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Multiple Dice Working as One: CAD Flows and
Routing Architectures for Silicon Interposer FPGAs

Ehsan Nasiri, Javeed Shaikh, Andre Hahn Pereira, and Vaughn Betz, Member, IEEE

Abstract—Large FPGA systems with multiple dice connected
by a silicon interposer are now commercially available. However,
many questions remain concerning their key architecture param-
eters and efficiency, as the signal count between dice is reduced
and the delay between dice is increased compared to a monolithic
FPGA. We modify VPR to target interposer-based FPGAs and
investigate placement and routing changes and incorporating
partitioning into the flow to improve results. Our best CAD
flow reduces the routing demand for interposer FPGAs with
realistic connectivity between dice by 47% and improves the
circuit speed by 13% on average. Architecture modifications to
add routing flexibility when crossing the interposer are very
beneficial and improve routability by a further 11%. With these
CAD and architecture enhancements, we find that if an interposer
supplies (between dice) 20% of the routing capacity that the
normal (within-die) FPGA routing channels supply, there is only
a modest impact on circuit routability. Smaller interposer routing
capacities do impact routability however: minimum channel
width increases by 70% when an interposer supplies only 10%
of the within-die routing. The interposer also impacts delay,
increasing circuit delay by 11% on average for a 1 ns interposer
signal delay and a two-die system.

Index Terms—FPGA, Silicon interposer, 2.5D ICs, CAD.

I. INTRODUCTION

Interposer-based FPGA systems are composed of multiple
FPGA dice connected through a silicon interposer. The in-
terposer uses an older fabrication technology than the FPGA
dice, and links between dice include both a micro-bump on
each FPGA die and a metal wire on the interposer [1]. This
results in reduced connectivity and increased delay between
dice compared to the routing bandwidth and delay across
a cutline within a single die. Such interposer systems are
sometimes called 2.5D devices, since they make use of vertical
stacking of dice on an interposer to enable higher integration
levels [2]. In this work we present an architecture study of
silicon interposer-based FPGAs that analyzes how the reduced
connectivity and increased delay impact their performance.

Silicon interposers enable the creation of large FPGAs from
smaller dice, which can both improve yield and fabricate
FPGAs that are too large to be manufacturable on a single
die. Making large FPGAs from multiple smaller dice is par-
ticularly interesting at the beginning of a new manufacturing
process, when defect densities are high. In this case, good-die
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yield drops dramatically as the die size increases, drastically
impacting the availability of large FPGAs early in the process
lifetime.

The idea of using 3 dimensions to design FPGAs is not
new. Alexander et al. [3] proposed the creation of 3D FPGAs
by stacking 2D FPGAs and connecting them with solder
bumps. Lin et al. also studied 3D FPGAs, but using a different
approach [4] that utilized multiple active layers with different
FPGA functions (logic, routing, and configuration) in each.
While promising, both these approaches have manufacturing
challenges: [3] requires a higher density of through-silicon
vias than can currently be manufactured and the multiple active
layers required by [4] are not yet widely available. In contrast,
silicon interposers linked to dice via microbumps are now
manufacturable.

Chaware et al. presented Xilinx’s approach to silicon inter-
poser FPGAs [5]. They describe the physical characteristics of
their implementation, including the bump pitch and estimates
of the amount of die-to-die connectivity and the die-to-die
delay. However [5] does not analyze the architecture question
of the routability of the resulting system, nor describe possible
CAD optimizations, which are the questions we investigate.

The main contributions of our work are as follows:
• VPR CAD tool modifications to model and optimize for

2.5D silicon interposer-based FPGAs.
• An investigation of the efficacy of incorporating parti-

tioning into various stages of the CAD flow.
• A study of how multi-FPGA system routability is im-

pacted by the amount of between-die connectivity and
by the switching flexibility at the FPGA die - interposer
boundary.

• An analysis of the interposer’s impact on timing.
The paper is organized as follows. Section II gives more

information about silicon interposer technology. Section III
describes the changes made to the FPGA architecture descrip-
tion and VPR to target 2.5D FPGAs. Section IV describes
optimizations to the VPR placement and routing algorithms
for interposer FPGAs and Section V describes how partition-
ing can further enhance the CAD flow. Section VI presents
architectural results for 2.5D FPGAs.

An earlier and less detailed version of this work appeared
in [6]. We greatly extend this earlier work by enhancing
the CAD tools, incorporating partitioning into the flows and
investigating a broader range of architecture questions.

II. SILICON INTERPOSER BACKGROUND

Interposer-based FPGAs allow systems larger than a single
die, making a ”More than Moore” improvement [7] on the size
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and number of logic cells possible, and with chips combined
with far more connectivity and less delay than if they were in
separate packages connected through a printed circuit board.

The improvement in the capacity of 2.5D FPGAs over
conventional ones is very significant. Xilinx’s largest 28 nm
interposer-based FPGA contains 4 FPGA dice and 1.954
million logic cells [8], while the largest non-interposer Virtex-
7 die has 979k logic cells and Altera’s largest 28 nm FPGA
has 952k logic elements [9]. Even though all these FPGAs
use a 28 nm process, silicon interposer technology allows
the creation of FPGAs with twice the resources possible on
even an extremely large single die. Xilinx’s latest (Virtex
UltraScale, 20 nm) line of FPGAs makes even more aggressive
use of interposers; the largest monolithic FPGA in this family
contains 941k logic cells, while the four largest capacity
FPGAs are all built with silicon interposers and span a range
from 1.25 to 4.43 million logic cells [10].

Another major advantage of interposer-based FPGAs comes
at the beginning of a new manufacturing process, when the
defect density is high [1]. To illustrate this impact consider
a new process in which the defect density is 1/cm2 and the
die area is 6cm2, roughly matching the size of the largest
member of a high-end FPGA family such as Virtex 7. Using
the Poisson Yield Model [11], the yield is only 0.25% of dice.
If instead the chip is composed of four 1.5cm2 dice, the yield
is 22%. This means that a 12 inch silicon wafer with 730cm2

of area would produce on average 0.3 working 6cm2 dice,
while the same wafer would produce on average 107 working
1.5cm2 dice. Therefore, as a 6cm2 chip would be composed
of four 1.5cm2 dice, the wafer would yield 26.75 systems on
average, as the ”assembly yield” of placing these four die on
an interposer is very high [5]. Hence the number of interposer-
based FPGAs created from the same silicon wafer would be
almost 100× greater than a monolithic FPGA of the same
size, greatly impacting not only cost but also the availability
of such a large FPGA.

