Manage Performance & Power Using 40-nm FPGAs

Seyi Verma
Vaughn Betz
Agenda

■ Design requirements
■ Stratix® IV FPGAs: Highest performance and lowest power
 – Processing techniques
 – Architectural innovations
 – Quartus® II software CAD system
■ High-end FPGA competitive comparison
Design Requirements

<table>
<thead>
<tr>
<th>Designer Goals</th>
<th>What You Need From Your FPGA</th>
<th>What You Need From Your FPGA Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionality</td>
<td>High density</td>
<td>Ease of use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum utilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low compile times</td>
</tr>
<tr>
<td>Meet timing constraints</td>
<td>High performance</td>
<td>Detailed constraint entry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Powerful timing analysis tool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimization of all timing requirements</td>
</tr>
<tr>
<td>Meet power budget</td>
<td>Low power</td>
<td>Automatic power optimization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accurate power analysis/reports</td>
</tr>
</tbody>
</table>

Maximize performance and minimize power
Stratix IV High-End FPGA Highlights
Stratix IV FPGAs

- Highest density
 - Up to 680K LEs
 - Up to 22.4-Mbits internal RAM
 - Up to 1,360 18x18 multipliers

- Highest bandwidth and performance
 - Up to 48 transceiver blocks operating at up to 8.5 Gbps
 - Maximum clock rates of 600 MHz

- Broad protocol support
 - Including hard IP for PCI Express Gen1 and Gen2

- Lowest power
 - 40-nm process benefits including 0.9-V core voltage
 - Programmable Power Technology (PPT)
 - Quartus II PowerPlay technology
Managing Performance and Power Through Process Technology
40-nm Process

- Aggressive gate length
 - Better density and higher speed than 45 nm

- Second-generation strained silicon
 - Increases electron mobility by up to 30%
 - Transistor level performance is up to 40% higher

- Strained silicon benefit can be converted to
 - Higher speed
 - Lower power (standby and dynamic)

In 40 nm, Altera converts benefits of strain to lower power
Leading Edge Process Technology at 40 nm

- **Advanced 40-nm process at 0.9 V**
 - Lower voltage → reduces dynamic power by 33%
 - 30% capacitance reduction → reduces dynamic power
 - 39% shorter channel length compared to 65 nm → increases performance

- **Multiple-gate oxide thicknesses (triple oxide)**
 - Trade-off static power vs. speed per transistor

- **Multiple-threshold voltages**
 - Trade-off static power vs. speed per transistor

- **Low-k inter-metal dielectric**
 - Reduces dynamic power, increases performance

- **Super strained silicon**
 - Increases electron and hole mobility by 30%
 - Balance between power and performance

- **Copper interconnect**
 - Increased performance, reduced IR drop

Best-in-class process for power and performance
Architecture Innovation:
Better Performance, Reduced Power
Design-Specific Power Optimization

- Only a small fraction of logic is performance critical

Slack Histogram

- **Not performance critical**
 - 90-100%: 8,000
 - 80-90%: 7,000
 - 70-80%: 6,000
 - 60-70%: 5,000
 - 50-60%: 4,000
 - 40-50%: 3,000
 - 30-40%: 2,000
 - 20-30%: 1,000
 - 10-20%: 0
 - 0-10%: 0

- **Performance critical**

Copyright © 2008 Altera Corporation
Programmable Speed vs. Leakage

Note: A simple “model” showing Programmable Power Technology. Actual implementation varies and is patented.
Programmable Power Technology

Logic array

Timing critical path

High-speed logic
Low-power logic
Unused low-power logic

Performance where you need it, lowest power everywhere else
Quartus II Software Automatically Uses PPT

Synthesis

Placement and routing

Unused tiles → low power

Timing analysis

Tiles with timing slack → low power

Done? No Yes

All high-speed tiles

Mostly low-power tiles

Copyright © 2008 Altera Corporation
Stratix IV FPGA DDR3 Support

Interconnect	**Performance**
DDR3 | >533 MHz/1067 Mbps
DDR2 | 400 MHz/800 Mbps
QDR II | 350 MHz
QDR II+ | 400 MHz
RLDRAM II | 400 MHz
LVDS | 1.60 Gbps

