
Bringing Programmability to the Data Plane:
Packet Processing with a NoC-Enhanced FPGA

Andrew Bitar, Mohamed S. Abdelfattah, Vaughn Betz
Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada

{bitar, mohamed, vaughn}@eecg.utoronto.ca

Abstract—Modern computer networks need components that
can evolve to support both the latest bandwidth demands and
new protocols and features. To address this need, we propose
a new programmable packet processor architecture built from
an FPGA containing an embedded Network-on-Chip (NoC). The
architecture is highly flexible, providing more programmability
than is possible in an ASIC-based design, while supporting
throughputs of 400 and 800 Gb/s. Additionally, we show that our
design is 1.7× and 3.2× more area efficient, and achieves 1.5×
and 3.7× lower latency than the best previously proposed FPGA-
based packet processor on complex and simple applications,
respectively. Lastly, we explore various ways a designer can take
advantage of the flexibility available in this architecture.

I. INTRODUCTION
Computer networks have seen rapid evolution over the past

decade. “Cloud computing” and the “Internet of Things” are
becoming household terms, as we move to an era where
computational power is offloaded from the PC and onto data
centers located miles away. This surge in demand on networking
capabilities has led to new network protocols and functionalities
being created, updated and enhanced. The implementation
of these protocols and functionalities has proven challenging
in current network infrastructures, causing a demand for
“programmable networks”.

Software-Defined Networking (SDN) is a proposed network-
ing paradigm that provides programmability by configuring
network hardware (i.e. the “data plane”) through a separate
software-programmable “control plane” [1]. Various APIs have
been developed to interface the control plane with the data
plane, with OpenFlow [2] being a popular one in the academic
community. However, the degree of programmability provided
by these APIs is limited by the capabilities of the data plane. If
new protocols are developed with functionalities that go beyond
what is available in the hardware, then expensive hardware
replacements will still be necessary.

Field-programmable gate arrays (FPGAs) have long provided
a hardware-programmable alternative to fixed ASIC designs.
The reconfigurability of FPGAs seems like a natural solution
to the demand for programmable networks; FPGA designs
can be re-programmed in hardware to serve network evolu-
tion. However, what FPGAs gain in programmability they
lose in performance; Kuon and Rose quantified the FPGA’s
programmability overhead to be 18×-35× in area and 3×-4×
in critical path delay compared to ASICs [3]. As a result, one
would expect FPGAs to struggle with efficiently supporting
the high bandwidth demands of modern computer networks.

This is generally true; as a whole, established network
infrastructures are largely dominated by ASICs. FPGA designs
have made some breakthroughs in various networking applica-
tions [4–7], thanks to the increasing transceiver bandwidth avail-
able in modern FPGAs (Figure 1). Although the transceivers
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Fig. 1: Transceiver bandwidth available on Altera Stratix devices
has rapidly grown with every new generation. The three data points
for each generation correspond to the device models with the three
highest transceiver BW.

can bring the high bandwidth data onto the chip, these designs
still rely on buses made of the FPGA’s soft reconfigurable
interconnect to move the data across the chip. These buses are
slow (typically 100-400 MHz) and therefore must be made
very wide, consuming high amounts of interconnect area and
creating challenging timing closure problems for the designer.
Thus, it should come as no surprise that FPGAs have yet to
be widely adopted throughout network infrastructures.

Recent work has looked closely at this FPGA interconnect
problem and has argued for the inclusion of a new system-
level interconnect in the form of a Network-on-Chip (NoC) [8].
Hardening such a NoC in the FPGA’s silicon would provide
a fast, chip-wide interconnect that consumes a small fraction
of the FPGA area [8]. Such a NoC-enhanced FPGA has the
potential to better transport high-bandwidth transceiver data
in networking applications. Prior work has already shown that
an efficient and programmable Ethernet switch can be built
from a NoC-enhanced FPGA that far outperforms previous
FPGA-based switch designs [9].

