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Robust Optimization of Multiple Timing Constraints
Michael Wainberg and Vaughn Betz, Member, IEEE

Abstract—Modern Field-Programmable Gate Array (FPGA)
circuit designs often contain multiple clocks and complex timing
constraints, and achieving these constraints requires timing
optimization at all stages of the CAD flow. To our knowledge,
no prior published work has either described or quantitatively
evaluated how to compute connection timing criticalities for
circuits with multiple timing constraints in order to best guide
CAD optimization algorithms. While single-clock techniques have
a simple extension to multi-clock circuits, this formulation is
not robust for circuits with multiple constraints of different
magnitudes, or impossible constraints. We describe a robust
method of timing optimization for circuits with multiple timing
constraints, implemented in the open-source VPR (Versatile Place
and Route) FPGA CAD tool. Our formulation can optimize
multiple constraints well, even in the case where some constraints
are impossible, and achieves over 20% greater clock speed with
aggressive constraints than a straight-forward extension of single-
clock work.

Index Terms—Circuit optimization, field programmable gate
arrays, multi-clock circuits, timing analysis, timing constraint

I. INTRODUCTION

A
S the number of transistors in Field-Programmable Gate

Arrays (FPGAs) continues to grow according to Moore’s

Law, there has been a corresponding increase in the size

and complexity of FPGA circuit designs. This presents new

challenges to the Computer-Aided Design (CAD) tools used

to map designs onto FPGAs.

One complexity is that modern designs often include reg-

isters on many different clocks: for example, a typical DDR3

interface contains 5 to 7 clocks, and designs with multiple

memory and serial interfaces may have dozens of clocks [1].

I/O ports add to the effective number of clocks in a design,

since an I/O port is often equivalent to an off-chip register with

additional delay through the I/O. We define a clock domain as

a set of registers clocked on the same clock, or a set of input

or output ports connected to registers on a common off-chip

clock.

CAD tools must analyze the timing of all paths between

registers or I/Os which have been given a timing constraint

by the designer. A timing constraint is a desired maximum

delay along any path between a particular pair of source and

sink clock domains (for the purposes of this paper, hold-

time analysis is neglected). Timing information is used in two

ways: to guide circuit optimization, as circuit elements may

be rearranged to reduce the delay of paths close to violating

timing constraints; and to analyze the degree of attainment of
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timing constraints in the final circuit implementation to report

to the designer.

Increasing the number of clocks and I/Os in the circuit

leads to a corresponding growth in the number of timing

constraints, since each clock domain will in general require a

distinct timing constraint, as will any clock domain pairs em-

ploying synchronous data transfer between them. Multi-clock

timing optimization is recognized as an important problem

in industrial CAD tools, and at least one patented technique

[2] exists for this task. However, we are not aware of any

published research on multi-clock timing optimization, or any

evaluations of the best way to perform it.

A robust timing optimizer should provide an accurate metric

for the timing importance of each connection between circuit

elements in the presence of a variety of timing constraints of

different magnitudes, in order to guide the various steps of

CAD optimization. Even early in the CAD flow, when delay

estimates are imperfect, a robust optimizer should give a rough

estimate of whether each connection can achieve its timing

constraint.

Timing optimization should be robust even when given

timing constraints which are impossible to achieve. A typical

FPGA design workflow involves rapid iteration of design

changes and CAD analysis, and some paths may initially be

given impossible timing constraints, to be corrected later in

the design process. CAD tools must avoid over-optimizing

domains with impossible constraints at the cost of causing

other domains to fail their timing constraints, as this obscures

the root cause of the timing issue. This could lead designers

to waste time redesigning portions of a circuit that can already

meet timing, for instance by repipelining modules, rewrit-

ing combinational logic, introducing multicycle constraints,

or instantiating multiple copies of a module. Robust timing

optimization should let as few constraints fail as possible, and

ensure that those which do are failing due to an actual timing

issue with the design, rather than with the CAD optimizer.

In this paper, we describe a robust method of timing opti-

mization for circuits with multiple timing constraints (multi-

clock circuits), used in the open-source VPR (Versatile Place

and Route) FPGA CAD tool [3]. We first describe a standard

procedure for single-clock timing analysis and optimization.

We then summarize a method for specifying multiple timing

constraints, and timing analysis of multi-clock circuits. We

then illustrate the complications which limit the robustness

of straight-forward multi-clock timing optimization. Finally,

we describe various implementations of multi-clock timing

optimization which address these complications, and compare

their performance at timing- and wirelength-driven optimiza-

tion in VPR, as well as their efficacy at optimizing a mix of

achievable and impossible constraints. We find a formulation

which can optimize multiple constraints well, even in the case
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where some constraints are impossible. While our focus of

study is FPGAs, this work is expected to also be applicable

to Application-Specific Integrated Circuits (ASICs).

II. BACKGROUND: SINGLE-CLOCK TIMING ANALYSIS AND

OPTIMIZATION

A. Timing analysis

Timing analysis uses a directed graph representing timing

dependencies between connected circuit elements [4], [5].

Nodes denote input and output pins of registers, look-up tables

(LUTs) and other primitive blocks; edges denote connections

between circuit elements, and their weights represent the time

delay between nodes.

In single-clock circuits, timing analysis is usually performed

using a pair of breadth-first traversals. First, a forward breadth-

first traversal is performed from timing graph source nodes

(register outputs, chip inputs and memory outputs) to sink

nodes (register inputs and chip outputs), to compute the

arrival time at each node. The arrival time Tarr(i) is the time

after a clock edge at which node i’s value will stabilize, or

equivalently the longest path to this node from any source node

in its transitive fanin, and is calculated recursively as [6]:

Tarr(i) = max∀j∈fanin(i){Tarr(j) + delay(j, i)}. (1)

At source nodes, the base case is:

Tarr(source) = 0. (2)

This equation captures the notion that the value of a node i

only stabilizes once the values of all nodes j in its immediate

fanin have stabilized.

Second, a backward breadth-first traversal is performed from

sink nodes to compute the required arrival time, also called the

required time, at each node. The required time Treq(j) is the

time after a clock edge at which node j’s value must stabilize,

so that all registers in its transitive fanout are able to meet their

setup time requirements. It is defined as the timing constraint

minus the delay of the longest path from node j to any sink

node in its transitive fanout, and is calculated as:

Treq(i) = min∀j∈fanout(i){Treq(j)− delay(i, j)}. (3)

At sink nodes, the base case is:

Treq(sink) = cons (4)

where cons is the timing constraint.

From arrival and required times, a slack is calculated for

each edge, representing the amount of delay which could be

added to a connection before any path using the connection

would violate the timing constraint. The critical path delay

can then be defined as the delay of the lowest-slack path.