When the process matures and the defect density decreases
this yield advantage drops. Consider a mature process with
defect density of 0.1/cm2. The yield for a 6cm2 die is 55%
and the yield for a 1.5cm2 die is 86%. Hence the number of
single die FPGAs created from a 730cm2 silicon wafer would
be 66.9 and the number of interposer-based FPGAs created
would be 104.6. While the interposer-based FPGA still has a
yield advantage it might not lead to a major cost advantage
when the cost of the interposer and die assembly costs are
included. For the large, state-of-the-art FPGAs that are built
early in a process cycle and heavily used for prototyping,
however, there is clearly a compelling cost advantage to an
interposer-based solution.

A. Virtex Interposer-based FPGAs

The Xilinx 2.5D FPGAs from the Virtex-7 and Virtex Ul-
trascale families are currently the only commercially available
silicon interposer-based FPGAs [12]. We are studying the im-
pact of several key interposer parameters on the performance
of the multi-die system, including (i) the percentage of the
wiring normally present between rows of the FPGA which

is cut when crossing between dice, and (ii) the extra delay
(vs. a normal connection between adjacent rows) added when
one must traverse the interposer. To locate where Virtex-7 lies
in this architecture space, we combined published information
on the implementation of Xilinx’s interposer-based FPGAs [5]
with a detailed analysis of the XC7V2000T FPGA routing
resources visible in the Vivado Device View.

Fig. 1. Lateral view of an interposer-based FPGA [12]. The FPGA dice are
at the top, and are connected to the silicon interposer through microbumps.
The interposer is then connected to the substrate through C4 bumps.

The XC7V2000T is composed of four identical dice ar-
ranged such that the vertical routing crosses between the
dice. Each horizontal edge of each die has 280 groups of 48
length-12 wires crossing the interposer, for a total of 13440
wires between dice. There are also 40 clock wires crossing
the interposer. The average vertical routing channel in this
FPGA contains 210 wires and there are approximately 280
vertical channels, resulting in approximately 58800 vertical
wires crossing a horizontal cutline within a die. Hence the
number of wires which cross the interposer is about 23% of
the total number of within-die vertical wires.

The 28 nm dice are connected to the 65 nm silicon inter-
poser through microbumps with a 45µm pitch. Hence the area
occupied by microbumps at one edge of one die is 13440 ×
(45µm)2 = 27mm2. If we assume each die is 7 × 12mm,
as presented by Chaware et al. in [5], the bumps have to be
spread out near the edge and need to go as far as 2.25mm
away from the edge of the die. This greater distance from
the border increases the length of the inter-die connections,
and along with the presence of the micro-bumps and their
capacitance, leads to an increased delay for these crossing
wires vs. that of a typical on-die routing wire. Chaware et al.
state that the latency to cross the interposer is approximately
1ns. For comparison, a typical medium length 28 nm FPGA
routing wire (e.g. spanning four logic blocks) has a delay of
approximately 125 ps, while a longer wire (e.g. spanning 12
logic blocks) has a delay of approximately 250 ps.

Overall, these interposer FPGAs have increased delay and
reduced connectivity between dice, with approximately 23%
of the usual number of vertical wires between dice and
approximately 1ns of increased delay to cross the interposer.
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III. ARCHITECTURE MODELS

To properly model a silicon interposer FPGA, we use
version 7.0 of the popular FPGA exploration toolset, Verilog-
to-Routing (VTR) [13]. The logic synthesis portions of the
flow (ODIN II and ABC) are used as-is, while we modify the
placement and routing portion of the flow (VPR [14]) to model
and optimize for interposer-based FPGAs. The modifications
are made in such a way that they require no changes to any
of the input files, so one can experiment with interposer-
based FPGAs with any existing benchmark circuits and any
existing VPR-format FPGA architecture description simply by
specifying appropriate command-line parameters.

We add the following parameters to VPR: number of cuts,
% wires cut, increased delay, and interposer-routing interface.
These parameters describe the interposer portion of the 2.5D
FPGA as detailed below.

A. Number of Cuts

Number of cuts describes how many cuts are made to the
interposer-based FPGA versus a monolithic die. If number of
cuts equals 1 then there are 2 dice, and so on. We investigate
values of 1 and 3 (2 and 4 dice). The Virtex 7 family has
members with number of cuts = 2 and 3. Figure 2 shows a
sample architecture with one cutline.

Fig. 2. A sample two-die / 1-cutline architecture containing both logic blocks
and RAM blocks.

B. % Wires Cut

This variable describes and models the reduced connectivity
between different dice by specifying the fraction of routing
wires that are removed at the border between dice. For
example, if a channel had 200 wires and % wires cut was 70,
140 of them would be cut and only 60 would pass through the
interposer. Higher values of % wires cut make an interposer
easier to manufacture, and can reduce the interposer delay by
allowing all the microbumps linking dice to be placed near the
die edge. However, the higher % wires cut is, the less routable
the multi-die system becomes. As described in II-A, the Virtex
7 family has % wires cut = 77%.

C. Increased Delay

Interposer wires are longer and wider than on-die wires and
have microbumps on each end. Increased delay models the
resulting larger delay when compared with wires which are
internal to a die. A reasonable estimate for this variable is
around 1ns, as presented by Chaware et al [5].

D. Interposer-Routing Interface

In a simple architecture, the vertical routing wires at the
edge of an FPGA die that can not connect to an interposer
wire are dangling. Since interposer wires are scarce, we want
to be able to study architectures in which the interposer wires
are more accessible. To do so, we have enhanced the router
to support the following interposer-routing interface options.

1) Fan-in Transfer for Interposer Wires
For an architecture with % wires cut = 0, all vertical
routing wires have a corresponding interposer wire that
connects them to the adjacent die. Practical interposers,
however, can only accommodate a fraction of all vertical
routing wires. As shown in Figure 3, when fanin transfer
option is on, we place a multiplexer at the input of each
available interposer wire and connect adjacent “dangling”
vertical routing wires to the multiplexer. This enables
additional flexibility in routing by ensuring that every
vertical routing wire could potentially drive an interposer
wire through a multiplexer. As an example, if % wires cut
= 75%, 3 of every 4 interposer wires are cut. Therefore,
we place a 4-to-1 mux at the input of the one interposer
wire that is not cut, and we connect the 3 vertical routing
wires that do not have a corresponding interposer wire to
the multiplexer.

2) Fan-out Transfer for Interposer Wires
As shown in Figure 3, when fanout transfer option is
on, we allow an interposer wire to drive not only its own
corresponding vertical wire at the other side of the cut, but
also other “dangling” vertical routing wires that are not
driven by anything because their corresponding interposer
wires are cut.

3) Bidirectional Interposer Wires
Dominant routing architectures in modern FPGAs use
unidirectional wires [15], [16] which can only be driven
at one point, normally their start point. When this option
is on, we allow interposer wires to be driven from one
end or the other by adding tri-state buffers at both ends.

