGA

Module

Embedded

NoC

Asynchronous FIFO:

• Cross into NoC clock

• No restriction on module

frequency

Time-domain multiplexing:

• Divide width by 4

• Multiply frequency by 4

NoC Writer:

• Track available buffers in

NoC Router

• Forward flits to NoC

• Backpressure

210

Ready=0

Input interface: flexible & easy for designers � little soft logic

Designer Use

• NoC has non-zero, usually variable latency

• Use on latency-insensitive channels

Stallable modules

A B C

data data

valid

ready

Permapaths

A B C

• With restrictions, usable for fixed-latency communication

– Pre-establish and reserve paths

– “Permapaths”

How Common Are Latency-Insensitive Channels?

• Connections to I/O

– DDRx, PCIe, …

– Variable latency

• Between HLS kernels

– OpenCL channels / pipes

– Bluespec SV

– …

• Common design style between larger modules

– And any module can be converted to use [Carloni et
al, TCAD, 2001]

Widely used at system level, and use likely to increase

Packet Ordering

FPGA Designs

• Mostly streaming

• Cannot tolerate reordering

– Hardware expensive and
difficult

35

Multiprocessors

• Memory mapped

• Packets arrive out-of-order
– Fine for cache lines

– Processors have re-order buffers

1 2
All packets with same src/dst

must take same NoC pathR
U

LE

FULL
2 1

1

2

All packets with same src/dst

must take same VCR
U

LE

Application Efficiency Studies

How Efficient Is It?

1. Qsys vs. NoC

qsys: build logical bus

from fabric
37

NoC: 16-nodes, hard

routers & links

Area Comparison

38

Only 1/8 of Hard NoC BW used, but

already less area for most systems

Power Comparison

39

Hard NoC saves

power for

even simplest

systems

2. Ethernet Switch

• FPGAs with transceivers: commonly manipulating /

switching packets

• e.g. 16x16 Ethernet switch, @ 10 Gb/s per channel

Transceiver

NoC

Router

• NoC is the crossbar

• Plus buffering,

distributed

arbitration &

back-pressure

• Fabric inspects packet

headers, performs

more buffering, …

Ethernet Switch Efficiency

• 14X more efficient!

• Latest FPGAs: ~2 Tb/s transceiver bandwidth � need good switches

3. Parallel JPEG (Latency Sensitive)

42

• NoC makes performance more predictable

• NoC doesn’t produce wiring hotspots & saves long wires

Max 40%

Max 100%
[long wires]

Future Trends and Embedded NoCs

Speculation Ahead!

1. Embedded NoCs and the Datacenter

Datacenter Accelerators Microsoft Catapult: Shell & Role to

Ease Design

Shell: 23% of Stratix V FPGA

[Putnam et al, ISCA 2014]

Datacenter “Shell”: Bus Overhead

• Buses to I/Os

in shell & role

• Divided into

two parts to

ease

compilation

(shell portion

locked down)

Datacenter “Shell”: Swapping Accelerators

• Partial reconfig

of role only �

swap accelerator

w/o taking down

system

• Overengineer

shell buses for

most demanding

accelerator

Two separate

compiles �

lose some

optimization of

bus

More Swappable Accelerators

• Allows more

virtualization

• But shell

complexity

increases

• Less efficient

• Wasteful for

one big

accelerator

Accelerator 5

Accelerator 6

Big Accelerator

Shell with an Embedded NoC

• Efficient for

more cases

(small or big

accelerators)

• Data

brought into

accelerator,

not just to

edge with

locked bus

Accelerator 6

Accelerator 5

Big Accelerator

2. Interposer-Based FPGAs

Xilinx: Larger Fabric with Interposers

• Create a larger

FPGA with

interposers

• 10,000

connections

between dice

(23% of normal

routing)

• Routability good if

> 20% of normal

wiring cross

interposer [Nasiri

et al, TVLSI, to

appear]Figure: Xilinx, SSI Technology White Paper, 2012

Interposer Scaling

Figure: Xilinx, SSI Technology White Paper, 2012

• Concerns about how well

microbumps will scale

• Will interposer routing

bandwidth remain >20%

of within-die bandwidth?

• Embedded NoC: naturally

multiplies routing

bandwidth (higher clock

rate on NoC wires

crossing interposer)

Altera: Heterogeneous Interposers

• Custom wiring interface to each unique die

– PCIe/transceiver, high-bandwidth memory

• NoC: standardize interface, allow TDM-ing of wires

• Extends system level interconnect beyond one die

Figure: Mike Hutton,

Altera Stratix 10, FPL

2015

3. Registered Routing

Registered Routing

• Stratix 10 includes a pulse latch in each routing driver

– Enables deeper interconnect pipelining

– Obviates need for a new system-level interconnect?

• I don’t think so

– Makes it easier to run wires faster

– But still not:

• Switching, buffering, arbitration (complete interconnect)

• Pre-timing closed

• Abstraction to compose & re-configure systems

• Pushes more designers to latency-tolerant techniques

– Which helps match the main NoC programming model

4. Kernels � Massively Parallel Accelerators

Crossbars for Design Composition

Map – Reduce and FPGAs

• [Ghasemi & Chow, MASc thesis,

2015]

• Write map & reduce kernel

• Use Spark infrastructure to

distribute data & kernels across

many CPUs

• Do same for FPGAs?

Between chips � network

Within a chip � soft logic

Consumes lots of soft logic and

limits routable design to ~30%

utilization!

Can We Remove the Crossbar?

• Not without breaking Map-Reduce/Spark abstraction!

– The automatic partitioning / routing / merging of

data is what makes Spark easy to program

– Need a crossbar to match the abstraction and

make composability easy

• NoC: efficient, distributed crossbar

– Allows us to efficiently compose kernels

– Can use crossbar abstraction within chips (NoC)

and between chips (datacenter network)

Wrap Up

Wrap Up

• Adding NoCs to FPGAs

– Enhances efficiency of system level interconnect

– Enables new abstractions (crossbar composability,
easily-swappable accelerators)

• NoC abstraction can cross interposer boundaries

– Interesting multi-die systems

• My belief:

– Special purpose box � datacenter

– ASIC-like flow � composable flow

– Embedded NoCs help make this happen

Future Work

• CAD System for Embedded NoCs

– Automatically create lightweight soft logic to

connect to fabric port (translator)

• According to designer’s specified intent

– Choose best router to connect each compute

module

– Choose when to use NoC vs. soft links

• Then map more applications, using CAD

