

Reduce FPGA Power With Automatic Optimization & Power-Efficient Design

Vaughn Betz & Sanjay Rajput

Previous Power Net Seminar... Silicon vs. Software Comparison

Quartus II PowerPlay: The Most Accurate Power Estimation Tool

(1) The Xilinx ISE XPower Tool Crashes Copyright © 2005 Altera Corporation

Accurate Models Lead to Intelligent Decisions

- Intelligent decisions on power & thermal management
 - Accurate power models are critical
- For FPGA software to make intelligent power optimization decisions
 - Accurate power models are critical

Questions We'll Answer Today

- How do I estimate my design's power?
- How does power optimization work?
- How effective is Quartus II PowerPlay in reducing power?
- What are design techniques for reducing power?
- How can I ensure I'm using the best CAD settings for power?

Power Analysis Overview

Getting the Best Accuracy

- Accurate power estimates & analysis allow
 - Time to optimize system
 - FPGA CAD software to optimize design power
 - Design decisions that reduce power

Early Power Estimator

Early Power Estimator Accuracy

- Dynamic power accuracy limited by
 - Lack of place & route data
 - User entry: Resources, toggle rates, enable rates

Quartus II Power Analyzer

More accurate than Early Power Estimator

- Has precise resource counts
- Has power models for each RAM/ALM/DSP mode
- Considers exact routing used
- Best accuracy: Simulate for toggle rates
- Reduced accuracy: Vectorless analysis for toggle rates

Example: Power vs. RAM Mode

8700+ Designs Covering All FPGA Elements

Quartus II Automatic Power Optimization

Settings, Algorithms and Results

Power Optimization Overview

Timing-Driven Compiler

Timing Critical? No Min Area Power-Driven Compiler

PowerPlay Power Optimization

- Power-driven synthesis & fitting
- Normal effort (default)
 - Does not increase compile time
 - No reduction in design performance
 - No need for toggle rate data from simulation
- Extra effort
 - Larger power reduction
 - May increase compile time
 - All timing optimization enabled, but performance loss possible
 - Best with toggle rate data from simulation

PowerPlay Power Optimization

Three Components of Power

Dynamic Power Dominant Focus of Power Optimization

Core Dynamic Power

99 Customer Designs, Stratix II Devices

*Digital Signal Processing (DSP) Block power: 5% of Dynamic power for designs that use DSP blocks

Power-Optimal RAM Mapping

- Power inefficient to use large physical RAM for small memory or vice versa
- Tri-matrix memory gives
 3 physical RAM sizes
- Quartus II automatically picks best physical RAM

RAM Enable Optimization

Shut RAM down when unused \rightarrow less power

- Convert read/write enable to clock enable

Power-Optimized RAM Mapping

RAM Power Reduction (Stratix II)

- Normal effort: 6% average savings
- Extra effort: 21% average savings

Power-Driven Place & Route

- Minimize capacitance of high-toggling signals
- Without violating timing constraints

Clock Shut Down Hardware

Stratix II: Can shut down clock at 3 levels of tree

- Top-level: Shut down 1/8 of clock tree
- Next-level: 1/500 of clock tree
- Bottom-level: 1/5000 of clock tree

Placement to Reduce Clock Power

Experimental Flow

Slide 24

AL14 I don't see any results. Is it slide 25 and 26? Amy Lee, 02/12/2005

Stratix II Results: Normal Effort

Stratix II Results: Extra Effort

Stratix II Results Summary

Power Optimization Flow	Dynamic Power vs. QII 5.0	F _{max} Change	Compile Time Change
Effort: Normal	-15%		
Effort: Extra Toggle rates: Simulation	-21%	-2%	+9%
Effort: Extra Toggle rates: Vectorless	-18%	-2%	+9%
Effort: Extra Toggle rates: Simulation Easy timing constraint	-25%		+100%

Designing for Lower Power

Six Tips for Reducing Core Power

1. Use Hard IP Blocks

Synthesis tool inferring all the hard blocks it should?
 Check with floor-plan editor or HDL viewer