These options are independent and can be combined to
achieve more flexible routing. Enabling any of these options
requires adding specific circuitry (such as multiplexers) on the
dice which causes very small area and delay increase that we
neglect in our experiments.

E. Implementation

To model an interposer-based multi-FPGA system in the
CAD tool, we use the existing VPR infrastructure for mono-
lithic FPGAs and make several modifications to it.

First, the presence of multiple dice in an interposer-based
FPGA is modeled by creating horizontal cuts in the FPGA.
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Fig. 3. For channel width of 4 and 75% wires cut, only 1 interposer wire
exists (green) and 3 interposer wires are cut (red). (a) Fan-in Transfer for
Interposer Wires allows red routing wires in die 1 to drive a mux that allows
them to cross the interposer layer. (b) Fan-out Transfer for Interposer Wires
allows the interposer wire output to drive wires in other tracks in die 2.

The number of cuts is specified by the user, and we use that
to determine the y-location of the cuts. The cutlines “snap to
the grid” such that the height of all dice are equal and no
cutline cuts through a block. For instance, a RAM block of
height 4 must remain a unit and can not be sliced by a cutline.

Second, knowing the location of the cutlines, the placer uses
the (x,y) coordinate of any pin or block to determine the die
to which it belongs. The placer uses this information as well
as interposer delay to better decide where to place each netlist
block in order to minimize the cost of inter-die signal transfer
as described in Section IV-A.

Third, the Routing Resource Graph (rrgraph) must be
modified. The rrgraph is the data structure that defines all the
available routing wires (rrnodes) and switches in the FPGA,
as well as the delay of each [17]. Given a suitable rrgraph,
the VPR router can implement circuits in the desired FPGA.
Previous work by Pereira et al. [6] modeled the interposer
indirectly: they did not introduce new rrnodes in the rrgraph to
represent the interposer wires. Rather, they found the rrnodes
that cross a cutline. Then they either removed all outgoing
edges of these rrnodes (if the routing node was part of the %
wires cut), or, they increased the switch delay of the rrnode
fan-outs (if the wire was not cut) to account for the additional
interposer delay. While this is a reasonable method to model
such architectures, it makes it difficult to experiment with
different routing-interposer interfaces such as placing input
muxes for interposer wires. We modify the rrgraph differently
to more accurately reflect the interposer layer directly.

For every vertical routing wire in the channel, we add a
new routing node (“interposer node”) into the rrgraph. Then,
we determine rrnodes (e.g. vertical routing wires) that cross a
cutline in the rrgraph, and we replace them with 2 rrnodes: one
that is above the cutline and one that is below the cutline. We
properly transfer fan-ins and fan-outs of the original node onto
the two newly created nodes and connect the two nodes using
an interposer node. Finally, we remove all edges from %wires
cut percent of interposer nodes and increase the switch delay
of output edges of the remaining interposer nodes by increased
delay. Figure 4 shows an example of these operations.

(a) (b) (c) (d)

Fig. 4. (a) Regular routing wire connectivity. (b) Replacing the long wire
with two wires and connecting them via an interposer wire. (c) rrgraph for
regular connectivity. (d) rrgraph after modifications.

Figure 5 illustrates that no routing wires cross a cutline and
a fraction of them connect to other dice via interposer wires.

IV. CAD ENHANCEMENTS

A. Placer Optimization

Placement is crucial in mitigating the impact of the reduced
wiring and increased delay when crossing between dice; a
good placement should minimize the number of signals cross-
ing between dice, particularly time-critical ones. VPR uses 2
different costs as the metrics for its simulated annealing placer
algorithm: the timing cost and the bounding box (wiring) cost.
We modified the placer’s bounding box and timing costs to
account for the increased latency to cross the interposer and
for the reduced wire capacity close to the cutlines, as the wire
availability becomes more sparse.

1) Placer Timing Cost: The usual VPR timing cost is a
(criticality-weighted) summation of the estimated delay (given
the current placement) of every connection required by the
circuit [18]:

CostT =
∑

∀i,j⊂circuit

delay(∆xij ,∆yij) × Crit(i, j) (1)

where ij denotes a connection from block i to block j that
exists in the circuit netlist.

This cost function assumes the FPGA is homogeneous and
consequently the delay between 2 points (x1, y1) and (x2, y2)
only depends on (∆x,∆y). This is not true for interposer-
based FPGAs, as the cutlines make them heterogeneous in the
y direction. To solve this problem and improve the quality of
the results, we add an extra term to the delay function:

delay(i, j) = delay(∆xij ,∆yij)+

Ncrossed(i, j)× delay increase (2)

where Ncrossed(i, j) is the minimum number of times this
path has to cross the interposer to go from (xi, yi) to (xj , yj)
and delay increase is the total timing penalty of crossing
the interposer, including delays through muxes, bumps, and
interposer wires.
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(a) (b)

Fig. 5. VPR Graphical User Interface. (a) Full chip view. (b) Connectivity at the cutline. Due to the limited signal capacity of the interposer, some vertical
routing wires are left dangling.

2) Placer Wiring Cost: The bounding box cost estimates
the amount of wiring required for a net, based on the number
of pins and size of the net’s bounding box. VPR’s original
formulation is [14]:

CostW orig =

Nnets∑
n=1

q(n) × [
bbx(n)

Wchanx
+

bby(n)

Wchany
] (3)

where bbx(n) and bby(n) are the dimensions of the bounding
box of net n in the x and y directions, respectively. Wchanx

and Wchany are the average horizontal and vertical channel
widths over this bounding box. Finally, q(n) is a function
obtained from [19] which models the fact that bounding boxes
underpredict the required routing for high fanout nets. q(n)
slowly increases with the fanout of net n.

VPR’s wiring cost also considers the FPGA to be homo-
geneous, and uses only the number of nets, the size of the
net’s bounding box and the average number of wires per
channel to calculate the cost. Thus, to account for the reduced
connectivity near the cutlines we add an an extra cost term to
(3) to calculate the total wiring cost.

CostW = CostW orig + Costcut (4)

In [6], Pereira et al. tested several different Costcut formu-
lations, and different weighting for each. They found that the
following Costcut results in the best quality of results in terms
of minimum routable channel width and critical path delay.

Costcut =

Nnets∑
n=1

C ′ × bbHeight(n) × Ncrossed(n) (5)

where
C ′ =

% wires cut

Wchany
(6)

and bbHeight(n) is the height of the bounding box of the net
n. This formulation of C ′ ensures that the new cost term is of
roughly the same magnitude as CostW orig in (3) and that it
is weighted more heavily for interposer architectures in which
the wiring between dice is more scarce.