In this work, we consider another fundamental network
building block: the packet processor. In general terms, a packet
processor is a device that performs actions based on the contents
of received packetized data. The flexibility of this unit is
imperative to the future programmability of computer networks.
Recent works [4, 10–12] have proposed various ways to
build packet processors that support SDN/OpenFlow, with the
majority using match tables that can be configured to support
various types of processing (Section II-B). Our design takes a
different route. By interconnecting multiple, protocol-specific
processing modules through a NoC embedded in an FPGA, we
develop a new form of packet processor design that provides a
high degree of flexibility for network evolution. In effect, our
design brings programmability directly to the data plane.
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Fig. 2: A NoC-Enhanced FPGA. The embedded NoC is implemented
in hard logic, and connects to modules on the FPGA through a
FabricPort [8].

Our focus is to explore this new form of packet processor
design. To this end, we make the following contributions:
1) Propose a new packet processor architecture that maximizes

hardware flexibility while efficiently supporting modern
network bandwidths (400G and 800G).

2) Evaluate the architecture by implementing common packet
parsing and processing use-cases.

3) Compare its resource utilization and performance to the
best previously proposed FPGA packet processor.

4) Explore how a designer can take advantage of this archi-
tecture’s flexibility.

II. BACKGROUND
A. NoC-Enhanced FPGA

Existing FPGAs contain only fine-grained programmable
blocks (lookup-tables, registers and multiplexers) from which
an application’s interconnect can be constructed. Previous work
has proposed the inclusion of an embedded NoC to augment this
fine-grained interconnect so as to better interconnect an FPGA
application. Embedded NoCs have been shown to improve both
area and power efficiency, and ease timing closure compared
to traditionally-used soft buses configured from the FPGA’s
programmable blocks [13–15].

Figure 2 shows an embedded NoC on the FPGA. The NoC
routers and links run approximately four times as fast as the
FPGA fabric; therefore, we use a special component called the
FabricPort to bridge both width and frequency in a flexible way
between the embedded NoC routers and soft FPGA modules [8].
Furthermore, the processing modules connected to the NoC
need not operate using the same clock frequency or phase –
the FabricPort essentially decouples the modules connected
together through the NoC. The routers are packet-switched
virtual-channel routers that perform distributed arbitration and
switching of packets coming from modules connected to
the NoC. These routers also contain built-in buffering and
credit-based backpressure, and so can automatically respond to
bursts of data and heavy traffic on its links while maintaining
application correctness.

The NoC we use has been evaluated on a large 28-nm Stratix
V FPGA, and can run at 1.2 GHz in that process technology [8].
The NoC links are 150 bits wide each and so can transport up to
180 Gb/s in each direction between any two routers, of which
we have 16 as illustrated in Figure 2. Because it is implemented
in efficient hard logic, this NoC only consumes 1.3% of the
core area of an Altera Stratix V FPGA. The FabricPort for this
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Fig. 3: An example parse graph commonly seen in enterprise networks,
and a packet belonging to that parse graph. A parse graph can be used
to represent the combinations of protocols that a packet processor
may see in a certain application.

NoC can connect a module running at any FPGA frequency
and any width between 1 and 600 bits to the NoC routers
at 150 bits and 1.2 GHz. It does so using a combination of
clock-crossing and width adaptation circuitry that formats data
into NoC packets in an efficient way [8].

B. Match Table Packet Processors

Depending on the application, a packet processor must be
able to process packets of a certain set of protocols. These
protocols vary depending on the type of packet and layer they
represent on the OSI stack. For example, Ethernet is one of
the most common layer 2 protocols found in modern networks.
The protocol at each layer contains information regarding the
type and location of the protocol found in the next higher layer
(Figure 3b). The various different combinations of protocols
that may be received in a single packet can be represented by
a parsing graph [11] (Figure 3a).

As network protocols are changed, added and replaced, a
programmable packet processor must be able to be reconfigured
to support different parsing graphs. The OpenFlow standard
comes with specifications for architecting an SDN-compatible
packet processor [16]. The architecture is based on a cascade
of match-action “flow” tables: memory holding all possible
values of relevant packet header fields, and instructions for
what action to be taken once matched. Figure 4 illustrates
the high level design of this architecture. The pipeline begins
by matching fields whose locations in the packet header are
known. When a field is matched, the entry contains information
regarding where to look in the next match table for the protocol
of the next layer, as well as any other corresponding actions
to be taken. This model requires match tables to contain all
possible combinations of header protocols and field values that
the processor may face. All of the tables in the pipeline are
populated by the control plane, such that lookups in a Table j
can depend on information from any Table i so long as i < j.