Slack is equal to the difference between the required time and

the arrival time, or more specifically, the difference between

the required time at the end of a connection and the arrival

time at its start, minus the delay along the connection. For a

connection from i to j, then,

slksingle−clock(i, j) = Treq(j)− Tarr(i)− delay(i, j). (5)

B. Timing optimization

FPGA CAD tools use timing information to optimize the

layout of a design on the chip by reducing the delay of

more timing-critical paths. Timing analysis is interleaved with

optimization during all stages of the physical CAD flow —

clustering, placement and routing — so that the optimizers

can obtain feedback on the results of their actions. Most

optimization algorithms use either connection weights or net

weights to optimize timing, for instance in placement [7].

While raw slacks are the most useful piece of information

for the designer and are consequently given in the final timing

analysis, timing optimizers often use a related metric called

criticality, which quantifies the timing importance of each

connection [8], [9]. Criticality can be used directly as a

connection weight, or as input to a function that computes

connection weights.

In general, criticality has been defined to satisfy two proper-

ties: it should increase with decreasing slack, since connections

with lower slack are more important to optimize; and it should

be normalized to between 0 and 1, as explained in Section

IV-B.

A definition of criticality for single-clock circuits used in

the Pathfinder FPGA router [10] and since widely adopted for

other CAD phases such as placement and clustering [6] is the

following:

critsingle-clock-pathfinder(i, j) = 1−
slk(i, j)

Dmax
(6)

where Dmax is the critical path delay, or equivalently the

maximum arrival time over all nodes. As required, criticality

increases with decreasing slack; it can never be less than 0,

since the maximum slack along any edge can never exceed

Dmax; and it can never be greater than 1, provided that

slack is non-negative. For slack to be non-negative, the timing

constraint, i.e. the required time at sink nodes, must be greater

than or equal to Dmax; in single-clock circuits, we may simply

set the constraint to equal Dmax.

A nearly equivalent formulation proposed by Maidee et al.

[11], [12] normalizes by the maximum slack in the circuit,

instead of the maximum delay:

critsingle-clock-maidee(i, j) = 1−
slk(i, j)

max∀i,j{slk(i, j)}
. (7)

Criticality has been enhanced by incorporating path count-

ing, which considers all of the paths using a connection, not

just the most critical one. Path counting was proposed by Kong

[13] and used in Chen and Cong’s SPCD algorithm [14],

[15]. Other enhancements have been developed to account

for process variation in the delay of each connection, using

statistical methods [16], [17], [18].

Instead of calculating criticality directly, Ren et al. [19] try

a variety of connection weights by repeatedly invoking timing

analysis and placement optimization. They then choose the
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weights which optimize a figure of merit, which they define

as the total amount by which the slacks of sink nodes fall

short of a designer-specified threshold. That is:

FOM =
∑

t∈sink : slk(t)<threshold

slk(t)− threshold (8)

When this threshold is 0, the figure of merit reduces to total

negative slack.

This prior work has focused on the single timing constraint

case, and as will be shown in Section IV, generalizing these

equations to the multi-clock case raises new questions and

complexities.

C. Clock delay

Clock delay can be accounted for in timing analysis by

subtracting clock skew from the delay of each path. However,

a more convenient formulation, which does not require keeping

track of paths, consists of adding the clock delay at each

source/sink node to its arrival/required time:

Tarr(source) = clock delay(source)

Treq(sink) = cons+ clock delay(sink).
(9)

This formulation ensures that slack has the proper value in the

presence of clock delay.

The value by which slack is divided in (5) to form criti-

cality must also be modified, since criticality will be negative

whenever slack exceeds Dmax due to clock skew. However,

slack is guaranteed to never exceed Treq,max, the maximum

required time at any sink node in the circuit (since slack is

essentially required time minus arrival time, and arrival time

can never be negative). Therefore, a definition which correctly

normalizes criticality is:

critsingle-clock(i, j) = 1−
slk(i, j)

Treq,max
. (10)

Note that this definition reduces to (6) in the absence of

clock delay.

III. MULTI-CLOCK TIMING ANALYSIS

The first step in extending the timing analysis described

in the previous section to multi-clock circuits is to allow the

specification of complex timing constraints. To this end, we

have enabled VPR to support a subset of the Synopsys Design

Constraint (SDC) language [20]. Each clock in the design

may be given a distinct target maximum clock period and

be phase-shifted with respect to other clocks. Paths between

pairs of clock domains may be ignored if their data transfer

is asynchronous.

The clocks of off-chip registers leading to and from I/O

ports may also be analysed: the I/Os are treated as registers

clocked on a virtual clock (i.e. one that does not appear in the

design). The maximum off-chip delay from any register to the

I/O port is treated as an additional clock delay to the I/O, or

is mapped to a connection inside the I/O port.

Fig. 1. Example calculation of a timing constraint, between a source domain
with period 5 ns and a 1 ns phase shift, and a sink domain with period 4 ns
and no phase shift. The LCM clock period is 20 ns, and the timing constraint
for transfers from src clk to sink clk is 1 ns.

In1

In2

Out1

Out2

clk1

clk2

10 ns

4 ns

1 ns

create_clock -period 10 clk1

create_clock -period 4 -waveform {1 3} clk2

create_clock -period 4 -name out

set_false_path -from [get_clocks{clk1}] -to [get_clocks{out}]

set_input_delay -clock clk1 -max 0.5 [get_ports{in1}]

set_output_delay -clock out -max 1 [get_ports{out*}]

10 – 0.5 = 9.5 ns

3 – 1 = 2 ns

2 – 1 = 1 ns

From

clk1

clk2

out

To

clk1       clk2       out

3

10 1 2

1

2

4

1 4

(false)

Fig. 2. SDC specification and constraint matrix for an example circuit with
3 constrained clocks. Constraints for each path are indicated by arrows; path
delays are unmarked. Greyed-out entries correspond to pairs of constrained
clock domains which do not have any paths analyzed between them.

Each pair of source and sink domains may have a timing

constraint, leading to a C by C matrix of timing constraints

for a circuit with C clocks (real and virtual). For diagonal or

intra-domain matrix entries, the constraint is just the target

clock period specified in the SDC file. However, for off-

diagonal entries, the constraint is implicit: it is the minimum

time between a source edge and the next sink edge, assuming

both clocks run at their target periods. This time can be

found by iterating over all sink edges and finding the nearest

previous source edge, as shown in Fig. 1. Only edges up

to the least common multiple (LCM) of the clock periods

need be considered, since the pattern of edges will repeat

after that. Fig. 2 shows an example SDC specification for a

three-clock circuit, along with the timing constraint matrix and

the maximum permissible delays for each path. The timing

constraint matrix formalism is flexible enough to represent

phase-shifted clocks (as shown in Fig. 2), clocks with irregular

duty cycles, and even negative-edge-triggered flip-flops (which

are equivalent to positive-edge-triggered flip-flops on a 50%

phase-shifted clock with the same target period as the original

clock).