I/O Feature	**Stratix IV FPGAs**	**Benefit**
Dynamic On-Chip Termination (OCT) | ✓ | Saves power
DDR3 Read/Write Leveling | ✓ | Required for DIMM support
Variable I/O Delay | ✓ | Allows signal de-skew

** DDR3 DIMM support at 533 MHz through read/write leveling **

Copyright © 2008 Altera Corporation
Dynamic OCT

- Write: Rs on, Rt off → Matching line impedance
- Read: Rs off, Rt on → Terminating far end
Power Reduction with DDR3 and Dynamic OCT

- DDR3 consumes 30% lower power than DDR2
 - DDR2 requires 1.8-V VCC rails
 - DDR3 requires 1.5-V VCC rails
- Dynamic OCT reduces termination power by 1 W/72-bits

Save 1.9W per 72-bit DIMM at 1067 Mbps
Stratix IV GX Embedded Transceivers

- Up to 48 transceivers
 - 3G, 6G, and 8G channels
- Comprehensive protocol support

Data Rate Transceiver Power

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Transceiver Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.125 Gbps</td>
<td>100 mW</td>
</tr>
<tr>
<td>6.375 Gbps</td>
<td>135 mW</td>
</tr>
<tr>
<td>8.5 Gbps</td>
<td>165 mW</td>
</tr>
</tbody>
</table>

Highest system bandwidth and power efficiency

Copyright © 2008 Altera Corporation
In figure (which I can't change), please change the following:
Delete extra "c" in TX phase compensation... box.
Change 8b / 10b to 8B/10B

Alter User, 24/06/2008
Complete PCI Express Solution (Hard IP)

Legend

Soft Logic

PCI Express Hard IP
PCS/PMA

Gen1 and Gen2 hard IP protocol stack (x2, x4, and x8)
- Guaranteed timing closure
- Low latency
- Minimizes power
- Saves logic and memory
- No IP fee

Integrated Gen1/Gen2 support

<table>
<thead>
<tr>
<th>Feature</th>
<th>x8</th>
<th>x4</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>40 Gbps</td>
<td>20 Gbps</td>
<td>10 Gbps</td>
</tr>
<tr>
<td>Dynamic Power</td>
<td>600 mW</td>
<td>440 mW</td>
<td>350 mW</td>
</tr>
</tbody>
</table>

Copyright © 2008 Altera Corporation
Quartus II Software CAD Takes Full Advantage Of Silicon
Timing Analysis and Closure

- **Easy to use**
 - Enter constraints via script or GUI
 - Extensive reports and visualization

- **Powerful timing constraints**
 - Uses SDC syntax
 - Complex clocking schemes
 - Source-synchronous design

- **Complete analysis**
 - Rise/fall delays
 - On-die variation (min/max)
 - Jitter models
 - Multiple corners (3 for Stratix IV FPGAs)

- **Accurate delays**
 - Full non-linear circuit simulator
 - Within 1% of SPICE, but 10,000 times faster
 - Complex end-of-life effects modeled

- **Full optimization**
 - Optimize all timing constraints
 - Across all process corners
Power: Analysis and Optimization

- Design entry
- Constraints
 - Speed ✓
 - Area ✓
 - Power ✓

1. Synthesis
 - Optimize power ✓

2. Place and route
 - Optimize power ✓

3. PowerPlay power analyzer

Power-optimized design ✓

Accurate power modeling
- Physics-based models
- Proven methodology and correlation

Accurate modeling enables good optimization
- Routing, logic, RAM, static

Copyright © 2008 Altera Corporation
Dynamic Power Optimization

On average, 15% dynamic power reduction

Design

Dynamic power reduction vs. minimum effort

Extra effort

Normal effort

Copyright © 2008 Altera Corporation
Higher Productivity Through Lower Compile Times

Problem:
- FPGA capacity outpacing CPUs
- 68x FPGA logic
- 16x CPU speed
- 4.3x gap

Solution:
- Faster algorithms
- Parallel code
- Incremental compile

Quartus II Compilation Time History

Logic Elements (Thousands) vs. Relative SpecINT

Quartus II Version
- Stratix
- QII 4.0
- Stratix II
- QII 6.1
- Stratix III
- QII 8.0
- Stratix III w/ Parallel Compile

Relative Compile Time (Log scale)