There are two important limitations to this programmable
packet processor design. When built in an ASIC, the number
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Fig. 4: High-level overview of OpenFlow’s programmable packet
processor architecture [16].

of tables along with their width and depth are fixed upon chip
fabrication. Consequently, should a new protocol be created that
requires fields that are larger than the table width, a number of
entries that exceeds the table depth, or more pipeline stages than
are available, then the packet processor can not be configured
to support such a protocol. Similarly, the action set available is
also set upon fabrication. Any new actions required by newly
developed protocols could not be supported.

Recent work has revealed two possible ways to address these
limitations. Bosshart et al. proposed building in additional
programmability into an ASIC-based packet processor through
the use of ternary content-addressable memory (TCAMs) [10].
Their design – called RMT (Reconfigurable Match Tables) –
can be viewed as an upgrade to the OpenFlow model. It involves
mapping logical match (or flow) tables to physical ones by
allowing a logical table to use resources from multiple pipeline
stages. This mapping process allows the width and depth of
flow tables to be customized for specific sets of protocols.
Additionally, their design implements a reduced instruction
set that, when used in combinations in a very-long instruction
word, can execute a wider array of actions than OpenFlow.

The RMT design mitigates, but does not solve OpenFlow’s
limitations. As the authors admit in the paper, their design is
still restricted by the number of pipeline stages, table sizes,
and action units made available to the chip upon fabrication.
These restrictions cannot be avoided when building a design
from ASIC technology. In contrast, Attig and Brebner have
previously shown that a programmable packet parser can be
built on an FPGA that supports 400 Gb/s bandwidth [4]. Their
design – which they refer to as PP1 – uses a design style similar
to OpenFlow, with a cascade of processing stages containing
tables with entries that encode what fields to extract from a
packet. Using an FPGA allows their design to be reconfigured
to support different table configurations and actions.

Our programmable packet processor design also leverages
FPGA technology to avoid the limited flexibility of ASIC-based
designs. However, unlike the PP design, we elect to avoid
using a similar approach to OpenFlow, which was originally
proposed to bring programmability to ASIC-based network
infrastructures. We instead embrace the full reconfigurability
of the FPGA, creating a fully-programmable packet processor
that is more efficient than the FPGA-based PP design and more
flexible than the ASIC-based RMT design.

III. THE NOC PACKET PROCESSOR
A. Design Overview

Instead of match tables that each support a set of protocols,
our design implements multiple processing modules, with
each module dedicated to processing a single parsing graph

1Attig and Brebner use “PP” to refer to the language used to program their
architecture. For simplicity, we shall use PP to refer to their design as a whole.

node’s protocol (Figure 3a). Packets are sent to the modules
corresponding to the protocols found in their headers. Each
processing module determines what actions to take for its
protocol, and the type and location of the protocol processing
module for the packet’s next OSI layer. Figure 5 depicts a
general representation of this packet processor design.

The FPGA reconfigurable fabric is used to implement the
processing modules. The flexibility of the fabric allows for the
modules to be fully customized and later updated, as existing
protocols are enhanced and new protocols are added. It is by
updating the modules that processing rule updates are made.
For example, in order to modify the supported parse graph,
each module’s routing decision logic is updated to match the
new set of edges connecting its corresponding node in the
graph. Module updates are made by reconfiguring (or partially
reconfiguring, see Section V-B) the FPGA.

As in any packet processor, the processing modules perform
some set of actions when packet fields are matched. However,
since each processing module is dedicated to a single node
in the parsing graph, its matches and actions are tied solely
to what is relevant to that node. Field matches and routing
decisions at a particular protocol node can be stored in tables at
the module. These tables only need to contain entries relevant
to actions that can take place for that protocol, unlike the
OpenFlow flow tables, which must have entries for all possible
field matches at that stage. In effect, a flow table is broken
up and spread across several processing modules. The module
tables’ widths and depths, as well as the module’s actions, can
be customized to exactly fit the requirements of the module’s
protocol. We argue that having these “fine-grained” tables that
are specifically customized for a protocol will allow for a more
efficient design than OpenFlow’s “coarse-grained” flow tables,
as illustrated by the following two examples.