Since each connection in a multi-clock circuit may now

be on paths between multiple domain pairs, it may have

multiple values for slack, one for each constraint. However,

only the worst-case, minimum slack is important to the de-

signer. Computing the minimum slack requires performing

a pair of forward and backward breadth-first traversals for
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Fig. 3. An example slack calculation for a circuit with two clocks, where
each connection has a delay of 2 ns. The first four panels show the results of
each pair of forward and backward breadth-first traversals, corresponding to
the highlighted entry in the constraint matrix. The numbers on each node are
in the format arrival time / required time. The slack for each edge is set to
the minimum of the slacks for each constraint, as shown in the fifth panel.

each pair of source and sink clock domains with a timing

constraint between them, using the relevant entry from the

timing constraint matrix to compute required arrival times.

The slack of each connection is then set to the minimum of

its slacks for each constraint:

slkcons(i, j) = T cons
req (j)− T cons

arr (i)− delay(i, j)

slk(i, j) = min∀cons{slkcons(i, j)}.
(11)

Fig. 3 shows the slack calculation for an example two-clock

circuit.

IV. COMPLICATIONS IN MULTI-CLOCK TIMING

OPTIMIZATION

A. Normalizing slacks to form criticality

The first issue is how to normalize slacks to form criticality.

There are two plausible formulations which extend (10) to

multiple clock circuits. One formulation is a global normal-

ization, in which the least slack over all constraints is divided

by the greatest required time over all constraints:

critglobal(i, j) = 1−
slk(i, j)

max∀cons{T cons
req,max}

= 1−
min∀cons{T

cons
req (j)− T cons

arr (i)− delay(i, j)}

max∀cons{T cons
req,max}

.

(12)

The other formulation is a per-constraint normalization: a

criticality is calculated for each constraint based on the slack

and the maximum required time for that constraint, and the

final criticality is set to the worst-case (maximum) criticality

over all constraints:

critper-cons(i, j) = max∀cons

{

1−
slkcons(i, j)

T cons
req,max

}

= max∀cons

{

1−
(T cons

req (j)− T cons
arr (i)− delay(i, j))

T cons
req,max

}

.

(13)

However, global normalization as in (12) erroneously

favours the optimization of domains with short paths. To

see why, consider a circuit with two non-overlapping clock

domains clk and clk2. Say that the critical path delays of the clk

and clk2 domains are respectively 10 and 4 ns, and that barely

achievable timing constraints are set for each domain (equal to

the critical path delays). Because the constraints are of equal

difficulty, the two domains should be optimized equally.

According to (12), both domains are normalized by the

largest required time over all constraints, 10 ns. As a result,

every connection on clk2 has a criticality of at least 0.6, since

clk2 paths can have a slack of at most 4 ns. Meanwhile,

the criticality of connections on clk can span the full range

from 0 to 1. The net effect is over-optimization of the clk2

domain at the expense of clk. For this reason, per-constraint

normalization as in (13) is preferable.

B. Avoiding greater-than-one criticality

Greater-than-one criticality is the result of negative slacks,

which occur whenever a timing constraint is smaller than the

delay of a path subject to the constraint. Even if a constraint

is achievable, it may not be achieved until late in the CAD

flow, so negative slacks and greater-than-one criticalities may

still be present in earlier stages.

As stated in Section 2, it is desirable to normalize crit-

icality to be between 0 and 1. The reason for this is that

at some stages of optimization, for example clustering and

placement in VPR, it is beneficial to use a power of criticality

(criticalitycriticality exponent) as the connection weight, to

give a particularly high priority to the optimization of more

critical connections [6]. For instance, VPR’s clusterer uses a

criticality exponent of 8. This means that connections with

criticalities near one will have a connection weight near one,

while those less than one will have a reduced connection

weight.
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Criticalities greater than one are problematic because they

result in very large connection weights when taken to a high

power. Large connection weights are not inherently unusable,

since the timing cost functions used by clustering, placement

and routing typically use fractional changes in timing cost [6],

[16]. Rather, the problem is that these values become relatively

much larger than the weights of connections with criticality

less than one.

For example, in Fig. 3, the top center connection has a slack

of 2 corresponding to a required time of 8 (from the first

traversal pair), hence a criticality of 0.75. Meanwhile, the top

left connection has a slack of -2 corresponding to a required

time of 4 (from the second traversal pair), hence a criticality

of 1.5. Both connections are fairly critical and should be

optimized. However, since the first connection has half the

criticality of the second, it will have a connection weight 256

times smaller than the second, assuming a criticality exponent

of 8, and be effectively ignored for optimization purposes.

Reducing the gap between failing and achievable constraints

can be accomplished by reducing the criticality exponent.

However, this would defeat the purpose of the criticality ex-

ponent, by reducing its effectiveness at separating criticalities

near one from those less than one. Although it is possible

to apply different transformations to criticalities of different

magnitudes, rather than a uniform power-law transformation,

it is unclear what type of transformation to apply in order to

get good connection weights in all circumstances. It appears

more feasible to deal with greater-than-one criticalities at the

source, rather than pushing the problem to the timing cost

calculation.

In the following section, we discuss several ways to avoid

greater-than-one criticality by modifying slacks to be non-

negative, which we term slack modification. However, note

that the slacks reported to the designer in timing analysis are

never modified, only the slacks used to calculate criticality

during timing optimization. We call a combination of slack

modification and criticality normalization a criticality formu-

lation.

V. FORMULATIONS OF SLACK MODIFICATION

A. Unmodified slacks (U)

The simplest solution is to not modify slacks at all. Al-

though this does not avoid greater-than-one criticality, con-

nection weights can at least be bounded by an appropriate

choice of criticality denominator (the delay value which slack

is divided by when calculating criticality). For instance, since

negative slacks cannot exceed the maximum arrival time,

setting the criticality denominator to the maximum of all

arrival and required times ensures that criticality is at most 2.

However, this still allows connection weights to become quite

large after taking criticality to a high criticality exponent.

B. Clipped slacks (C)

Another solution is to clip any negative slacks to 0, while

leaving positive slacks unchanged:

slkc(i, j) = max(min∀cons{slkcons(i, j)}, 0). (14)

While this works when timing constraints are achievable,

it fails when given impossible timing constraints, as the

optimizers lose the ability to distinguish paths which severely

fail timing from those that only slightly fail. In the limiting

case of a 0 ns timing constraint, all paths will have negative

slack and will be clipped to 0, so that the optimizers will have

absolutely no information about which connections are more

important to optimize. While this is an extreme example, large

timing failures do nonetheless occur early in the design cycle,

as well as early in the CAD flow. Fig. 4 shows the result of

applying shifted slacks to the circuit of Fig. 3.

clk1

clk2clk2

clk1
0

0

2

0

1

0

01 clk2

0

Fig. 4. The circuit from Fig. 3 with slacks labeled, after clipping negative
slacks to 0. Note that most connections have 0 slack, and optimizers cannot
determine which of these connections are more critical to optimize.

