

Manage Performance & Power Using 40-nm FPGAs

Seyi Verma Vaughn Betz

Agenda

- Design requirements
- Stratix[®] IV FPGAs: Highest performance and lowest power
 - Processing techniques
 - Architectural innovations
 - Quartus[®] II software CAD system
- High-end FPGA competitive comparison

Design Requirements

Designer Goals	What You Need From Your FPGA	What You Need From Your FPGA Software
Functionality	High density	 Ease of use Maximum utilization Low compile times
Meet timing constraints	High performance	 Detailed constraint entry Powerful timing analysis tool Optimization of all timing requirements
Meet power budget	Low power	 Automatic power optimization Accurate power analysis/reports

Maximize performance and minimize power

Stratix IV High-End FPGA Highlights

Stratix IV FPGAs

- Highest density
 - Up to 680K LEs
 - Up to 22.4-Mbits internal RAM
 - Up to 1,360 18x18 multipliers
- Highest bandwidth and performance
 - Up to 48 transceiver blocks operating at up to 8.5 Gbps
 - Maximum clock rates of 600 MHz
- Broad protocol support
 - Including hard IP for PCI Express Gen1 and Gen2
- Lowest power
 - 40-nm process benefits including 0.9-V core voltage
 - Programmable Power Technology (PPT)
 - Quartus II PowerPlay technology

₅ Copyright © 2008 Alt	era Corporation
5	

•	ATTERA
	Stratix IV
	Straum

Managing Performance and Power Through Process Technology

40-nm Process

- Aggressive gate length
 - Better density and higher speed than 45 nm
- Second-generation strained silicon
 - Increases electron mobility by up to 30%
 - Transistor level performance is up to 40% higher
- Strained silicon benefit can be converted to
 - Higher speed
 - Lower power (standby and dynamic)

In 40 nm, Altera converts benefits of strain to lower power

Leading Edge Process Technology at 40 nm

Advanced 40-nm process at 0.9 V

- Lower voltage \rightarrow reduces dynamic power by 33%
- 30% capacitance reduction \rightarrow reduces dynamic power
- 39% shorter channel length compared to 65 nm → increases performance

Multiple-gate oxide thicknesses (triple oxide)

- Trade-off static power vs. speed per transistor

Multiple-threshold voltages

- Trade-off static power vs. speed per transistor

Low-k inter-metal dielectric

- Reduces dynamic power, increases performance

Super strained silicon

- Increases electron and hole mobility by 30%
- Balance between power and performance

Copper interconnect

- Increased performance, reduced IR drop

Best-in-class process for power and performance

Architecture Innovation: Better Performance, Reduced Power

Design-Specific Power Optimization

Only a small fraction of logic is performance critical

Slack Histogram

Note: A simple "model" showing Programmable Power Technology. Actual implementation varies and is patented.

Programmable Power Technology

Logic array

High-speed logic _____

Unused low-power logic

Performance where you need it, lowest power everywhere else

Quartus II Software Automatically Uses PPT

Stratix IV FPGA DDR3 Support

Read and write leveling and resynchronization capability

I/O Feature	Stratix IV FPGAs	Benefit
Dynamic On-Chip Termination (OCT)	✓	Saves power
DDR3 Read/Write Leveling	✓	Required for DIMM support
Variable I/O Delay	✓	Allows signal de-skew

Interconnect	Performance
DDR3	>533 MHz/1067 Mbps
DDR2	400 MHz/800 Mbps
QDR II	350 MHz
QDR II+	400 MHz
RLDRAM II	400 MHz
LVDS	1.60 Gbps

DDR3 DIMM support at 533 MHz through read/write leveling

Dynamic OCT

■Write: Rs on, Rt off → Matching line impedance ■Read: Rs off, Rt on → Terminating far end

Write

Power Reduction with DDR3 and Dynamic OCT

DDR3 consumes 30% lower power than DDR2

- DDR2 requires 1.8-V VCC rails
- DDR3 requires 1.5-V VCC rails

Dynamic OCT reduces termination power by 1 W/72bits

Save 1.9W per 72-bit DIMM at 1067 Mbps

Stratix IV GX Embedded Transceivers

Up to 48 transceivers

 3G, 6G, and 8G channels

 Comprehensive protocol support

Data Rate	Transceiver Power	
3.125 Gbps	100 mW	
6.375 Gbps	135 mW	
8.5 Gbps	165 mW	

Highest system bandwidth and power efficiency

AU61 In figure (which I can't change), please change the following: Delete extra "c" in TX phase compensation... box. Change 8b / 10b to 8B/10B Altera User, 24/06/2008

Complete PCI Express Solution (Hard IP)

Gen1 and Gen2 hard IP protocol stack (x2, x4, and x8)

- Guaranteed timing closure
- Low latency
- Minimizes power
- Saves logic and memory
- No IP fee

PCI Express Gen2			
Feature	x 8	x4	x2
Bandwidth	40 Gbps	20 Gbps	10 Gbps
Dynamic Power	600 mW	440 mW	350 mW