Example 1: Consider a programmable packet processor that
reads the IP address from either an IPv4 or IPv6 header in
order to make a packet routing decision. In an OpenFlow
implementation, the addresses to be matched from both the
IPv4 and IPv6 header must be contained in a single match
table (or copied over multiple tables). This table must therefore
be sized to fit the entries containing the 128-bit IPv6 addresses,
causing entries for IPv4 addresses (only 32 bits) to have at least
96 wasted memory bits per entry. In our separated processing
module architecture, the IPv4 and IPv6 modules contain their
own respective tables that are sized perfectly to fit the width
of their corresponding match fields.

Example 2: Suppose a programmable packet processor is
built to currently support only Ethernet processing, but will,
in future, need to process other protocols as well. Using
OpenFlow’s match-action style of design would require over-
provisioning the architecture with wider and deeper tables, and
more actions and processing stages than are currently needed
for just Ethernet. On the other hand, NoC-PP effectively imple-
ments a “use only what you need” design style: the architecture
can be provisioned for exactly the type of processing it currently
needs, and can be updated for future needs by adding/updating
processing modules through partial reconfiguration. The NoC-
PP design can begin with only instantiating Ethernet processing
modules, while adding new processing modules later as more
protocols are introduced.
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Fig. 5: High level representation of module-based packet processor design. Packets are switched between processing modules corresponding
to the protocols found in their headers.

B. The NoC-Crossbar

Interconnecting the processing modules is a challenging
problem on current FPGA devices. Multiplexers, which are
necessary for the full crossbars in Figure 5, are synthesized
poorly on the FPGA’s fabric, often consuming relatively high
chip area and running considerably slower than they would if
built in ASIC technology. A full crossbar that is wide enough
to support the very high bandwidth of data entering modern
packet processors would be very difficult, if not impossible, to
efficiently synthesize in the FPGA fabric.

To address this problem, we draw inspiration from previous
work that used an embedded NoC in an FPGA as a crossbar for
an Ethernet switch [8, 9]. This NoC – described in Section II-A
– can function as the full crossbar in our packet processor design.
Not only is it already designed to transfer packets across the
FPGA, it also includes a built-in flow control mechanism that
can handle scenarios of adversarial traffic, such as prolonged
bursts of packets. For example, if a certain processing module
is busy and cannot accept packets from the NoC, the NoC
will hold packets destined for that module in a buffer at the
connecting router. Should that buffer become full, packets will
then be buffered at downstream NoC routers. If the NoC cannot
accept packets at one of its routers due to a buffer being full,
then it can also send a backpressure signal to the modules
connected to that router.

With a capacity of 180 Gb/s at each of its links, the NoC can
transport high bandwidth data throughout the FPGA, to and
from processing modules in our design. Processing modules are
connected to NoC routers, as illustrated in Figure 6, with the
NoC’s FabricPort used to bridge the frequency of the processing
modules and the frequency of the NoC (see Section II-A).
Moreover, we can combine multiple modules at a single router
node using the FPGA’s soft logic for arbitration. For the
remainder of the paper, we shall refer to this NoC packet
processor as “NoC-PP”.

C. Inter-Module Information Passing

Thus far, we have described a mechanism for processing
protocols with modules that are independent of one another.
However, packet processing requires at least some information
to be passed from one protocol to another. As a bare minimum,
information regarding where the next protocol’s header is
located in the packet is determined in the previous protocol
header and therefore must be passed to the next protocol’s
processing module (see Figure 3b). There are many other
possible scenarios where information from a lower-level
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protocol may be used later in the processing stages. For
example, in packet classification, a classification decision may
be made after a combination of fields are parsed from each of
the packet’s headers.

To provide a mechanism for information-passing between
processing modules, the NoC-PP design adds a blank header
flit to every packet upon entering the processor. This header
flit can hold any combination of parsed fields from the packet
as it proceeds through the processor. Data stored in the header
flit are maintained across processing modules until they are
overwritten. For example, our design stores a 7-bit “data offset”
field in this header flit that is updated by every processing
module. This field tells the next processing module where its
header is located in the packet. The header flit is removed just
before the packet exits the processor.