C. Shifted slacks (S)

Another method of slack modification is to shift up every

slack by the magnitude of the most negative slack in the entire

design (and increase each constraint’s criticality denominator

by the same amount). If no negative slacks exist, no shifting

occurs.

shift =
∣

∣

∣
min(0,min∀i,j{slk(i, j)})

∣

∣

∣

slkcons,s(i, j) = T cons
req (j)− T cons

arr (i)− delay(i, j) + shift

crits(i, j) = max∀cons

{

1−
slkcons,s(i, j)

T cons
req,max + shift

}

(15)

A disadvantage of shifting slacks is that it requires an extra

cost of either runtime or memory: either two pairs of graph

traversals per constraint instead of one (the first to find

the most negative slack, the second to shift slacks), or the

intermediate storage of slacks for every constraint. Fig. 5

shows the result of applying shifted slacks to the circuit of

Fig. 3.

clk1

clk2clk2

clk1
1

0

5

0

4

0

14 clk2

3

Fig. 5. The circuit from Fig. 3, after shifting all slacks up by 3 ns (since the
most negative slack is -3 ns). Note that shifting slacks preserves information
about which connections are more critical.
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D. Relaxed slacks (R)

A variation of shifted slacks is to shift each constraint’s

slacks by the most negative slack in that constraint, if any

negative slacks exist. The simplest way to do this computa-

tionally is to relax the required time at every sink node by

setting it to the maximum of the constraint (plus the clock

delay at the sink node) and the maximum arrival time at any

sink node in the constraint’s traversal:

T cons
req,r(sink) = max(cons+ clock delay(sink), T cons

arr,max).
(16)

Aside from this change, slack and criticality are calculated in

the default way, according to (11) and (13). Fig. 6 shows the

result of applying relaxed slacks to the circuit of Fig. 3.

Relaxing slacks is equivalent to shifting them when the

circuit has a single constraint, or when all constraints have

already been achieved and no slacks need to be shifted or

relaxed. The only difference between them is that when

a circuit contains multiple tight or impossible constraints,

relaxation favours the optimization of the domains with more

lax constraints. This is because relaxation gives a larger shift

to domains which fail timing by a larger amount, while shifted

gives the same shift to all domains (see Section VI-A2 for a

more detailed discussion).

clk1

clk2clk2

clk1
0

0

2

0

1

0

01 clk2

2

Fig. 6. The circuit from Fig. 3, after relaxing slacks. Note that relaxing
slacks preserves much more information than clipping, because it maintains
the ordering of slacks within each domain; however, unlike shifting, it does
not preseve the ordering of slacks between domains.

Figures 7 to 10 show pseudo-code for multi-clock timing

analysis (for brevity, only per-constraint criticality normaliza-

tion is shown). The control variables relaxed, shifted and

clipped indicate aspects of the algorithm which are specific to

each slack modification method. The timing graph is iterated

over in breadth-first fashion one ‘level’ at a time: first the

source nodes, then the nodes in the immediate fanout of the

source nodes, and so on.

VI. RESULTS

We conducted three sets of tests to compare the slack

modification and criticality normalization methods discussed

in the previous two sections, using three sets of benchmark

circuits: MCNC, spliced MCNC, and VTR. All tests were

conducted using VPR 7.0 [3] with default settings, on the

k6 frac N10 40nm architecture, a 40-nm architecture with ten

fracturable 6-LUTs per logic block and length-4 routing wires.

All quoted results are for the second run, to model the typical

case where there is some spare routing in the chip [5]. Runtime

results are quoted for single-core execution on an Intel Xeon

E5-2650 processor clocked at 2.0 GHz.

Inputs: timing graph describing the circuit (see Section II-A);
the (estimated) delay of every edge

Output: criticality of each edge (netlist connection)

1: for all edge ∈ timingGraph do

2: edge.slack = ∞
3: edge.criticality = 0

4: for all sourceDomain, sinkDomain ∈ clockDomains do

5: for all node ∈ timingGraph do

6: node.Tarr = −∞
7: node.Treq = ∞

8: forwardTraversal()
9: backwardTraversal()

10: updateSlackAndCrit()

Fig. 7. Pseudo-code for multi-clock timing analysis, using per-constraint
criticality normalization.

1: for all sourceNode ∈ timingGraph do

2: if node.domain == sourceDomain then

3: if node.type == REGISTER then

4: node.Tarr = node.clockDelay
5: else if node.type == INPUT then

6: node.Tarr = getOffChipDelay(node)

7: for all node ∈ levels(timingGraph) do

8: if node.Tarr 6= −∞ then

9: // node is on a path from sourceDomain

10: for all toNode ∈ fanout(node) do

11: toNode.Tarr = max(toNode.Tarr,
node.Tarr + edge(node, toNode).delay)

Fig. 8. Pseudo-code for the forward traversal for each constraint

1: cons = getT imingConstraint(sourceDomain, sinkDomain)
2: maxTarr = getMaxTarrThisConstraint(timingGraph)
3: for all node ∈ reversed(levels(timingGraph)) do

4: if node.isSink() then

5: if node.Tarr 6= −∞ and node.domain == sinkDomain then

6: // node is on sink domain and on a path from source domain

7: if relaxed then

8: node.Treq = max(cons + node.clockDelay,maxTarr)
9: else

10: node.Treq = cons + node.clockDelay

11: else

12: // not a sink

13: if node.Tarr 6= −∞ then

14: // node is on a path from sourceDomain (valid Tarr)...

15: if ∃ toNode.Treq 6= ∞ ∈ fanout(node) then

16: // ...and to sinkDomain (valid Treq)

17: for all toNode ∈ fanout(node) do

18: node.Treq = min(node.Treq,
toNode.Treq − edge(node, toNode).delay)

Fig. 9. Pseudo-code for the backward traversal for each constraint

1: critDenom = getMaxTreqThisConstraint(timingGraph)
2: if shifted then

3: shift = getMostNegativeSlackAllContraints(timingGraph)
4: shift = min(shift, 0)
5: critDenom = critDenom − shift

6: for all node ∈ timingGraph do

7: for all toNode ∈ fanout(node) do

8: edge = edge(node, toNode)
9: slack = toNode.Treq − node.Tarr − edge.delay

10: if shifted then

11: slack = slack − shift
12: else if clipped then

13: slack = max(slack, 0)

14: edge.slack = min(edge.slack, slack)
15: edge.crit = min(edge.crit, 1 − slack/critDenom)

Fig. 10. Pseudo-code for the slack and criticality update for each constraint



WAINBERG AND BETZ: ROBUST OPTIMIZATION OF MULTIPLE TIMING CONSTRAINTS 7

In the following analysis, (a, b) denotes a clock constraint

of a ns and an I/O constraint of b ns, and M(a, b) denotes

a trial using criticality formulation M and constraint (a, b).
For instance, R(0, 0) denotes a trial using relaxed slack

modification with per-constraint normalization where both the

clock and I/O domains are given a 0 ns constraint.

