Power Solutions for Leading-Edge FPGAs

Vaughn Betz & Paul Ekas
Agenda

- 90 nm Power Overview
- Stratix II®: Power Optimization Without Sacrificing Performance
 - Technical Features & Competitive Results
 - Dynamic Power
 - Static Power
 - I/O Power
- HardCopy® II Structured ASICs: The Path to Lowest Power
- Summary & Wrap Up
90 nm Power Overview
90 nm: Operating Power Reduced

Relative Power vs. Frequency (MHz)

- Green line: 130 nm
- Blue line: 90 nm

Lower Operating Power
Power Breakdown: 90 nm vs. 130nm

- 130 nm (Stratix)
- 90 nm (Stratix II)

- I/O
- Static Core
- Dynamic Core
Power: 90 nm vs. 130 nm

- Large Dynamic Power Reduction
 - Dominant Power, so Most Important

- Static Power Increases
 - Need to Architect FPGA to Minimize Increase
 - Without Sacrificing 90 nm Performance

- I/O Power Does Not Scale with Process
 - Need to Improve Circuit Design to Get Gains
Stratix II FPGAs

Power Optimization Without Sacrificing Performance
Power Versus Performance
The Major Challenge for 90-nm High-Performance FPGAs

- Stratix II: Most Performance Within Power Budget
 - Minimize Power for Non-Performance Critical Circuitry
 - “Black Diamond” Low-K Dielectric
 - Increased V_T
 - Increased Gate Length
 - Maximize Performance Where Needed
 - Adaptive Logic Module (ALM) Architecture
 - “Black Diamond” Low-K Dielectric
 - Lower V_T Only Where Needed
 - Shorter Gate Length Only for Most Performance Critical
 - Redesign I/Os for Minimum Power
1. Dynamic Power
Core Dynamic Power

- Usually Most Important Power Component
- Power Proportional to Clock Frequency

\[P_{\text{dynamic}} = \left[\frac{1}{2} CV^2 + Q_{\text{ShortCircuit}} V \right] f \cdot \text{activity} \]

- 1st Term: Capacitance Charging
 - Dominant Dynamic Power Component

- 2nd Term: Short Circuit Charge During Switching
 - Smaller Component

- Activity: % of Circuit That Switches Each Cycle
 - Highly Design Dependent

- Little Dependence on Temperature or Process Variation
Core Dynamic Power

- Typical Breakdown (112 Customer Design Average)

- Routing 40%
- ALM Combinational 23%
- ALM Registers 16%
- RAM Blocks 14%
- Clock Networks 7%
- DSP Blocks 1%*

*DSP Block Power: 5% of Dynamic Power for Designs that Use DSP Blocks

Copyright © 2005 Altera Corporation
Minimizing Dynamic Power: Low-k

- Stratix II: Black Diamond Low-k Dielectric
 - Metal Capacitance $\propto k$ (Dielectric Constant)
 - Dynamic Power \propto Capacitance Charged
 - Metal Capacitance is Dominant
 - Black Diamond: $k = 2.9$
 - FSG (“Reduced-k”): $k = 3.6$
 - Black Diamond Reduces Metal Capacitance by \textbf{20\%} vs. FSG Used by Competing FPGAs!

- Result: 14\% Dynamic Power Reduction \textit{and} 12\% Speed Improvement

Copyright © 2005 Altera Corporation
Minimizing Dynamic Power: Clocking

- Stratix II FPGA Shuts Down Unused Parts of Clock Networks
 - With Fine Control Granularity (Nearly 800 Regions!)
 - Automatically Implemented for Each Design by Quartus® II Software
Minimizing Dynamic Power: RAM

- Tri-Matrix Memory
 - Power Inefficient to Use a Large Physical RAM for a Small Memory or Vice Versa
 - Stratix II FPGA: 3 RAM Sizes
 - Quartus II Software Automatically Picks Good Physical RAM

- Shut Down RAM Core When Clk Enable Low
 - Near 0 Dynamic Power on Cycles Where RAM Not Accessed
 - Quartus II Release 5.0 Automates When Possible
Basic Blocks: Power Estimators