D. Design Example: Eth-IPv4/IPv6-TCP
In order to evaluate this design, we implemented a packet

processor that supports processing of several common network
protocols: Ethernet, VLAN, IPv4, IPv6, and TCP. Table I lists
the features implemented in each of the protocol processing
modules. Each packet going through the processor will visit
a processing module for each protocol found in its header.
For example, consider an Ethernet/IPv4/TCP packet. The



TABLE I: Functions implemented in each protocol processing module
in our NoC-PP design.

Protocol Implemented Processing Functions
Module
Ethernet/VLAN 1. Parse MAC source and destination

2. Maintain a MAC table
3. Extract priority code identifier (PCP) in
VLAN header
4. Determine layer 3 protocol from Ethertype

IPv4 1. Compute checksum and drop packet if
results in error
2. Decrement time to live (TTL) and drop
packet if zero reached
3. Determine total length of header
4. Parse source and destination IP addresses
5. Determine layer 4 protocol

IPv6 1. Decrement hop limit and drop packet if
zero reached
2. Parse source and destination IP addresses
3. Determine layer 4 protocol

TCP 1. Parse source and destination ports
2. When receiving a request to establish a
connection, generate and send a reply ACK
message over TCP/IP

packet is first brought onto the chip through the FPGA’s
transceivers, which perform clock recovery and serial to parallel
data conversion. It is then transported to the embedded NoC
through the FPGA’s soft interconnect, where the FabricPort
(Section II-A) performs clock conversion to bring the data from
the slower FPGA fabric to the fast NoC. The NoC’s links and
routers steer the packet to a router connected to an Ethernet
processing module, where the FabricPort again performs clock
conversion to bring the packet back to the FPGA fabric. Once
Ethernet processing is complete and the next layer protocol
is determined, the packet is then brought back to the NoC
to be sent to an IPv4 processing module, and finally a TCP
processing module, before being sent back out through the
FPGA’s transceiver.

The processing modules are designed with a data path
width of 512 bits running at 215 MHz, providing an overall
processing throughput of 100 Gb/s.2 There are two possible
ways for this design to support a higher network bandwidth:
increase the supported throughput of the individual processing
modules or instantiate multiple instances of the processing
module throughout the NoC. In our design, we duplicate the
100G processing modules to provide higher overall processing
bandwidths, such as 400G and 800G (Figure 7). This ability
to duplicate individual processing modules provides a key
form of design flexibility not found in previously proposed
packet processor designs. If a designer is aware of the expected
frequencies of traffic of each of the different protocols, then
he/she can duplicate the different processing modules to the
appropriate degree. For example, if IPv4 packets are currently
much more frequent compared to IPv6 packets, then the design
could instantiate more IPv4 processing modules than IPv6.
This design flexibility is explored in Section IV-C.

Besides module duplication, the NoC-PP design also allows
for the easy addition and/or removal of protocols, thanks to
the logical and physical decoupling of processing modules by

2Raw throughput is 110 Gb/s, with 10 Gb/s of capacity used for the
information-passing header added to each packet.

the NoC. Say a new protocol has been developed and must be
supported by the packet processor. A processing module for
this protocol can then be designed and added to the NoC-PP by
connecting it to any of the routers in the NoC, with little other
modification to the rest of the design. Similarly, if a protocol
no longer needs to be supported, then its processing modules
can simply be removed from the design.

IV. EVALUATION
A. Simulation and Synthesis Setup

We use RTL2Booksim [17] to connect the packet pro-
cessing modules to the embedded NoC, and perform a cycle-
accurate simulation in ModelSim. This allows us to gather our
performance data in cycle counts; however, we also need to
find the operating frequency of our packet processing modules
to be able to quantify the overall performance of NoC-PP.
Furthermore, we want to realistically model any physical design
consequences of connecting these modules to embedded routers
(such as interconnection choke-points or possible frequency
degradation). To do so, we emulate the existence of routers in
an Altera FPGA (Stratix V 5SGSED8K1F40C2) by creating
16 design partitions – one for each router – that have the same
size, location and interconnection flexibility as an embedded
router. We then connect our packet processing modules to them
the same way they are connected in NoC-PP and compile the
design in Quartus II v14.0 to collect the area and frequency
results presented in this section.