Cross-domain paths are analysed for all circuits where they

exist. Most of the time, cross-domain constraints are derived

implicitly from target clock periods (see Section III). However,

there is one exception where they are specified explicitly:

if an I/O domain is assigned an extremely lax constraint of

1000 ns, clock-to-I/O and I/O-to-clock paths are also assigned

a constraint of 1000 ns so that all paths involving I/Os are

marked as irrelevant for the purpose of timing optimization.

A. MCNC benchmarks

The first set of tests compares the achieved clock period,

I/O delay and wirelength of the 10 largest single-clock MCNC

benchmark circuits (bigkey, clma, diffeq, dsip, elliptic, frisc,

s298, s38417, s38584.1, tseng) [21] using different criticality

formulations for timing optimization. I/O delay refers to the

delay of paths from inputs to outputs, not cross-domain paths

between I/Os and registers; clock period accounts for the effect

of clock skew. Table I summarizes the results when the clock

and I/O domains are given each permutation of an impossible

0 ns constraint and a lax 1000 ns constraint, or when both

domains are given an ‘achievable’ (Achv.) constraint equal to

their critical path delay with R(0, 0).
1) Ineffective techniques: unmodified and clipped: Without

slack modification (U), the optimizers are largely unable

to distinguish between tight and lax constraints, giving the

same weight to each domain regardless of its constraint

and severely under-optimizing the clock domain compared

to other methods. The U columns of Table I show that not

modifying slacks achieves 20-21% larger clock periods, 3-8%

lower I/O delay, and 11-12% lower wirelength than R(0, 0),
with all tested constraints. Clipping slacks (C) does show

some responsiveness to timing constraints. However, it also

under-optimizes the clock domain, possibly because clipping

under-optimizes paths which severely fail timing (since their

large negative slack gets clipped to 0) and the clock domain

contains more such paths. With (0, 0) constraints, clipped

and unmodified slacks result in a clock domain critical path

delay over 15% worse than for any other slack modification

technique, as shown in the first row of Table I(a).

2) Shifted vs relaxed slacks: Shifted (S) and relaxed (R)

slacks perform the best overall when the circuit is given a

(0, 0) constraint. As expected, shifted optimizes tight con-

straints over lax constraints more than relaxed. Since the aver-

age clock domain path delay of the 10 circuits is approximately

twice their average I/O-to-I/O path delay, a 0 ns constraint is

even tighter for the clock domains than for the I/O domains.

This means that shifted prioritizes the clock domain at the cost

of neglecting the I/O domain.

1Criticality formulations are, from left: unmodified, clipped, shifted, re-
laxed, shifted with global normalization, relaxed with global normalization.
‘Achv.’ means that the constraint for each domain is set to the critical path
delay achieved with R(0, 0).

TABLE I
GEOMEAN TIMING, WIRELENGTH AND RUNTIME OF MCNC BENCHMARK

CIRCUITS UNDER VARIOUS CRITICALITY FORMULATIONS1 , RELATIVE TO

R(0, 0) (BOLDED). ROWS WITH LAX CONSTRAINTS FOR EACH DOMAIN

ARE GRAYED OUT AS THEY ARE NOT BEING OPTIMIZED.

(a) Achieved clock period

Clock

cons.

I/O

cons.
U C S R Sg Rg

0 ns 0 ns 1.21 1.20 0.97 1.00 1.05 1.01

Achv. Achv. 1.21 1.16 1.02 0.99 1.07 1.01

0 ns 1000 ns 1.20 1.12 0.96 0.98 1.08 1.09

1000 ns 0 ns 1.20 1.34 1.28 1.32 1.31 1.31

1000 ns 1000 ns 1.21 1.19 1.19 1.19 1.16 1.16

(b) Maximum I/O delay

Clock

cons.

I/O

cons.
U C S R Sg Rg

0 ns 0 ns 0.92 0.98 1.06 1.00 1.07 0.99

Achv. Achv. 0.94 0.96 0.95 1.04 0.94 1.01

0 ns 1000 ns 0.97 1.41 1.23 1.24 1.25 1.31

1000 ns 0 ns 0.94 0.92 0.96 0.95 0.91 0.97

1000 ns 1000 ns 0.94 1.08 1.08 1.08 1.11 1.11

(c) Total wirelength (number of logic blocks traversed)

Clock

cons.

I/O

cons.
U C S R Sg Rg

0 ns 0 ns 0.88 0.89 1.00 1.00 1.00 0.99

Achv. Achv. 0.88 0.91 0.99 0.99 0.98 0.98

0 ns 1000 ns 0.89 0.90 0.98 0.99 0.90 0.90

1000 ns 0 ns 0.88 0.92 0.94 0.94 0.91 0.92

1000 ns 1000 ns 0.88 0.86 0.86 0.86 0.85 0.85

(d) Total runtime (minutes) for (0,0)

U C S R Sg Rg

Raw 0.34 0.32 0.41 0.39 0.36 0.37

Relative to R 0.87 0.83 1.05 1.00 0.92 0.96

(e) Timing analysis runtime (minutes) for (0,0)

U C S R Sg Rg

Raw 0.06 0.06 0.11 0.07 0.07 0.07

Relative to R 0.94 0.82 1.57 1.00 0.95 1.00

(f) (0,1000) : (0,0) runtime ratio

U C S R Sg Rg

Total 1.02 1.06 0.97 0.90 0.98 0.91

Timing analysis 0.89 1.02 0.93 0.82 0.87 0.82

For example, consider giving a (0, 0) constraint to the circuit

in Fig. 11, which has a clock domain with a single 10-ns

connection and an I/O domain with a single 4-ns connection.