- Compare Component Power for Stratix II & Virtex-4 FPGAs
- Using Latest Power Estimators
 - Altera Early Power Estimator Version 2.1
 - Xilinx Power WebTool Version 4.1
- Measure All Power Sources
 - Stratix II FPGA
 - V_{CCINT}: Internal Core Power
 - V_{CCIO}: I/O Power
 - V_{CCPD}: Pre-Drive Power for I/O
 - Virtex-4 FPGA
 - V_{CCINT}: Internal Core Power (Most Internal Circuitry)
 - V_{CCO}: I/O Power
 - V_{CCAUX}: Powers Some Internal Circuitry
Dynamic Power: Logic & Routing

- Power = # LUTs x Power per (LUT + Routing)

<table>
<thead>
<tr>
<th>200 MHz, 30% Toggle</th>
<th>Stratix II (mW)</th>
<th>Virtex-4 (mW)</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 LUT/ALUT + FF + Typical Routing</td>
<td>0.147</td>
<td>0.157</td>
<td>-6%</td>
</tr>
<tr>
<td>Stratix II: 18% Fewer ALUTs per Circuit</td>
<td>0.121 (eq. logic)</td>
<td>0.157</td>
<td>-23%</td>
</tr>
</tbody>
</table>

Stratix II Family Has Lower Power in Logic & Routing
Dynamic Power: Memory

- 200 MHz Dual-Port (1 Read, 1 Write) Synchronous RAM

<table>
<thead>
<tr>
<th>Size (bits)</th>
<th>Width x Depth</th>
<th>Stratix II (mW)</th>
<th>Virtex-4 (mW)</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>16 x 32</td>
<td>4.1</td>
<td>9.9</td>
<td>-58%</td>
</tr>
<tr>
<td>4K</td>
<td>8 x 512</td>
<td>6.9</td>
<td>11.3</td>
<td>-39%</td>
</tr>
<tr>
<td>16K</td>
<td>16 x 1024</td>
<td>15.6</td>
<td>12.3</td>
<td>+27%</td>
</tr>
<tr>
<td>16K</td>
<td>128 x 128</td>
<td>33.8</td>
<td>62.4</td>
<td>-46%</td>
</tr>
<tr>
<td>512K</td>
<td>64 x 8192</td>
<td>218</td>
<td>339</td>
<td>-36%</td>
</tr>
</tbody>
</table>
Dynamic Power: DSP & PLL

<table>
<thead>
<tr>
<th>Block @ 200 Mhz</th>
<th>Stratix II (mW)</th>
<th>Virtex-4 (mW)</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>18x18 Multiplier</td>
<td>8.0</td>
<td>10.0</td>
<td>-20%</td>
</tr>
<tr>
<td>9x9 Multiplier</td>
<td>3.5</td>
<td><10.0</td>
<td>-65%</td>
</tr>
<tr>
<td>36x36 Multiplier</td>
<td>20.5</td>
<td>45.6</td>
<td>-55%</td>
</tr>
<tr>
<td>400 MHz PLL/DCM</td>
<td>23</td>
<td>119</td>
<td>-81%</td>
</tr>
<tr>
<td>100 MHz PLL/DCM</td>
<td>17</td>
<td>38</td>
<td>-55%</td>
</tr>
</tbody>
</table>
Basic Blocks: Measured Power

- Lab Measurements of Power Consumed per Basic Block
 1. Measure Power With Only Test Circuitry
 2. Measure Power With Test Circuitry & Basic Block of Interest
 3. Subtract to Obtain Power for Basic Block

- Nominal Voltage

- Ambient Temperature = 25°C
 - Recall: Very Little Impact on Dynamic Power
Devices & Boards Used

<table>
<thead>
<tr>
<th>Family</th>
<th>Device</th>
<th>Equiv. LEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratix II</td>
<td>EP2S15</td>
<td>15,600</td>
</tr>
<tr>
<td>Virtex-4</td>
<td>4VLX25</td>
<td>21,504</td>
</tr>
<tr>
<td>Stratix II</td>
<td>EP2S30</td>
<td>33,880</td>
</tr>
<tr>
<td>Stratix</td>
<td>EP1S25</td>
<td>25,660</td>
</tr>
</tbody>
</table>
Dynamic Power: Logic