B. Design Efficiency
We measure the hardware cost and performance of the NoC-

PP design and compare it to Attig and Brebner’s PP design.
PP, however, only provides packet parsing functionality. It
extracts fields from the packets but does not perform any form
of action after the extraction, besides determining where the
next header is located. Consequently, we also synthesized a
modified version of the NoC-PP design that only contains
parsing functionality, thus providing a fair comparison. We
compare to two versions of the PP design: (1) the smallest,
“JustEth”, which only performs parsing on the Ethernet header,
and (2) one of their biggest, “TcpIp4andIp6”, which performs
parsing on Ethernet, IPv4, IPv6 and TCP [4].

Table II contains hardware cost and performance results of
the NoC-PP and PP designs. Hardware cost is measured using
resource utilization as a percentage of an Altera Stratix V-GS
FPGA. Attig and Brebner’s experimental results, originally
presented as a percentage of a Xilinx Virtex-7 870HT, are
converted to equivalent Stratix V-GS numbers. To perform this
conversion, we use equivalent logic element/logic cell counts
on each device, which we have found to accurately reflect
the logic capacity for both vendors across a large number of
designs. The resource utilization results for the NoC-PP design
also include the resources consumed by RAM blocks and the
embedded NoC [8]. The table also contains results for the full
packet processor described in Section III-D at 400G and 800G,
referred to as “TcpIp4Ip6-Processor” (illustrated in Figure 7).

Overall, the NoC-PP proves to be more resource efficient and
achieves better performance compared to the PP architecture.
For the smaller application (JustEth), the NoC-PP design
is 3.2× more efficient, whereas for the larger application
(TcpIp4Ip6), it is 1.7× more efficient. NoC-PP also reduces
latency by 3.7× and 1.5× compared to PP for JustEth and
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Fig. 7: The NoC PP design for an Ethernet/VLAN/IPv4/IPv6/TCP packet processor (Eth=Ethernet+VLAN). Processing modules run at 100G,
and are instantiated four times to support 400G processing, or eight times to support 800G processing.

TABLE II: Comparison of the NoC-PP and PP architectures

Application Architecture Resource Latency Throughput
Utilization (ns) (Gb/s)
(% FPGA)

JustEth NoC-PP 3.6% 79 400
PP [4] 11.6% 293 343

TcpIp4Ip6 NoC-PP 9.4% 200 400
PP [4] 15.6% 309 325

TcpIp4Ip6
NoC-PP 14.4% 230 400-Processor

(400G)

TcpIp4Ip6
NoC-PP 25.8% 232 800-Processor

(800G)

TcpIp4Ip6, respectively. Table II also shows that our full-
featured packet processor is still more efficient than the more
basic packet parser presented in prior work. Lastly, it is worth
noting that the 800G design achieves a throughput greater
than any previously reported packet processor built from an
FPGA. Thus, the module-based NoC-PP architecture provides
significant advantages for FPGA packet processors.

It is also important to determine what brings these efficien-
cies to NoC-PP; is it the new module-based packet processor
architecture, the introduction of the hard NoC, or a synergistic
fusion of the two? To answer this question, we began by
replacing the hard NoC in our design with an equivalent soft
NoC, and separately quantified the cost of the NoC and the
processing modules. We also built another iteration of our
design using three customized soft crossbars (as in the block
diagram shown in Figure 5), each with a radix of eight and
containing 10-flit deep buffers at the ports in order to handle
scenarios of backpressure. As can be seen in Figure 8, the
costs of the soft NoC and the soft crossbar are 29× and 11×
greater than that of the hard NoC, respectively. The significantly
higher cost of building NoC-PP’s interconnection network out
of the reconfigurable FPGA fabric is due to the fact it runs at
a considerably lower clock frequency compared to the hard
NoC and must therefore use wide datapaths to transport the
high bandwidth data. Switching between these wide datapaths
requires large multiplexers and wide buffers that consume high
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Fig. 8: Area breakdown of NoC-PP when using a hard NoC, a soft
NoC or a soft custom crossbar (Xbar).

amounts of resources. The design therefore achieves significant
savings by hardening this interconnect in the embedded NoC.