Shifted slacks would optimize the clock domain significantly

more than the I/O domain: this method would increase both

slacks by 10 ns, giving the clock domain’s connection a slack

of 0 ns and a criticality of 1, with the I/O domain connection

having a slack of 6 ns and a criticality of only 0.4. Conversely,

relaxed slacks would optimize both domains equally, since it

would increase the clock domain’s slack by 10 ns and the I/O

domain’s by 4 ns, giving both connections a slack of 0 ns and

a criticality of 1.
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=
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0 (Treq,max) + 10 (shift) 
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critr = 1 – 
-10 + 10 (relaxed slack)
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-4 + 4 (relaxed slack)

0 + 4 (relaxed Treq,max)

Shifted
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=

=

= 1

1

0.4

1

Clock 

favoured

Domains opti- 

mized equally

Fig. 11. An example of how shifted preferentially optimizes the clock domain
over the I/O domain when given 0 ns constraints on both domains.

Because of this effect, S(0, 0) achieves a 3% increase in

clock speed compared to R(0, 0), as shown in the first row

of Table I(a), but causes a 6% degradation in I/O delay, as

shown in the first row of Table I(b). However, note that since

the clock domain paths are longer, there is approximately a

1-to-1 critical path delay tradeoff between the two domains in

absolute terms.

With a lax clock constraint (bottom two rows of Table I),

shifted and relaxed perform similarly, as the difference in

priorities of the two methods does not come into effect when

most connections in the circuit (those on the clock domain)

already have an extremely low criticality.

3) Global vs per-constraint criticality normalization: As

discussed in Section IV-A, global criticality normalization

(denoted by g) favours the optimization of domains with

shorter paths, in this case the I/O domains, compared to per-

constraint normalization. This effort only slightly decreases

the I/O delay for most constraints, likely because the I/Os do

not require further optimization, but does degrade the clock’s

critical path delay, sometimes significantly (compare S with

Sg and R with Rg in Tables I(a) and I(b)). Perversely, this

effect becomes more pronounced with a lax I/O constraint,

which should optimize the clock more: global normalization

performs 3-8% worse on the clock domain with a (0, 1000)
constraint than with a (0, 0) constraint (compare Sg and Rg

between the first and third rows of Table I(a)), even as per-

constraint normalization performs 1-2% better. This behaviour

is clearly suboptimal and indicates the lack of robustness of

global criticality normalization.

4) Timing-wirelength tradeoff: Relaxed and shifted slacks

show the correct tradeoff between timing and wirelength

optimization. For these methods, wirelength appropriately in-

creases with the number of domains given tight constraints,

since critical connections are routed along slightly more direct

paths, even if this forces non-critical connections to take

significantly more circuitous paths. For instance, increasing

both constraints from (0, 0) to (1000, 1000) reduces wire-

length usage by 14-15% but increases clock delay by 10-23%

(compare S, R, Sg and Rg between the first and fifth rows of

Tables I(a) and I(c)). Unmodified and clipped slacks do not

show the correct tradeoff.

5) Runtime: The runtime of timing analysis is similar for

each criticality formulation (Table I(e)) and between (0, 0)
and (0, 1000) constraints (Table I(f)). The most substantial

difference is that timing analysis for S is approximately 50%

longer because of the extra graph traversals (see Section V-C).

Geomean timing analysis runtime is 26% of geomean total

runtime for S and 18-19% for the other criticality formulations

(compare Tables I(d) and I(e)).

B. Spliced MCNC Benchmarks

The second set of tests compare the best two criticality

formulations from the first set, shifted and relaxed slack

modification with per-constraint normalization. These tests

were performed on true multi-clock circuits given two difficult,

but unequal, constraints. Due to the paucity of available large

multi-clock benchmark circuits, we created benchmarks by

splicing together pairs of the same 10 MCNC benchmarks,

resulting in two-clock circuits with one clock from each of

the original circuits. We used the 10 pairs of circuits with the

largest combined number of logic blocks.

VPR was run three times on each spliced circuit. For the

first run, both sub-circuits were assigned a clock constraint

of 0 ns to indicate that they should be optimized to run as

fast as possible. For the remaining two runs, each of the

two sub-circuits was assigned a timing constraint equal to

its achieved critical path delay from the first run, a barely

achievable constraint, while the other sub-circuit’s constraint

remained at 0 ns, an impossibly tight constraint. The timing

and wirelength results for the last two runs are shown in Table

II. For example, the first two rows give results for the circuit

formed by splicing together the single-clock bigkey and clma

MCNC benchmark circuits: in the first row, bigkey is given

an impossible constraint, while clma is given an achievable

constraint; in the second row, their roles are reversed.

Here, unlike for the first set of tests (Section VI-A), shifted

fails to improve the speed of the tighter clock compared to

relaxed, but it does result in a 7% degradation in the more lax

clock.

The reason for this behaviour is that, unlike Section VI-A,

the two constrained clock domains are entirely disjoint. This

means that they can be instantiated in separate locations of

the chip, without interfering with each other (except when

there is competition for localized on-chip resources, such as

RAM blocks or I/O ports). As a result, relaxed can achieve

close-to-optimal timing on both domains at the same time—

optimization is not a zero-sum game. It is therefore futile for

shifted to devote more attention to the tighter domain as this

only degrades the more lax domain, which still requires good

optimization with its barely achievable constraint.
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TABLE II
CRITICAL PATH DELAY AND WIRELENGTH OF SPLICED TWO-CLOCK

CIRCUITS, WITH ONE SUB-CIRCUIT (NAME IN BOLD) GIVEN A 0 NS

CONSTRAINT AND THE OTHER GIVEN AN ACHIEVABLE CONSTRAINT,
UNDER RELAXED (R) AND SHIFTED (S) SLACK MODIFICATION WITH

PER-CONSTRAINT CRITICALITY NORMALIZATION.

Circuit
Impossible

delay (ns)

Achievable

delay (ns)
Wirelength

R S R S R S

bigkey+clma 1.22 1.22 11.05 10.95 88801 87729

bigkey+clma 10.65 10.91 1.22 1.22 88537 88486

clma+diffeq 10.48 10.35 6.81 6.57 91033 90610

clma+diffeq 7.02 6.88 10.82 10.66 90956 86928

clma+elliptic 10.85 10.55 9.01 9.86 111456 108805

clma+elliptic 9.01 8.78 10.61 11.95 110179 106733

clma+frisc 10.98 10.64 11.96 13.20 116823 116519

clma+frisc 12.14 12.42 11.39 11.39 115958 108933

clma+s298 10.42 10.55 9.80 11.23 93063 89808

clma+s298 9.71 10.08 10.96 11.66 90520 84210

clma+s38417 10.62 10.44 7.37 8.81 121014 123223

clma+s38417 7.39 7.64 10.34 11.90 122401 115747

clma+s38584.1 10.48 11.45 5.54 7.24 125406 124253

clma+s38584.1 5.50 5.91 10.56 10.77 125264 121157

elliptic+s38584.1 9.12 8.85 6.27 5.63 68627 65821

elliptic+s38584.1 6.27 5.27 9.14 9.10 68245 67901

frisc+s38584.1 12.05 12.41 5.50 5.86 72502 67256

frisc+s38584.1 5.91 6.09 12.05 12.73 73819 71734

s38417+s38584.1 7.49 7.62 5.50 6.95 82446 80512

s38417+s38584.1 5.36 5.63 7.78 8.30 80996 77349

S / R geomean 1.00 1.07 0.97

Although realistic multi-clock circuits usually do not have

completely disjoint clock domains, the argument still holds

for them. This is because realistic circuits tend to have

weakly coupled clock domains, with few cross-domain paths

compared to intra-domain paths.