931 Six-Bit Gray Code Counters

- Stratix II
- Virtex-4

Power (mW) vs. Frequency (MHz)

1.25X Power
Dynamic Power: RAM

18-Bit Wide x 32 Deep Dual-Port RAM

- **Stratix II**
- **Virtex-4**

Power (mW) vs. Frequency (MHz)

2.6X Power
Dynamic Power: DSP

32 16x16 Multipliers

Power (mW)

Frequency (MHz)

1.25X Power

Stratix II
Virtex-4

Copyright © 2005 Altera Corporation
DCM/PLL Power

- Stratix II FPLL
- Stratix II EPLL
- Virtex-4 High F DCM
- Virtex-4 Low F DCM

3.3X – 5X Power

Power (mW)

Frequency (MHz)
2. Static Power
Static Power

1. Subthreshold Leakage from Source to Drain of Off Transistors
 - Main Leakage Component at 90 nm
 - Increases Rapidly with Temperature
 - Highly Dependent on Process Variation

2. Gate Leakage (Smaller)

3. Reverse-Biased Junction Leakage (Very Small)
Leakage Power: Temperature Effect

![Graph showing the relationship between Relative Leakage and Temperature (°C)]
Stratix II Leakage Power Reduction

- High-Vt Transistors Where Not Speed-Critical
 - Especially Configuration SRAM
 - 10X Leakage Reduction

- Longer Channels for Most Transistors
 - Significant Leakage Reduction
 - Reduces Leakage Variability Across Process
 - Helps Worst-Case Leakage Most!
Channel Length Variation Due To Manufacturing

Short Gate

Large % Variation of Channel Length

Max
Min

Long Gate

Small % Variation of Channel Length

Max
Min

Copyright © 2005 Altera Corporation
Process Variation Impact On Leakage

- High Vt: Increased L
- “Typical” Vt & L
- Low Vt: Reduced L

Over 40% Worst-Case Leakage Reduction

- Short L
- Long L

Relative Leakage

Process Variation

Copyright © 2005 Altera Corporation
Static Power Comparison

- Using Latest Altera & Xilinx Power Estimators
 - Sum Static Power From All Relevant Supplies
 • Vccint & Vccpd for Stratix II FPGA
 • Vccint & Vccaux for Virtex-4 FPGA

- Most Important Comparison: Worst-Case Device Leakage Values
 - Using Typical Values Means 50% of Devices You Receive Will Have Power Greater Than You Model!
 - Stratix II Early Power Estimator Includes Worst-Case Models
 - Virtex-4 Power Tool: Multiply Typical Static Power by 2.5X (Xilinx Guidance to Customers)
Static Power Comparison

<table>
<thead>
<tr>
<th>Part</th>
<th>Power V_{CCINT}</th>
<th>Power V_{CCPD}</th>
<th>Total Static Power</th>
<th>Part</th>
<th>Power V_{CCINT}</th>
<th>Power V_{CCaux}</th>
<th>Total Static Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP2S15</td>
<td>792mW</td>
<td>33mW</td>
<td>825mW</td>
<td>LX15</td>
<td>345mW</td>
<td>230mW</td>
<td>575mW</td>
</tr>
<tr>
<td>EP2S30</td>
<td>1.13W</td>
<td>66mW</td>
<td>1.19W</td>
<td>LX25</td>
<td>568mW</td>
<td>262mW</td>
<td>830mW</td>
</tr>
<tr>
<td>EP2S60</td>
<td>2.16W</td>
<td>76mW</td>
<td>2.24W</td>
<td>LX40</td>
<td>892mW</td>
<td>305mW</td>
<td>1.20W</td>
</tr>
<tr>
<td>EP2S90</td>
<td>3.16W</td>
<td>82mW</td>
<td>3.24W</td>
<td>LX60</td>
<td>1.22W</td>
<td>530mW</td>
<td>1.74W</td>
</tr>
<tr>
<td>EP2S130</td>
<td>4.32W</td>
<td>99mW</td>
<td>4.42W</td>
<td>LX80</td>
<td>1.60W</td>
<td>585mW</td>
<td>2.18W</td>
</tr>
<tr>
<td>EP2S180</td>
<td>5.34W</td>
<td>116mW</td>
<td>5.46W</td>
<td>LX100</td>
<td>2.12W</td>
<td>660mW</td>
<td>2.78W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LX160</td>
<td>2.79W</td>
<td>935mW</td>
<td>3.73W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LX200</td>
<td>3.96W</td>
<td>1.04W</td>
<td>5.00W</td>
</tr>
</tbody>
</table>