This cost function performs better than several others as
shown in [6], and we believe the key to the good performance
of this cost functions is that Costcut produces gradual gains
as bounding boxes crossing the cutline shrink to be closer and
closer to being captured entirely on one side of the cutline.
Consider for example the 3 bounding boxes shown in Figure
6. Note that bounding box (a) and (b) both cross the cutline,
but (b) is penalized less by (5) because bounding box (b)
is mostly on the lower side of the cutline; it is more likely
that later placement changes will result in the bounding box
moving entirely below the cutline, reducing interposer wiring
demand. Cost function (5) penalizes bounding box (a) more
than (b) and (b) more than (c) to guide placement to gradually
move bounding boxes to one side or the other of a cutline.

B. Router Optimization

Once the Routing Resource Graph is modified as detailed
in Section III, the VPR router adapted automatically to the
interposer architecture. The router starts at a net source node
and expands by discovering adjacent routing nodes until it
reaches the destination node. At any point, the router knows
the cost of the path taken to the current point and it uses a
lookahead cost function to estimate the resource and delay cost
from the current node to the destination. Using this lookahead
cost, the router can properly sort routing alternatives. The
lookahead cost function in VPR is not aware of the interposer,
and therefore it takes a long time to converge to a routing
decision. To make the lookahead aware of the interposer,
we modify the lookahead cost function by adding terms that
account for extra interposer delay and extra interposer nodes



6

Fig. 6. Illustration of three different scenarios for the wiring cost. The dashed
green box shows a case where (a) it crosses the interposer, the dotted black
box shows a case where (b) it barely crosses the cutline, and the solid blue
one shows a case where (c) the bounding box does not span the cutline.

that may exist on the route from the current node to the
destination node.

The VPR router uses the following to calculate a cost for a
routing node r on the route from i to j:

Cost(r) = Crit(i, j)×DelayElmore(r, topology)

+ [1− Crit(i, j)]× Congestion(r) (7)

Given this cost function, the router’s lookahead algorithm
determines the total cost of the route from i to j when routing
node r is used:

CostTot(r) =
∑

∀l∈RT (i,r)

Cost(l)+α×ExpectCost(r, j)

(8)

where RT(i,r) is the set of all routing nodes used so far
from i to r and α is a constant number that determines the
aggressiveness of the directed search. α is 1.2 by default in
VPR. VPR’s original ExpectCost(n, j) function is [17]:

ExpectCost(r, j) = Criticalityfac × Tdel+
(1− Criticalityfac)× ExpectCongestionCost(r, j) (9)

Tdel is an estimate of the delay that the router predicts
it will see on the route from r to j. Since (9) assumes a
homogeneous FPGA, Tdel does not include the additional
delay some routes experience by going through the interposer.
Thus, for interposer-based architectures, we replace Tdel in
(9) with T ′del to include the delay of expected interposer hops
from r to j.

T ′del = Tdel + Tinterposer × NExpectedInterpHops (10)

We modify ExpectCongestionCost(r, j) in (9) in a simi-
lar way to account for the new interposer routing nodes.

The interposer-aware router lookahead makes routing deci-
sions more quickly given the large delay difference of a path
that crosses the interposer as opposed to a path that doesn’t.

C. Effectiveness of the Enhancements

For all experiments in this paper, the remaining architecture
parameters of the FPGA are taken from the “flagship” archi-
tecture of the VTR project (k6 frac N10 mem32K 40nm.xml)
[13]. The parameters of this architecture are in line with both
current commercial FPGAs and academic research into best
practices. It consists of logic clusters with 10 fracturable 6-
LUTs per block (N=10, k=6), and also includes 32kb RAM
blocks and DSP blocks configurable to perform 9x9, 18x18
or 36x36 multipliers. The delay values in the architecture are
taken from 40 nm circuit simulations and 40 nm commercial
FPGAs. It uses unidirectional routing, with all wire segments
having length L = 4.

We used VPR 7.0, with the enhancements we detailed
above, and the architecture file k6 frac N10 mem32K 40nm
in the experiments below. All experiments targeted the smallest
FPGA (with number of rows equal to number of columns)
which could accommodate a benchmark circuit; this represents
a very full FPGA with little white space left, and hence
presents a difficult case to an interposer-based FPGA as no
die can be left mostly empty.

We have used the eight largest circuits from the VTR bench-
mark [20], namely: bgm, LU8PEEng, LU32PEEng, mcml,
mkDelayWorker32B, stereovision0, stereovision1 and stereovi-
sion2. The size of these circuits ranges from 9, 100 to 153, 000
primitives (LUTs, FFs, etc.), with an average size of 52, 600
primitives. All results are the geometric mean over all circuits
for a given interposer architecture.

To obtain the critical path delay the circuits were run with
a low stress routing with a channel width 30% larger than the
minimum channel width for which the circuit is routable.

1) Effectiveness of Placer Optimizations: Enabling the
enhancements described in Section IV-A improves both the
minimum routable channel width and circuit speed. As shown
in Figure 7, for architectures with low % wires cut (high
interposer capacity), the placer optimizations have only a
marginal benefit on routability compared to the original VPR
placer since the interposer wires are not scarce, but as more
wires are cut and we reach the realistic interposer capacity of
commercial FPGAs, the placer optimizations provide higher
and higher reductions in minimum channel width. When 80%
of wires are cut, the placer optimizations result in 11.3%
reduction in minimum channel width. The placer optimizations
lead to a 60% higher placement runtime; we believe some of
this runtime increase could be recaptured with further code
optimization.

Fig. 7. Impact of placer optimizations on minimum channel width.
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The optimizations also guide the placer to keep related
entities on the same die to reduce the number of inter-
die signal crossings and hence increase circuit speed. This
speed improvement is fairly consistent across a wide range of
% wires cut, averaging 12.5% higher circuit speed.

Fig. 8. Impact of placer optimizations on circuit speed.

2) Effectiveness of Router Optimizations: The router opti-
mizations described in Section IV-B greatly reduce the runtime
of the router. On average, the router runs 31 times faster and
finds identical minimum channel widths for all circuits, and
router runtime is not significantly affected by % wires cut.

The new router lookahead changes the priority of the routes
discovered by the router. Using the new router lookahead
function increases the critical path delay by 1.3% on average.
We consider this small quality loss acceptable and use the
enhanced router lookahead in all our experiments due to its
greatly reduced runtime. The router runtime is still increased
for an interposer architecture vs. a monolithic one, and the
magnitude depends on the wiring capacity of the interposer. If
no interposer wires are cut the route time increases by 33%,
while if the interposer has 80% wires cut the router takes 3.5×
the CPU time as routing convergence requires more iterations.