Integrated Gen1/Gen2 support

Quartus II Software CAD Takes Full Advantage Of Silicon

Timing Analysis and Closure

Easy to use

- Enter constraints via script or GUI
- Extensive reports and visualization

Powerful timing constraints

- Uses SDC syntax
- Complex clocking schemes
- Source-synchronous design

Complete analysis

- Rise/fall delays
- On-die variation (min/max)
- Jitter models
- Multiple corners (3 for Stratix IV FPGAs)

Accurate delays

- Full non-linear circuit simulator
- Within 1% of SPICE, but 10,000 times faster
- Complex end-of-life effects modeled

Full optimization

- Optimize all timing constraints
- Across all process corners

Power: Analysis and Optimization

Accurate power modeling

Physics-based modelsProven methodology and correlation

Accurate modeling enables good optimization

Routing, logic, RAM, static

Dynamic Power Optimization

Higher Productivity Through Lower Compile Times

Problem:

- FPGA capacity outpacing CPUs
- 68x FPGA logic
- 16x CPU speed
- 4.3x gap

Solution:

- Faster algorithms
- Parallel code
- Incremental compile

Competitive Comparison

Stratix IV FPGAs and Virtex-5 FPGAs

Stratix IV FPGA Power Saving Techniques

Power Minimizing Technique	Stratix IV FPGAs	Virtex-5 FPGAs
Silicon process optimizations	✓	\checkmark
Programmable power technology	~	×
DDR3 with dynamic OCT	✓	×
PCI Express Gen2 hard IP	~	×
Software static power optimization	~	×

²Copyright © 2008 Altera Corporation

Static Power Comparison

Stratix IV FPGAs double the density AND minimize static power

PCI Express Hard IP Minimizes Core Power

Power

Assumptions:

Altera: Hard IP in Gen2 x4 configuration

Xilinx: Soft IP with bandwidth equivalent to Gen2 x4 derived using resource count from Xilinx CoreGen and XPE v10.1

Conditions: Toggle Rate = 20%

Xilinx's PCIe soft IP

Altera's PCIe hard IP

FPGA industry's lowest power PCI Express solution

Save Multiple Watts/Device (300K LEs)

Reduce power consumption by 50%

Hidden Costs

Reduce hidden costs with Stratix IV FPGAs by 57% per device!

Core Performance

than Virtex-5 FPGAs

Stratix IV FPGAs: Unprecedented Core Performance

Achieve higher performance and lower costs with Stratix IV FPGAs

Stratix IV FPGAs: Unprecedented I/O Performance

Interconnect	Virtex-5 FPGAs (65 nm)	Stratix IV FPGAs (40 nm)
DDR2	333 MHz	400+ MHz
DDR3	No DIMM support	533 MHz
QDR II	300 MHz	350 MHz
QDR II+	No DIMM support	400 MHz
RLDRAM II	300 MHz	400 MHz
LVDS	1.25 Gbps	1.6 Gbps
Transceivers	3G, 6G	3G, 6G, 8G
PCI-Express Hard IP x8	No solution	40G

Higher bandwidth with Stratix IV FPGAs

Summary

Stratix IV FPGAs

Highest bandwidth and performance

- Core clock speeds of 600 MHz
- Up to 48 transceiver blocks operating at up to 8.5 Gbps
- DDR3 at 1067 Mbps
- LVDS at 1.6 Gbps
- Quartus II software performance optimization

Lowest power

- 0.9-V core voltage on an optimal 40-nm process
- Programmable Power Technology
- Lowest transceiver power
- DDR3 with dynamic OCT
- Integration of hard IP for PCI Express Gen1 and Gen2
- Quartus II PowerPlay technology

Highest system bandwidth and power efficiency

Resources

- Visit Stratix IV FPGA power web page
 - <u>http://www.altera.com/products/devices/stratix-fpgas/stratix-iv/overview/power/stxiv-power.html</u>
- Visit Stratix IV FPGA performance web page
 - <u>http://www.altera.com/products/devices/stratix-fpgas/stratix-iv/overview/performance/stxiv-performance.html</u>
- See Stratix IV FPGA transceiver (8G) and LVDS (1.5 Gbps) demos
 - http://www.altera.com/b/40-nm-stratix-iv-video.html
- Download Stratix IV FPGA power white paper
 - <u>http://www.altera.com/literature/wp/wp-01059-stratix-iv-40nm-power-management.pdf</u>
- Stratix IV EPE power estimation spreadsheet
 - <u>http://www.altera.com/support/devices/estimator/pow-powerplay.jsp</u>
- See what Programmable Power Technology did for Stratix III FPGAs
 - <u>http://www.altera.com/products/devices/stratix-fpgas/stratix-iii/overview/power/st3-power.html</u>

Additional Resources

- How Altera performs FPGA benchmarks
 - <u>http://www.altera.com/literature/wp/wpfpgapbm.pdf</u>
- Guidance on accurately benchmarking FPGAs white paper
 - <u>http://www.altera.com/literature/wp/wp-01040.pdf</u>
- Reproduce results through open cores
 - <u>http://www.altera.com/products/devices/stratix-fpgas/stratix-iii/overview/architecture/performance/st3-opencores.html</u>

Thank You!

For more information visit: <u>www.altera.com</u>