Virtex-4: 21% to 40% of Leakage Power from Vccaux Supply
Static Power Comparison

Stratix II: Typical Device, 25°C
Stratix II: Worst-Case Device, 85°C
Virtex-4: Typical Device, 25°C
Virtex-4: Worst-Case Device, 85°C
3. I/O Power
I/O Power

- Dynamic Power to Charge Capacitance
- Also Static Power for Resistively Terminated Standards
 - e.g., SSTL
- Terminated I/O Standards: Some Power Dissipated as Heat in Off-Chip Resistors
 - Power Models Need to Report
 1. Power Dissipated as Heat on FPGA
 2. Power Drawn From Supply (Larger)
 - Stratix II Power Models Give Both Values
 - Competition: Only One Power Number

![FPGA Output Buffer Diagram](image)
Stratix II: Low I/O Power

- I/O Pins Are Large & Drive Large Capacitance → Large Power

- Stratix II I/O Pins: Less than ½ the Pin Capacitance of Competing FPGAs
 - Cuts Stratix II Output I/O Power
 - Also Saves Power on Chips Driving Stratix II Inputs

<table>
<thead>
<tr>
<th>I/O Type</th>
<th>Stratix II (Measured)</th>
<th>Virtex-4 (Measured)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left/Right</td>
<td>5.0 pF</td>
<td>12.5 pF</td>
</tr>
<tr>
<td>Top/Bottom</td>
<td>6.1 pF</td>
<td>12.5 pF</td>
</tr>
</tbody>
</table>
I/O Power – Stratix II vs. Virtex 4

200-MHz, Single-Data Rate, 10pF Load

Virtex-4 “Total I/O Power”
Stratix II Thermal Power

Altera Early Power Estimator v2.1
Xilinx Web Power Tool v4.1
I/O Power: HSTL

Single-Ended HSTL 1.8V Class II
12 mA Virtex-4 / 16mA Stratix II
Pseudo-Random Bit Stream
I/O Power: SSTL

Single-Ended SSTL 1.8V Class II
12 mA Virtex-4 / 8 mA Stratix II
Pseudo-Random Bit Stream

17% More Power
Total Device Power Comparison
Stratix II & Virtex-4 Total Power Comparison

■ Operating Frequency & Activity
 − 200 MHz Clock, 12.5% Logic Toggle Rate

■ Design Resource Utilization – Apples-to-Apples
 − Logic: 75% of Stratix II
 ● Virtex-4: Same LE Count
 − RAM: 50% of Stratix II
 ● Virtex-4: Same Bit Count
 − DSP: 25% of Stratix II
 ● Virtex-4: Same 18x18 Multiplier Count
 − I/O: 30% of Stratix II Max I/O
 ● Virtex-4: Same I/O Count

■ Operating Conditions
 1. 25°C Ambient Temperature, Typical Device
 2. 85°C Junction Temperature, Worst-Case Device

■ Latest Power Estimators

Copyright © 2005 Altera Corporation
Total Device Power Comparison
200-MHz System, Typical Leakage Conditions

- Stratix II I/O & Dynamic
- Stratix II Static
- Virtex-4 I/O & Dynamic
- Virtex-4 Static

Device

Copyright © 2005 Altera Corporation
Total Device Power Comparison
200 MHz System, Worst-Case Leakage Conditions

- Stratix II I/O & Dynamic
- Stratix II Static
- Virtex-4 I/O & Dynamic
- Virtex-4 Static