V. ADDING PARTITIONING TO THE CAD FLOW

Given that the number of signals that can cross the inter-
poser between FPGA dice is considerably more limited than
within an FPGA, using a partitioner to divide the circuit into
one partition per die is a promising CAD flow. The overall
CAD flow, with partitioning steps, is shown in Figure 9.

A. Partitioner Stage

As shown in Figure 9, we explore the effect of circuit
partitioning at two different stages of the CAD flow. The
first possibility is to partition the netlist of primitive elements
(LUTs, FFs, RAM slices, etc.) before packing into the larger
function blocks such as logic blocks and (32 kb) RAM blocks.
The partitioning constraints must be respected by the packer;
it must not pack two primitives assigned to different partitions
(dice) into the same function block. We updated the VPR
clustering algorithm to respect this new constraint. The second
possible way to incorporate partitioning is after packing, where
partitioning is applied to the function block (cluster-level)
netlist. Each partition is then assigned (randomly, though this
is not optimal) to a separate FPGA die. The partitioning
constraints must then be respected by the placer; it is free
to move function blocks around within a die, but not across

Primitive Netlist (From Synthesis)

Constrain Packing?

Metis:  Generate Part i t ioning Constraints
(Primitive Netlist)

 Yes

VPR: Packing

 No

Clustered Netlist

Constra in  Placement?

Metis:  Generate Part i t ioning Constraints
(Clustered Netlist)

 Yes

VPR: Placement and Routing

 No

Evaluation

Fig. 9. Possible ways to add partitioning to the VPR CAD flow.

interposer cutlines. These two partitioning flow options can
be combined – if partitioning is applied before packing, one
can also pass the partition information to the placement stage.
The post-packing placement constraints can be derived from
the primitive block partitioning constraints, with the valid
placement region for a given function block being equal
to the intersection of the valid placement regions of the
primitives packed into that function (clustered) block. There
are, therefore, four possible partitioning flows:

(i) Leaving both the packer and the placer unconstrained.
This is the base flow that does not use partitioning, as
described in Section IV.

(ii) Partitioning the primitive netlist to guide the packer,
leaving the placer unconstrained.

(iii) Leaving the packer unconstrained, and partitioning the
function block (clustered) netlist to guide the placer.

(iv) Partitioning the primitive netlist to guide the packer, and,
as described above, passing these constraints to the placer.

B. Partitioning Tool

Two well-known freely available graph partitioning tools
are Metis [21] and hMetis [22]. Metis operates on graphs,
while hMetis operates on hypergraphs – a hypergraph is a
generalization of a graph, where each edge can connect any
number of vertices. It is most natural to represent a circuit
netlist as a hypergraph, where the vertices are netlist pins
(or blocks) and the hyperedges are the nets joining the pins.
Owing to the natural hypergraph representation, hMetis would
be the most appropriate choice of partitioner. However, other
important issues are the resource balancing ability of each tool
and the ability to optimize for timing.

Graph partitioning algorithms assign vertices to partitions
while satisfying “balance constraints”, which exist to drive
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the algorithm away from the trivial partitioning solution where
all vertices are in the same partition, with all other partitions
empty. An simple balance constraint is one which requires an
equal number of vertices in each partition. Generally such a
perfect balance overly restricts the solution, so some fractional
“unbalance” is allowed; in this work we use 0.05 (5%). For
two partitions, P1 and P2, this translates to [23]

|P1|
|P1 ∪ P2|

∈ [0.5− unbalance, 0.5 + unbalance] (11)

We chose an unbalance of 0.05 to allow the partitioner some
flexibility, while still ensuring the partitions are sufficiently
equal in size to make good use of each die. Highly unbalanced
partitions would leave some dice nearly empty, defeating the
key advantage of interposer-based FPGAs: larger capacity.
FPGA circuit netlists may contain different block types such
as LUTs, registers, RAM slices, and multipliers, among others.
The balance constraint of (11), applied to a netlist with
different block types, would ensure that the total block count
(over all blocks, regardless of type) in each partition is roughly
balanced. The problem with (11) in the case of multiple block
types is that the capacity, per block type, of each partition
is not taken into account. It is therefore possible to generate
partitions that cannot be realized – for example, there is
nothing preventing the partitioner from moving all LUTs to
partition 1 and all multipliers to partition 2, which may not be
realizable given the per-block-type capacity of each partition.
One solution is to enforce a balance constraint on each block
type, i:

∀i,
∣∣∣∣ |P1i|
|P1i ∪ P2i|

− 0.5

∣∣∣∣ < unbalance (12)

where P1i is the set of all blocks of type i in partition
1. We refer to this type of per-block set of constraints as
heterogeneous balance constraints. Note that there are complex
legality constraints governing which LUTs and FFs can be
packed into legal logic blocks, as well as which multipliers
can be packed into legal DSP blocks [13]. As the partitioner
is not aware of these constraints, flow 3 above (which runs the
partitioner after function block packing) will be able to more
precisely balance resource use across partitions.

The current version of hMetis does not support heteroge-
neous balance constraints, though Metis does, so we use Metis
in our CAD flow. However, as the circuit netlist is naturally
represented as a hypergraph, it needs to be transformed to a
graph before Metis can process it. This transformation also
allows us to optimize for timing, which is not as directly
factored into the basic net-as-hypergraph representation.

C. Hypergraph to Graph Transformation

We transformed the circuit netlist hypergraph to a graph in
the following way:

(i) For each hyperedge of the circuit netlist hypergraph, we
generated a graph (the per-net subgraph).

(ii) We combined all of the per-net subgraphs, summing the
edge weights for edges appearing in more than one per-
net subgraph, to generate the total netlist graph.

We explored several ways to generate the per-net subgraphs,
varying the graph topology and the edge weight scheme.
We considered two graph topologies, clique and star, as
illustrated in Figure 10. Ref. [24] surveys several methods of
transforming hypergraphs to graphs, and considers the addition
of “dummy” nodes to the star model. In our star model, we
preferred to designate the net source as the center of the star,
rather than introduce a dummy node. This topology clearly
differentiates sources from sinks, and we expect this to guide
the partitioner to keep the source and as many sinks as possible
in the same partition, which benefits timing.

We assigned the same edge weight to every edge of the
generated subgraph. Edge weights were computed based on
the number of vertices in the originating hyperedge, n, and
we considered edge weights equal to 1, 1/n, and 1/n2. Our
intuition is that assigning lower edge weight to high-fanout
nets may be beneficial, and we selected the edge weights
accordingly. We refer to the combination of graph topology
and edge weight scheme as the hyperedge model.

src

d s t 1

d s t 2

d s t 3

(a)

src

d s t 1

d s t 2

d s t 3

(b)

Fig. 10. (a) Star and (b) clique graph topologies.

Figure 11 shows how a netlist of three blocks and two nets
is transformed into its component subgraphs.