The MCNC and spliced MCNC tests consisted of two runs

of VPR: the circuit was first routed to find the minimum

channel width, then re-routed at a fixed channel width of 1.3

times the minimum.

C. VTR Benchmarks

While the MCNC and spliced MCNC benchmarks are

sufficient to illustrate the effects of various criticality for-

mulations, they are not representative of the size and com-

plexity of modern-day circuit designs. Consequently, tests

similar to those in Section VI-A were conducted on each

of the 9 VTR benchmark circuits [3] with more than 5000

6-LUTs (bgm, blob merge, LU8PEEng, LU32PEEng, mcml,

mkDelayWorker32B, stereovision0, stereovision1, and stere-

ovision2); the largest contains over 100,000 6-LUTs. By

comparison, all of the MCNC benchmarks used in this paper

have fewer than 10,000 4-LUTs, and half have under 2000.

As the architecture used for the earlier tests

lacks the hard multipliers and memories required by

some of the VTR benchmarks, these tests used the

k6 frac N10 frac chain mem32K 40nm architecture, which

adds carry chains, 32KB of RAM and hard multipliers. Since

only one of the benchmark circuits has I/O-to-I/O paths, an

alternative metric of I/O delay was used instead: the geometric

mean of the maximum clock-to-I/O and I/O-to-clock paths.

To reduce CPU time by an order of magnitude, a fixed

channel width of 154 was used for all runs, 10% greater

than the channel width required to route any of the circuits

at R(0, 0). Additionally, the number of routing iterations

attempted before declaring failure was doubled to 100 from

the default of 50. Still, for the least robust slack modification

techniques (clipped and no modification), the LU8PEEng and

LU32PEEng circuits failed to route entirely at this channel

width with certain timing constraints (denoted with an asterisk

in Table III).

The clock period and wirelength results for the VTR bench-

marks do not differ significantly from the MCNC results,

confirming that the broad trends noted in Section VI-A hold

for a variety of circuit sizes. Unmodified slacks are once again

almost completely unresponsive to variations in timing con-

straints (see the U columns of Table III), and both unmodified

and clipped slacks have at least 17% greater clock delay than

relaxed and shifted slacks with a (0, 0) constraint (first row of

Table III(a)).

S(0, 0) performs slightly (2%) better than R(0, 0) on the

clock domain and much worse (26%) on the I/O domain (first

row of Tables III(a) and III(b)).

Global normalization does not degrade the clock domain

as in Section VI-A, and sometimes even substantially outper-

forms per-constraint normalization on the I/O domain (com-

pare S with Sg and R with Rg in Tables I(a) and I(b)), but

per-constraint normalization is still preferred overall because

of global normalization’s worse performance in Section VI-A.

Finally, relaxed and shifted slacks once again exhibit the

timing-wirelength tradeoff described in Section VI-A.

There is more variability in the VTR benchmarks’ I/O

results (Table III(b)), because these benchmarks have much

shorter I/O paths than internal paths: with R(0, 0), their geo-

metric mean ratio of clock period to I/O delay is approximately

6.8, compared to only 2.4 for the MCNC benchmarks. This

allows several criticality formulations to reduce I/O delay

by over one-third when the clock is given a lax constraint

(compare rows 1 and 4 of Table III(b)), since the I/O paths

are so short to begin with.

Runtime results are similar between the MCNC and VTR

benchmarks, aside from the increased runtime for the larger

VTR benchmarks. In particular, geomean timing analysis

runtime is a similar percentage of total runtime (31% for S,

16-20% for the other criticality formulations; compare Tables

III(d) and III(e)), suggesting that the runtime of timing analysis

does not grow much faster with circuit size than the runtime

of other parts of the CAD flow. The time complexity of timing

analysis is the same as that of breadth-first search, O(|V |+|E|)
where |V | and |E| are respectively the number of timing graph

nodes and connections. However, since all practical digital

circuits have constant-bounded fanin, |E| = O(|V |) and hence

the time complexity simplifies to O(|V |).
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TABLE III
GEOMEAN TIMING, WIRELENGTH AND RUNTIME OF VTR BENCHMARK

CIRCUITS UNDER THE SAME CRITICALITY FORMULATIONS AS TABLE I

(a) Achieved clock period

Clock

cons.

I/O

cons.
U C S R Sg Rg

0 ns 0 ns 1.24* 1.17* 0.98 1.00 0.99 0.98

Achv. Achv. 1.26* 1.03* 1.00 0.99 1.02 0.99

0 ns 1000 ns 1.30 1.22 1.00 1.00 1.18 1.16

1000 ns 0 ns 1.23* 1.36 1.23 1.25 1.35 1.34

1000 ns 1000 ns 1.23* 1.14 1.14 1.14 1.18 1.18

(b) Maximum I/O delay (geomean of clock-to-I/O and I/O-to-clock)

Clock

cons.

I/O

cons.
U C S R Sg Rg

0 ns 0 ns 1.12* 1.08* 1.26 1.00 1.17 0.98

Achv. Achv. 1.08* 0.96* 0.96 1.05 0.81 0.96

0 ns 1000 ns 1.13 1.42 1.42 1.46 1.39 1.41

1000 ns 0 ns 1.12* 0.63 0.88 0.91 0.62 0.59

1000 ns 1000 ns 1.10* 1.25 1.25 1.25 1.28 1.28

(c) Total wirelength (number of logic blocks traversed)

Clock

cons.

I/O

cons.
U C S R Sg Rg

0 ns 0 ns 0.88* 0.86* 0.98 1.00 0.98 1.00

Achv. Achv. 0.88* 0.93* 0.99 0.99 1.00 1.00

0 ns 1000 ns 0.91 0.90 0.98 1.00 0.90 0.92

1000 ns 0 ns 0.87* 0.94 0.88 0.88 0.94 0.94

1000 ns 1000 ns 0.87* 0.84 0.84 0.84 0.84 0.84

* LU8PEEng and LU32PEEng failed to route at 154 channels, and are
excluded from these averages.