DSP Blocks

- Less power than logic elements except for small multiplies (e.g. 5x5)
- Use all the DSP logic (not just multipliers):
 - Multiplier-accumulator, complex-multiplier, finite impulse response sample chaining, etc.
- Use altmult_accum MegaFunction if synthesis not inferring

1. Use Hard IP Blocks (Cont.)

RAM blocks

- Usually inferred by synthesis
- Use **altsyncram** MegaFunction if necessary
- Shift registers
 - Many toggling signals: Power inefficient
 - Medium to large shift registers: Implement in FIFOs
 - Use **altshift_taps** MegaFunction if necessary

2. Synthesize for Area

Less logic usually means less power

- Fewer signals to toggle
- If sufficient timing margin, tell synthesis tool to optimize for area

3. Help Shut Down RAM Blocks

- Specify read-enable & write-enable signals on your RAMs whenever possible
 - PowerPlay will convert to clock enables
 - Completely shuts down RAM on many cycles
- Leave RAM Block Type = Auto
 - Power optimizer will choose best RAM block

4. Use Clock Enables on Logic

When clock enable is low

- 1. Register + downstream logic don't toggle
- 2. Clock inside a logic array block (LAB) is shut off
- Even when clock enable is not needed for functionality, it can save power

5. Minimize Glitching

Some logic produces many transitions/cycle

- For example, CRC/parity, combinational multipliers
- Find "Glitchy" logic via power analyzer report
- Register inputs & outputs of "Glitchy" logic
- Insert pipeline registers if possible

6. Shut Down Idle Clocks

Entire clock domain unused in some cycles

- Use the **altclkctrl** MegaFunction to safely gate the clock
- Shuts down entire clock tree → lower power than a clock enable on all registers

Power Optimization Advisor & Design Space Explorer

"Your FAEs in Quartus"

Power Optimization Advisor

- Explains power analysis best practices
- Power optimization suggestions
 - In priority order
- Highlights recommended settings not enabled on your design
- Button to correct settings
- Located in Tools Menu

Power Optimization Advisor

Design Space Explorer

- Searches Quartus options to find best implementation
 - "Search for Lowest Power"
 - Finds settings that minimize power & meet timing
 - quartus_sh --dse or Tools Menu

Fil	e <u>P</u> rocessing <u>O</u> p	otions <u>H</u> elp		
🖻 🕨 🌍 🕅 🧠 🛛 🚭				
	Settings A	dvanced Explore		
Project Settings				
	Project:	sync		
	Family:	Stratix II		
	Revision:	sync		
	Seeds:	35711		
	Project Uses Quartus II Integrated Synthesis			
Allow LogicLock Region Restructuring				
Exploration Settings				
O Search for Best Area				
Search for Best Performance				
	Effort Level: Highest (Physical Synthesis wi			
<	Search for Lowest Power			
	C Advanced Search			
L				

Summary & Wrap Up

Altera's PowerPlay Suite

- Most accurate power analysis tools
- Automatic power optimization
 - Industry first
 - Highly effective
 - 20% to 25% dynamic power reduction on average
- Power Optimization Advisor guides you to lower power

Better Tools: Lower Power & No Surprises

Stratix II vs. Virtex-4 Power

Power & Altera Hardware

- Stratix II
 - Lowest dynamic power & lowest total power for 90nm high-density FPGAs
- Cyclone[™] II
 - Lowest power of any FPGA
- HardCopy[®] II
 - Smooth migration to lower power
 - Typical: 2X to 3X reduction vs. FPGA

Resources & More Information

Quartus II Handbook Volume 2, Chapter 9. -Power Optimization <u>www.altera.com/quartus2</u>

- Stratix II power page <u>www.altera.com/stratix2power</u>
- Cyclone II power page <u>www.altera.com/cyclone2power</u>

Power management resource center <u>www.altera.com/power</u>

Thank You

For More Information Visit www.altera.com