A B

C

A B

C

A B

C

(a)

A B

C

A B

C

A B

C

(b)

Fig. 11. The hypergraph to graph transformation with (a) the star topology,
and (b) the clique topology.

To select the best hyperedge model, we used the Metis parti-
tioner to generate graph partitions and applied the partitioning
result to the original untransformed hypergraph. We used the
hyperedge cutsize to rank the different hyperedge models,
across the same circuits as in Section IV-C. The hyperedge
cutsize is the number of hyperedges (nets) crossing the cutline,
as illustrated in Figure 12, and it measures circuit routability.
The results are shown in Figure 13.

The performance of the clique topology is significantly
worse than that of the star topology, regardless of edge weight
scheme. An intuitive explanation for this result is that with the
clique topology, the partitioner does not have knowledge of
which vertex is the source of a net and which vertices are sinks.
In contrast, the star topology clearly differentiates sources
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cutline

Fig. 12. A graph with six vertices, three hyperedges, and two partitions. As
there are two hyperedges crossing the cutline, the hyperedge cutsize is 2.
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Fig. 13. Hypergraph cut size achieved by Metis with different hyperedge
models and weightings. n is the number of vertices on a hyperedge.

from sinks and this appears to give the iterative refinement
based partitioner an anchor point that pulls all net sinks toward
the source. Additionally, if n is the average number of vertices
in a hyperedge, the clique topology generates O(n2) edges
while the star topology generates only O(n) edges, so the star
topology saves both memory and runtime.

For both topologies, the 1/n edge weight scheme gives
the smallest cut size on average. This model assigns a total
weight (over all edges) of 1 − 1

n to each net, which assigns
slightly higher weight to high-fanout nets but does not weigh
them excessively due to its asymptote. In contrast, the star
1 (constant) edge weight scheme assigns a total weight of
n−1 to each net, which heavily weighs high-fanout nets. The
star 1/n2 model severely penalizes high-fanout nets relative to
lower-fanout nets. Since we seek to minimize the hyperedge
cutsize, it makes intuitive sense to weight all hyperedges
nearly equally, and the star 1/n model best achieves this.

To validate the choice of hyperedge cutsize as a proxy for
circuit routability, we ran the partitioning CAD flow for each
hyperedge model, across several circuits. We use an unbalance
of 5%, split the clustered netlist into two partitions (con-
straining only the placer), cut 80% of the wires crossing the
interposer, and impose a 1ns delay penalty for wires crossing
the interposer. To accommodate unbalance in the placement
engine, we increase the size of the grid of complex blocks that
make up the FPGA device. Relative to the minimum device
size required for placement (without partitioning constraints),
we add 10% to the complex block grid width and 10% to
the grid height. Figure 14 shows the geometric mean of the
minimum channel width required for a successful route, for
each hyperedge model.

The star topology with 1/n edge weights achieves the best
minimum channel width, confirming that hyperedge cutsize
is a good proxy for routability. Consequently, we use this
model in all future results in this paper. Unlike routability, we
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Fig. 14. Minimum channel width achieved by VPR with different hyperedge
models and weightings. n is the number of vertices on a hyperedge.

found that the post-routing critical path delay was not strongly
impacted by the hypergraph model used.

D. Partitioner Stage Results

We compare the performance of the four CAD flow varia-
tions described in Section V-A on the 8 largest VTR bench-
marks. We again use an unbalance of 5% and split the clustered
netlist into two partitions (constraining the packer and/or the
placer, as required by the flow under test). The interposer
parameters (% wires cut = 80% and delay increase = 1 ns)
and bloat factor (10% in each dimension) are the same as in
Section V-C. Figure 15 shows the minimum routable channel
width for each partitioning CAD flow variation.
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Fig. 15. Minimum channel width achieved by VPR for each partitioning flow.

On average, the best minimum channel width was obtained
when constraining both packing and placement. However,
constraining packing alone performed significantly better than
constraining placement alone. This shows that the VPR packer
strongly benefits from partitioning constraints when target-
ing an interposer-based architecture, likely because it forbids
the packing of primitives that are not naturally related into
one function block. Interestingly, other recent work targeting
conventional FPGAs has shown that using a partitioner to
guide packing benefits routability [25]. On the other hand, The
VPR placement algorithm with the enhancements described in
Section IV-A sees only a modest routability benefit from the
partitioning constraints.

For the same set of circuits, we computed the critical path
delay at a channel width equal to 1.3x the minimum. The
results are shown in Figure 16.
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Fig. 16. Critical path delay achieved by VPR for each partitioning flow.

On average, the critical path delay did not vary significantly
between the different partitioning CAD flows, but it appears
that partitioning before packing may slightly improve circuit
speed, while enforcing these partitioning constraints during
placement may slightly reduce circuit speed.

Considering both routability and delay, the best CAD flow
used the partitioning result to constrain both packing and
placement, and we use that flow in the remainder of this paper.
Partitioning is quite fast, so this flow, which incorporates the
placement and routing enhancements of IV, has an overall
runtime increase of 25% vs. that of a monolithic FPGA when
the interposer has 0% wires cut, and a 56% CPU time increase
when the interposer has 80% wires cut.

E. Interposer Wire Utilization

Table I provides detailed information on signals crossing
the interposer for each circuit. The second column shows how
many connections on the critical path cross the interposer, for
a two-die architecture with 70% wires cut and a 1 ns interposer
delay. For comparison, the third column lists the total number
of connections on the critical path; some are between cluster-
level blocks and use the general FPGA routing, while others
use local routing within a cluster or the dedicated carry chain
routing. The critical path length varies significantly across
circuits due to differences in the level of pipelining and
how extensively they use carry chain arithmetic. Most critical
connections have been localized to a single die, but there is
considerable circuit-dependent variation. Table I also shows
the number of nets crossing the interposer per vertical channel,
which provides a lower bound on the number of wires required
in an interposer channel for successful routing.

Though our choice of the star topology benefits timing,
our partitioning flow is not timing-driven. Interesting future
work would be to use a timing-driven partitioner to reduce
the number of critical connections crossing the interposer, but
obtaining good critical path estimates at the partitioning stage
is nontrivial [26].