Copyright © 2008 Altera Corporation
Competitive Comparison

Stratix IV FPGAs and
Virtex-5 FPGAs
Stratix IV FPGA Power Saving Techniques

<table>
<thead>
<tr>
<th>Power Minimizing Technique</th>
<th>Stratix IV FPGAs</th>
<th>Virtex-5 FPGAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon process optimizations</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Programmable power technology</td>
<td>✅</td>
<td>✗</td>
</tr>
<tr>
<td>DDR3 with dynamic OCT</td>
<td>✅</td>
<td>✗</td>
</tr>
<tr>
<td>PCI Express Gen2 hard IP</td>
<td>✅</td>
<td>✗</td>
</tr>
<tr>
<td>Software static power optimization</td>
<td>✅</td>
<td>✗</td>
</tr>
</tbody>
</table>
Static Power Comparison

Stratix IV FPGAs double the density AND minimize static power
PCI Express Hard IP Minimizes Core Power

Assumptions:
Altera: Hard IP in Gen2 x4 configuration
Xilinx: Soft IP with bandwidth equivalent to Gen2 x4 derived using resource count from Xilinx CoreGen and XPE v10.1

Conditions: Toggle Rate = 20%

FPGA industry’s lowest power
PCI Express solution
Save Multiple Watts/Device (300K LEs)

Reduce power consumption by 50%
Hidden Costs

Reduce hidden costs with Stratix IV FPGAs by 57% per device!
Core Performance

On average, Stratix IV FPGAs are 35% faster than Virtex-5 FPGAs.

Conditions
• Best effort (Xplorer, DSE, and seed sweep)
• Fastest speed grade
• Quartus II software version 8.0 and ISE 10.1i
• Real customer designs
Stratix IV FPGAs: Unprecedented Core Performance

Achieve higher performance and lower costs with Stratix IV FPGAs

Copyright © 2008 Altera Corporation
Stratix IV FPGAs: Unprecedented I/O Performance

<table>
<thead>
<tr>
<th>Interconnect</th>
<th>Virtex-5 FPGAs (65 nm)</th>
<th>Stratix IV FPGAs (40 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR2</td>
<td>333 MHz</td>
<td>400+ MHz</td>
</tr>
<tr>
<td>DDR3</td>
<td>No DIMM support</td>
<td>533 MHz</td>
</tr>
<tr>
<td>QDR II</td>
<td>300 MHz</td>
<td>350 MHz</td>
</tr>
<tr>
<td>QDR II+</td>
<td>No DIMM support</td>
<td>400 MHz</td>
</tr>
<tr>
<td>RLDGRAM II</td>
<td>300 MHz</td>
<td>400 MHz</td>
</tr>
<tr>
<td>LVDS</td>
<td>1.25 Gbps</td>
<td>1.6 Gbps</td>
</tr>
<tr>
<td>Transceivers</td>
<td>3G, 6G</td>
<td>3G, 6G, 8G</td>
</tr>
<tr>
<td>PCI-Express Hard IP x8</td>
<td>No solution</td>
<td>40G</td>
</tr>
</tbody>
</table>

Higher bandwidth with Stratix IV FPGAs
Summary

Stratix IV FPGAs

40-nm and architectural innovations

- **Highest bandwidth and performance**
 - Core clock speeds of 600 MHz
 - Up to 48 transceiver blocks operating at up to 8.5 Gbps
 - DDR3 at 1067 Mbps
 - LVDS at 1.6 Gbps
 - Quartus II software performance optimization

- **Lowest power**
 - 0.9-V core voltage on an optimal 40-nm process
 - Programmable Power Technology
 - Lowest transceiver power
 - DDR3 with dynamic OCT
 - Integration of hard IP for PCI Express Gen1 and Gen2
 - Quartus II PowerPlay technology

Highest system bandwidth and power efficiency

Copyright © 2008 Altera Corporation
Resources

- Visit Stratix IV FPGA power web page

- Visit Stratix IV FPGA performance web page

- See Stratix IV FPGA transceiver (8G) and LVDS (1.5 Gbps) demos

- Download Stratix IV FPGA power white paper

- Stratix IV EPE – power estimation spreadsheet

- See what Programmable Power Technology did for Stratix III FPGAs
Additional Resources

- How Altera performs FPGA benchmarks

- Guidance on accurately benchmarking FPGAs white paper

- Reproduce results through open cores
Thank You!

For more information visit:
www.altera.com