(d) Total runtime (minutes) for (0,0)

U C S R Sg Rg

Raw 4.56 4.61 4.13 3.69 3.64 3.50

Relative to R 1.24 1.25 1.12 1.00 0.99 0.95

(e) Timing analysis runtime (minutes) for (0,0)

U C S R Sg Rg

Raw 0.81 0.75 1.26 0.72 0.74 0.70

Relative to R 1.12 1.03 1.74 1.00 1.02 0.96

(f) (0,1000) : (0,0) runtime ratio

U C S R Sg Rg

Total 1.00 0.97 0.98 0.96 1.16 1.23

Timing analysis 0.95 0.98 0.97 0.97 0.98 1.16

D. Titan benchmarks

A final set of tests were conducted on two benchmarks from

the timing-driven Titan suite [22]: sparcT1 chip2, a multi-

core microprocessor with 377,734 6-LUTs and 824,152 total

blocks; and mes noc, a 9-clock on-chip network with 274,321

6-LUTs and 549,045 total blocks. These are respectively the

largest single-clock circuit and the largest multi-clock circuit

able to pass the VPR flow according to [22]. (While [22]

lists sparcT1 chip2 as having two clocks, one clock is an

inverted version of the system clock and has no inter- or intra-

domain paths, so sparcT1 chip2 is a single-clock circuit for

the purposes of timing analysis). Two sets of constraints were

tested: 0 ns for all clocks and I/Os (All tight), and 0 ns for only

the system clock with 1000 ns for the I/Os and (for mes noc)

the other clocks (System clock tight), as presented in Table IV.

Circuits were routed at a fixed channel width of 300, as used

for this benchmark suite in both [22] and [23], and a very high

maximum of 400 routing iterations.

With these much larger circuits, routability is a dominant

concern. Circuits were deemed unroutable if VPR’s ‘safe’

routing failure predictor found routing resource overuse to be

so high that the circuit would be unlikely to route successfully,

or if routing failed to converge after 48 hours of the CAD

flow (since none of the successful runs required more than 13

hours, this is not an onerous restriction). Only S, R and Sg

routed both circuits successfully with All tight, with S and

especially Sg exceeding the performance of R on both the

system clock and I/O domains while underperforming R on the

other clock domains. However, only R still routed successfully

with System clock tight, suggesting that R’s more balanced

optimization is necessary for robust optimization of these

larger circuits. Further, R demonstrated an 8% improvement in

system clock period and 2% improvement in wirelength with

only the system clock tight, showing that its optimization focus

is correctly changing as the timing constraints change. Relative

runtime results are very similar to the VTR benchmarks’,

further indicating that the runtime performance of timing

analysis scales well with circuit size.

E. Which criticality formulation is most robust?

The MCNC (Section VI-A) and VTR (Section VI-C) bench-

mark tests show that shifted (S) and relaxed (R) are easily the

most successful methods of slack modification, since they have

the best overall timing results and also appropriately trade off

timing for wirelength when given more lax constraints.

The MCNC tests also confirm that global criticality nor-

malization under-optimizes domains with longer paths, as dis-

cussed in Section IV-A, perversely increasing the clock delay

of these circuits when I/O constraints are loosened because

their clock domain paths are longer than their I/O paths.

Although global criticality normalization does outperform per-

constraint normalization on the VTR benchmarks’ I/O paths,

it is not robust for all circuits.

The spliced MCNC tests (Section VI-B) show that shifted

does not robustly optimize multiple tight or impossible con-

straints of different degrees of difficulty when clock domains

are disjoint, because its extra focus on the tightest constraints

becomes unnecessary when the clock domains can be opti-

mized independently.

The Titan tests (Section VI-D) show that only relaxed

permits all circuits to route under both of the tested timing

constraints. The other five criticality formulations cause con-

vergence issues in the router.

Hence, relaxed slack modification with per-constraint

slack normalization is the most robust criticality formula-

tion.

VII. CONCLUSION

The robust optimization of multiple timing constraints,

including impossible constraints and constraints of varying
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TABLE IV
GEOMEAN TIMING, WIRELENGTH AND RUNTIME OF TITAN BENCHMARK

CIRCUITS UNDER THE SAME CRITICALITY FORMULATIONS AS TABLE I

(a) Achieved system clock period

Constraints U C S R Sg Rg

All tight – – 0.96 1.00 0.90 –

System clock tight – – – 0.92 – –

(b) Achieved geomean period of other clocks (mes noc only)

Constraints U C S R Sg Rg

All tight – – 1.06 1.00 1.06 1.11

System clock tight – – – 2.67 – –

(c) Maximum I/O delay (geomean of clock-to-I/O and I/O-to-clock)

Constraints U C S R Sg Rg

All tight – – 0.97 1.00 0.89 –

System clock tight – – – 0.92 – –

(d) Total wirelength (number of logic blocks traversed)

Constraints U C S R Sg Rg

All tight – – 0.97 1.00 0.99 –

System clock tight – – – 0.98 – –

(e) Total runtime (minutes) for All tight

U C S R Sg Rg

Raw – – 603.16 530.45 544.28 –

Relative to R – – 1.14 1.00 1.03 –

(f) Timing analysis runtime (minutes) for All tight

U C S R Sg Rg

Raw – – 131.51 71.52 79.19 –

Relative to R – – 1.84 1.00 1.11 –

(g) System clock tight : all tight runtime ratio

U C S R Sg Rg

Total – – – 1.09 – –

Timing analysis – – – 1.04 – –

* A “–” indicates that either or both circuits failed to route.

magnitudes, requires a rethinking of how to classify the timing

criticality of each connection. In this paper, we have described

a formulation of criticality, relaxed slack modification with

per-constraint normalization, which optimizes multiple tim-

ing constraints well (including impossible constraints) and

makes appropriate timing-wirelength tradeoffs. This formula-

tion achieved over 20% greater clock speed with aggressive

constraints than a formulation without slack modification.

What has the designer gained from this work? First, the

luxury of being inexact: the ability to set highly unachievable

multi-clock constraints (such as the 0 ns constraints tested in

this paper) and still be assured that the CAD tools will produce

robust results. Second, and more unexpectedly, an equally

large increase in clock speed with achievable constraints where

negative slack is not expected to be an issue, because even

achievable constraints are often not achieved until late in the

CAD flow, so circuits can still be de-optimized in early stages

by a poor criticality formulation. Hence, the applicability

of this work is not restricted to edge cases early in the

design process; on the contrary, our criticality formulation

achieves a significant across-the-board improvement in multi-

clock circuit speeds.

Future work could reduce the runtime of multi-clock timing

analysis by restricting the timing graph traversals for each

constraint to only the portions of the graph which are affected

by that constraint. Additionally, path counting (e.g. [13]) and

statistical timing techniques (e.g. [16]) could be combined with

our criticality formulation and applied to multi-clock timing

analysis.
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