F. % wires cut

To evaluate the CAD flow performance for a range of
interposer architectures, we varied the fraction of wires cut

TABLE I
INTERPOSER WIRE UTILIZATION, 70% WIRES CUT

Critical Connections Nets
Crossing Crossing Interposer

Interposer Total Total Per Channel
bgm 1 36 622 8.89
stereovision0 3 6 985 25
stereovision1 1 2 876 21
LU8PEEng 0 165 1795 20
stereovision2 1 18 801 5
mkDelayWorker32B 6 58 771 17
mcml 5 147 2891 28
LU32PEEng 0 165 1130 5

and measured the average minimum channel width over the 8
largest VTR circuits. As shown in Figure 17, this new flow is
a significant improvement over that of [6] for FPGAs where
more than half the wires are cut at interposer boundaries.
However, it is slightly worse than the traditional FPGA CAD
flow for an architecture with 0% of the wires cut, which is a
monolithic FPGA, presumably because we have restricted the
placer’s freedom.
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Fig. 17. Impact of partitioning-based CAD flow on routability for a range of
architectures.2

G. Clustered Netlist Bloat due to Partitioning Constraints

The additional constraints on the packer imposed by parti-
tioning may result in a less dense packing. Figure 18 compares
the number of complex blocks in the partitioning-constrained
and unconstrained clustered netlists.

On average, the packing-constrained netlist contained 3.2%
more complex blocks than the unconstrained netlist. The
LU8PEEng and LU32PEEng circuits were the most affected
by this packing bloat. In those circuits, we found that the
packing bloat was due almost entirely to poor packing of
memory blocks; an interesting area for future work would
be to augment the partitioner to understand that some RAM
primitives are best kept together in one partition.

VI. ARCHITECTURE RESULTS

Using the best CAD settings found in Section IV and the
best CAD flow described in Section V, we analyze the impact
of the key architecture parameters: % wires cut, delay increase,
number of cuts, and interposer-routing interface. We run all
the experiments using the setup detailed in Section IV-C.

2The best flow from [6] does not provide data at 90% wires cut.
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Fig. 18. The number of blocks in the clustered netlist with and without
partitioning constraints. This is a measure of packing bloat.

A. Routing-Interposer Interface

As described in III-D, we have added three boolean options
to VPR that allow us to experiment with different routing-
interposer interfaces. Some interface choices provide more
flexibility to route signals between different dice and hence
help us achieve lower minimum channel width and critical
path delay.

To measure the impact of routing-interposer interface pa-
rameters, we set delay increase=1ns, number of cuts=1, and
% wires cut=80%; then, we measure the impact of the bidi-
rectional interposer wires, fanin transfer, and fanout transfer
parameters in different combinations. Figure 19 summarizes
the results of these experiments; all results are normalized
to the least flexible routing-interposer interface: one in which
80% of wires end at the interposer and the other 20% cross the
interposer with the same directionality and routing switches
they would have in a conventional FPGA.

Fig. 19. Impact of routing-interposer interface flexibility on minimum channel
width and circuit speed.

Figure 19 shows that using bidirectional interposer wires
instead of unidirectional wires (column b in Figure 19) im-
proves minimum channel width by 1% and critical path delay
by 0.5%. Therefore, while it is beneficial to use bidirectional
interposer wires, in isolation they do not dramatically improve
performance.

Adding multiplexers in front of interposer wires allows
dangling routing wires to connect to interposer wires (“fanin

transfer”) and adding extra load on the output of the interposer
wires (“fanout transfer”) allows the interposer wire to drive
dangling wires on the other side of the cut. Therefore these
modifications provide higher flexibility to better utilize inter-
poser wires. Figure 19 shows that enabling these two options
alone without using bidirectional interposer wires (column c
in Figure 19) reduces minimum channel width by 3% and
reduces critical path delay by 1%.

Moreover, better performance can be achieved if either of
these two options is used together with bidirectional interposer
wires. Enabling fanout transfer with bidirectional interposer
wires (column d in Figure 19) reduces the minimum channel
width by 9% and critical path delay by 0.7%. Enabling
fanin transfer with bidirectional interposer wires (column e
in Figure 19) has an even stronger impact and reduces the
minimum channel width by 10% and critical path delay by
0.7%. This signifies that added flexibility to drive an interposer
wire is more important for routability than added flexibility
allowing an interposer wire to drive multiple vertical routing
wires on the other side of the cut.

Enabling all the architecture modifications simultaneously
(column f in Figure 19) provides the highest level of flexibility
for the router and achieves 11.2% reduction in minimum
channel width and 1.3% reduction in critical path delay. These
models show that interposer-based FPGAs significantly benefit
from hardware that provides a flexible routing-interposer in-
terface. It is important both to make the interposer wires easier
to access with additional routing switches and to make them
bidirectional to accommodate asymmetric routing demand.

The fanin transfer and fanout transfer options ensure that
no vertical routing wires are dangling at the cutline; hence,
each vertical routing wire either has exactly one interposer
wire driving it or it drives a mux feeding exactly one interposer
wire. As a final experiment, we try to add additional fanins and
fanouts to interposer wires, so that each vertical routing wire
can potentially drive multiple interposer wires, or be driven
by one of many interposer wires. We found that adding these
extra fanouts to interposer wires does not help performance
or area, but adding additional fanins to interposer wire muxes
helps reduce the minimum channel width while maintaining
the same critical path delay. As shown in Figure 20, adding
4 additional inputs to interposer wire muxes reduces the
minimum channel width by 1% and adding 8 additional inputs
reduces minimum channel width by 1.5%. After that point
the performance is no longer limited by the ability to get on
an interposer wire and hence we do not see any gains for
adding more than 8 additional inputs. Notice that column 0 of
Figure 20 is the same as column f of Figure 19.

Clearly using bidirectional interposer wires with fanin trans-
fer and fanout transfer is very beneficial, so we use these
parameters in all future experiments. Adding additional fanin
beyond transferring the fanin of cut wires is only a small
further benefit so we use additional fanin=0 in subsequent
sections. Adding these additional multiplexers and making the
interposer drivers tri-statable causes less than a 0.1% die area
increase as 10,000 muxes per cut would be typical in a large
FPGA [8] which is a very small fraction of the several million
routing multiplexers in a large FPGA die.
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Fig. 20. Adding up to 8 extra fanins to interposer wire muxes helps reduce
minimum channel width.

B. Interposer Wiring Capacity (% wires cut)

To analyze the impact of the number of cut wires we ran
experiments varying only this parameter while leaving the
other parameters constant. We use number of cuts = 1 (i.e. two
dice), increased delay = 1ns, bidirectional interposer wires
= on, fanin transfer = on, and fanout transfer = on.

Figure 21 shows the graph of minimum channel width
versus % wires cut. The minimum channel width is essentially
constant up to 60% of wires cut, indicating that the CAD flow
is able to avoid saturating the interposer routing until that
point. When more than 80% of the wires are cut however,
the minimum channel width grows rapidly, indicating that the
interposer routing bandwidth has become a limiting factor.

Fig. 21. Minimum channel width vs. % wires cut for 2 dice and 1ns of delay
increase.