Since the processing modules form a small fraction of
the design cost when using a soft interconnect, NoC-PP can
therefore achieve significant overall savings when replacing
the soft interconnect with a hard NoC. On the other hand,
the PP design uses a feed-forward design style. Rather than
switching between protocol modules, PP uses tables containing
“microcode” entries for all possible protocols that must be
processed at that stage. Thus, no wide multiplexing exists in
the design that can be efficiently replaced by a hard NoC. The
logic and memory within each stage form the majority PP’s
hardware cost, which would not change if a hard NoC was
introduced. We therefore conclude that the efficiencies from
NoC-PP stem from a synergistic fusion of using the hard NoC
with our module-based packet processor architecture.

C. Design Flexibility
The highly modular design of NoC-PP allows for the easy

addition and removal of protocol processing modules. This
flexibility can be used to introduce new network protocols,
modify protocol processing modules, and duplicate existing
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Fig. 9: Average packet latency through the NoC-PP design as a function of percentage of total traffic using IPv6, for four different degrees of
IPv6 module duplication. Four IPv6 modules (each running at 100G) is sufficient to fully support any rate of IPv6 traffic running at 400G.

protocol modules in order to support higher bandwidths. The
TcpIp4Ip6-Processor design example duplicates each 100G
processing module four and eight times in order to fully
support 400G and 800G processing, respectively, for each
protocol. Depending on the application, full duplication of
each processing module may not be necessary. It is possible,
for example, that a low percentage of the traffic seen by the
packet processor uses IPv63. The designer therefore has the
flexibility to reduce the number of IPv6 processing modules
in order to free up chip area for other modules.

To assess the impact of module duplication on performance,
we use RTL2Booksim to simulate the design with varied
degrees of duplication of the IPv6 processing module, swept
across percentage of the total traffic that is IPv6. A bursty,
400G traffic pattern is used to emulate real Internet traffic,
with packet payload size set to be 512 bytes. The design is
first simulated using a NoC consisting of the same parameters
(link width, mesh radix, router buffer depth) as those chosen in
previous work [8]. Figure 9a illustrates the results. The “knee”
in each curve indicates the maximum percentage of IPv6 that
can be supported at 400G; after this point, the NoC saturates,
causing the source to be frequently backpressured.

Originally, it was expected that the design would be able to
support up to a fraction of IPv6 packets equal to the number of
IPv6 modules implemented divided by four, given it takes four
modules to fully support a 100% IPv6 packet rate (i.e. 25%
for one IPv6 module, 50% for two, etc.). However, we see in
Figure 9a that the NoC saturates at a much earlier point in each
curve. This can be attributed to the fact that the NoC is not an
entirely non-blocking crossbar; packets compete for resources
and when one does not receive access to its desired link, it
must be held in buffers within the NoC. In this case, the NoC
routers have buffers that can hold 10 NoC flits [8], while each
injected packet forms 40 NoC flits. Thus, when one packet is
waiting for a NoC link to become free, it must be stored in
four buffers, consequently congesting four upstream routers.
In the case when four IPv6 modules are implemented, each
injection point has its own IPv6 module for its IPv6 packets.
Thus, there is no competition for resources in the NoC. As
soon as there is a mismatch in number of injection points and
number of IPv6 modules, packets may compete for resources
when two are sent to one IPv6 module at the same time.

3As of July 2015, Google measures that only ∼7% of accesses to their
website are through IPv6 [18].

One way to mitigate this congestion is to increase the buffer
depth in the NoC routers, as has been studied in previous
work [19]. In our application, if a router’s buffer could hold
an entire packet, rather than just a quarter, it would prevent
upstream routers from becoming congested as well. We test
this theory by adjusting the simulated NoC buffer size to 64
flits, rather than 10. As can be seen in Figure 9b, increasing
the buffer size mitigates the NoC’s blocking nature, allowing
it to saturate according to the availability of IPv6 processing
bandwidth in the design.

The impact of increasing the buffer size of the NoC on
its hardware cost is illustrated in Figure 10. Increasing NoC
buffer size allows the NoC-crossbar to provide more switching
capability for larger packets at a moderate hardware cost.
However, this scaling technique requires architectural changes
to an embedded NoC. Thus, it is crucial that a manufacturer
of a NoC-enhanced FPGA appropriately provisions the NoC
to serve potential applications. By looking at important FPGA
networking applications such as switching [8, 9] and packet
processing, we hope to better guide the architectural choices
of an embedded NoC.