Device

Copyright © 2005 Altera Corporation
Measured Complete Design (DES)

- Stratix II EP2S30 Meas.
- Stratix II EP2S15 Meas.
- Virtex-4 LX25 Meas.
Measured Complete Design (Rijndael)

- Stratix II EP2S30 Meas.
- Stratix II EP2S15 Meas.
- Virtex-4 LX25 Meas.
Any Power-On Surge Current?
Start-Up / In Rush Current

- No Current Spike on Power-Up
 - Many Older FPGAs Had High Power-Up Current Requirements
 - Due to Contention in Configuration SRAM
 - Stratix II Production Devices: **Power-Up Is Contention-Free**
 - Some EP2S60 Engineering Samples Had Small Surge; Fixed in Production Silicon
Power Up: No Surge!

Typical FPGA

Stratix II

Improved Stratix II Power-Up Profile

Current

Time

Power Up

Static

Total Power (Dynamic+Static)
HardCopy II Structured ASICs
Migrate to the Lowest Power
HardCopy II Overview

- Lowest-Risk Structured ASIC
- Seamless Migration Path From Stratix II Design to HardCopy II
 - Same Design Software: Quartus II
 - Same IP Available
 - Functional Equivalence Guaranteed
HardCopy II Routing Power

- FPGA Programmable Routing
 - Long Pre-Fabricated Wires
 - Pre-Fabricated Muxes & Buffers
 → High Capacitance!

- HardCopy II: Custom Metal Routing
 - No Muxes
 - Only Exact Wires & Buffers Needed

- Logic Density Higher
 - Shorter Routes

- **20X Less Routing Capacitance!**
HardCopy II Leakage & Logic Power

- Far Fewer Transistors than an FPGA → Lower Leakage

- FPGA Logic Cells
 - Internal Multiplexers Select Mode & Logic Function

- HardCopy II HCell Architecture
 - Simpler Gates; Use Metal Connections to Configure
 - 5 to 10X Less Logic Dynamic Power
HardCopy II Power Advantage

Example: High-Speed, High-Density Stratix II Design

2.5X Total Power Reduction

Power (W)

Stratix II

HardCopy II

I/O
RAM & DSP
Leakage
Logic
Routing & Clocks

Copyright © 2005 Altera Corporation
Great Performance While Managing Power

187 Designs Conclusively Validate Altera’s Performance Advantage

Altera FPGA Design f_{MAX} (MHz)

Xilinx® FPGA Design f_{MAX} (MHz)

- Stratix II vs. Virtex-4
- Cyclone/Cyclone II vs. Spartan-3
- 77 Designs Target Stratix II & Virtex-4;
- 110 Designs Target Cyclone/Cyclone II & Spartan-3

For details on methodology, see Altera’s FPGA Performance Benchmarking Methodology White Paper

www.altera.com/alterazone

Copyright © 2005 Altera Corporation
Summary

- Total Device Power Is What Matters
 - 90-nm FPGAs Have Best Total Device Power

- Accurate Power Estimation
 - Requires Good Power Models
 - Sum Power of All Voltage Rails
 - Consider Worst-Case Silicon

- Stratix II
 - Best Performance at 90 nm
 - Total Device Power Better than Competition for High Speed Designs

- HardCopy II Reduces Power Even Further
 - Achieves Power Efficiency Beyond Any FPGA
Resources & More Information

 - Stratix II Early Power Estimator v2.1 (Spreadsheet)
 - Power Basics
 - Certified Power Partner Solutions
 - AN 378: Stratix II Low Power Design Techniques (PDF)
 - AN 355: Stratix II Device Power Considerations (PDF)
 - AN 358: Thermal Management for 90nm FPGAs (PDF)
 - User Guide: PowerPlay Early Power Estimator (Coming Mid-05)

- Quartus II Handbook – PowerPlay Sections
 - Early Power Estimator (Vol. 3 Chapter 7)
 - Power Analyzer (Vol. 3 Chapter 8)

- Stratix II 90-nm Silicon Power Optimization
Thank You
For More Information
Visit www.altera.com