Figure 22 shows how the geometric average minimum
channel width required within the FPGA dice varies as the
geometric average of the absolute number of wires crossing
the interposer in each channel varies, again for a 2-die system.
When 110 tracks cross the interposer, the interposer channels
have the same capacity as the vertical routing channels within
each FPGA die. As fewer wires cross the interposer, the
channel width required within the FPGA dice increases to
compensate for the routing difficulty in crossing the interposer.
The increase is gradual as the interposer routing is reduced
from 110 tracks per channel to 34 tracks per channel; over
this range the routing per channel required in the FPGA dice
increases from 110 tracks per channel to 114 tracks per chan-
nel. As the routing crossing the interposer is further reduced
however, it becomes very difficult to increase the within-die
routing sufficiently to compensate. At 18 tracks crossing the

Fig. 22. Geometric mean of required intra-die minimum channel width vs.
geometric mean of the number of wires crossing the interposer for 2 dice and
1ns of delay increase.

interposer channels, for example, the within-die routing must
have a channel width of 188 tracks to successfully route the
designs. At 70% wires cut, the number of nets per channel
crossing the interposer has a geometric mean of 17 over our
benchmark circuits, which agrees with the lower limit visible
in the figure. Clearly the CAD tools have the ability to trade-
off interposer routing for within-die routing over a reasonable
range but below a certain level (20% of the original within-
die minimum channel width in our experiments) routability
becomes almost solely limited by the wiring crossing the
interposer and further reduction in interposer routing is not
productive.

The critical path delay, depicted in Figure 23, on the other
hand, is not strongly influenced by the percentage of wires cut,
as the critical path delay at 80% of the wires cut is essentially
the same as at 0% wires cut. Note, however, that this same
critical path delay is achieved at a much higher channel width
when % wires cut is greater than 80%.

C. Circuit Speed vs. Interposer Delay

To investigate the impact of the interposer delay (delay
increase), we keep all other interposer parameters constant and
sweep the delay increase from 0 to 1.5 ns. As seen in Figure
23, the penalty in critical path delay is significant, ranging
between 1 and 3.7 times the interposer delay increase, when
compared to the case where the interposer adds no delay. Note
that the 0% wires cut with a 0 ns delay increase in Figure

Fig. 23. Critical path delay vs. % wires cut for 2 dice and 0.0, 0.5, 1.0 and
1.5ns of delay increase.
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23 corresponds to a traditional monolithic FPGA. The speed
of an interposer-based FPGA is strongly correlated to delay
increase: a 0.5ns interposer delay increases the critical path
delay by 4%, while a 1ns interposer delay increases critical
path delay by approximately 12% vs. a monolithic FPGA.

D. Impact of Number of Dice

To examine the impact of the number of dice used to
construct an interposer-based FPGA, we compare the min-
imum channel width for FPGA systems composed of four
dice and two dice, respectively, while varying the fraction
of wires cut at the interposer boundaries. We used the best
CAD flow from Section V-D and the same interposer routing
architecture parameters as Section VI-B. As Figure 24 shows,
four-die systems perform almost as well in routability as two-
die systems until the % wires cut exceeds 80%, at which point
routability is worse for the four-die system.
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Fig. 24. Impact of number of dice on routability.

We have found that systems with more dice are slower; on
average the critical path delay for a two-die system was 25ns
while that for a four-die system was 35ns, a 40% increase.
This speed difference is not significantly affected by the %
wires cut. This suggests that the main cause of the slowdown
is due to interposer crossings, rather than wire congestion.

E. Impact of Aspect Ratio

It is easier to manufacture silicon dice that have an aspect
ratio near 1 (i.e. square). Commercial FPGAs are laid out
with identical columns, and hence combine multiple identical
FPGA dice in one dimension on an interposer [5]. As Figure 25
shows, we can make either the FPGA dice square, or the
interposer square (where cutlines are closer together but with
a higher absolute number of wires between dice), but not
both. In the four-die case with the best CAD flow from
Section V-D and the same routing architecture parameters as
Section VI-B with 80 % wires cut, we found minimum channel
widths of 141 and 252 for the square interposer and square
die arrangements, respectively. Clearly the square interposer
arrangement is preferable.

VII. CONCLUSION

We have extended VPR to target interposer-based multi-
FPGA systems. We found that by modifying VPR’s placement
cost function we can improve routability, while simultaneously
improving speed. Modifications to the VPR router lookahead
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Fig. 25. Devices with (a) a square interposer and (b) square dice.

function are crucial to keep compile time reasonable and yield
a 31× speed-up. Incorporating partitioning into the CAD flow
is very beneficial. Our best partitioning flow converts nets
(hyperedges) to a star graph model, uses Metis to partition the
resulting circuit graph, and forces VPR’s packer to respect the
Metis partitioning to FPGA dice. Taken together, these CAD
changes reduce the signal wires that must cross the interposer
by an average of 47% while simultaneously improving circuit
speed by 13% for realistic interposer architectures.

We defined four key architecture parameters for interposer-
based FPGAs, and used this extended VPR to analyze their
impact on minimum channel width and critical path delay. We
find that adding a moderate amount of switching flexibility at
the FPGA - interposer boundary has negligible area cost but
reduces the required minimum channel width by 13%. We
also find that the multi-die system has good routability so
long as the interposer provides sufficient routing bandwidth,
and this routing bandwidth can be much less than one would
find in a monolithic FPGA. Specifically, if the interposer
provides 40% or more of the channel width required by
the monolithic FPGA (an average of 45 wires per channel
across our benchmark suite) the routability of the interposer-
based FPGA is equivalent to that of a monolithic one. As
the interposer signal bandwidth becomes more constrained,
routability is impacted but even an interposer providing only
20% of the monolithic FPGA routing channel bandwidth (22
wires in our experiments) only needs a 10% increase in the
within-FPGA-die routing channel width to compensate.

The critical path delay is not strongly influenced by the %
wires cut but is strongly influenced by the interposer delay
and the number of cuts. On average we find that a 1 ns
interposer delay causes an 11% delay increase in a two-die
system vs. a monolithic FPGA. Increasing the number of dice
in an interposer-based FPGA only moderately impacts the
minimum channel width, but does lead to a larger critical
path delay. The aspect ratio of the interposer-based FPGA
is an important architectural parameter; a square interposer
containing rectangular FPGA dice has the best routability.

Overall we find the results for interposer-based FPGAs to be
very positive. While an interposer can only provide a fraction
of the signal count between dice that one would have within
a die, the system still has excellent routability so long as
the interposer signal count is not pushed to very low values;
below 20% of the within-die routing in our experiments. We
have also found that modifications to the CAD flow and
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routing architecture to exploit interposer-based FPGAs have
been very productive. As this is a new area, we believe more
routability and timing enhancements can be achieved with
further research; for example, a timing-driven partitioner may
reduce the delay impact of the interposer.
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