Overall, we see that the flexibility that NoC-PP provides to
support reprogrammability for network evolution surpasses that
of any conceivable ASIC-based packet processor. NoC-PP is
only limited by the amount of resources available on the entire
FPGA. Unlike the RMT design, NoC-PP is not limited by the
table sizes and action set established upon chip fabrication.
New actions and match field values can be reprogrammed into
new or existing processing modules at any time. Modules can
be modified, replaced and even duplicated by reconfiguring the
FPGA fabric. Not only does NoC-PP manage to exceed the
flexibility of the ASIC-based RMT, but it also matches and
surpasses RMT’s supported bandwidth of 640G.

V. DESIGN ENHANCEMENTS

A. Virtual Channel Priority Scheme
Virtual Channels (VC) in a NoC are separate FIFO buffers

located at every router port. They allow packets arriving at
or being sent along a common physical link to be stored
in separate buffers. The embedded NoC used in our design
employs two VCs, as previous work has shown that NoC
congestion is reduced by ∼30% when a second VC is used [21].
With two VCs, data flowing through the packet processor can
be sorted into two groups of traffic. This can be especially
useful for establishing a packet priority scheme. Packet priority
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is prevalent in many different modern network protocols,
including VLAN and TCP. In NoC-PP, one VC can be reserved
for packets given priority based on the contents of their headers,
while all other traffic is routed along the other VC. Thus,
priority packets can bypass non-priority packets when the
NoC is congested, thereby giving priority packets a faster path
through the design.
B. Partial Reconfiguration

A key advantage to OpenFlow’s flow table architecture is
the capability of updating processing rules “on-the-fly”. In
other words, the table entries can be updated with new match-
action rules even while the processor is receiving packets.
This is trickier in the NoC-PP architecture. Although NoC-
PP may still contain tables that can perform soft updates,
its decreased reliance on memory means that more of its
processing has been moved to dedicated logic in the FPGA
fabric. Typically, modifying an FPGA design requires complete
reconfiguration of the device, during which the transceivers
cannot accept any data. Making processing rule updates through
a complete reconfiguration would require the packet processor
to be effectively “paused”.

Partial reconfiguration [22] presents a potential solution
to this limitation. Unlike the monolithic PP design, NoC-
PP has both logically and physically partitioned processing
modules. The modules share a common interface and are
decoupled by the NoC, making the design highly amenable to
partial reconfiguration of individual processing modules. While
soft flow table updates allows for processing rule changes,
partial reconfiguration makes both rule and architecture changes
possible. To perform any architecture changes to PP, such
as modifying table sizes or the action set, a complete re-
configuration would be necessary. On the other hand, NoC-
PP can partially reconfigure individual processing modules
while the remaining modules remain operational. Thus, partial
reconfiguration would open up the possibility of modules being
updated/added/removed while the packet processor remains
“live”. An investigation into partial reconfiguration in a NoC-
enhanced FPGA is beyond the scope of this paper and is left
for future work.

VI. CONCLUSION
As network performance becomes ever more crucial to

data processing and mobile applications, there is an ever-
increasing demand on network infrastructures to evolve. The
NoC-PP packet processor architecture proposed in this work
focuses on maximizing hardware flexibility, thus providing
a platform that is very amenable to network evolution. By
using an FPGA augmented with an embedded NoC, we have

proposed a modular packet processor design that is capable
of being reprogrammed to support different combinations of
actions and header field matches. Unlike ASIC-based OpenFlow
architectures, it is not limited by the action set and table sizes
fixed upon chip fabrication. Its flexibility significantly exceeds
that of the RMT ASIC architecture, while matching, and even
surpassing, its supported bandwidth (400G/800G vs. 640G).
Compared to the best previously proposed FPGA-based packet
processor, NoC-PP proves to be 1.7× and 3.2× more resource
efficient, and achieves 1.5× and 3.7× lower latency on complex
and simple applications, respectively.

The NoC-PP architecture is only possible given the inclusion
of a hardened NoC embedded into an FPGA. This hard NoC is
both fast and small, enabling easy cross-chip communication.
Though an embedded NoC has yet to be adopted in FPGAs,
we hope that the compelling applications explored in this and
previous work [8, 9] present a convincing case for its inclusion
in future FPGA devices. Such a NoC-enhanced FPGA could
revolutionize SDN by paving the way for a fully-programmable
data plane.
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