Automated Debugging of SystemVerilog Assertions

Brian Keng!, Sean Safarpour?, Andreas Veneris'3

Abstract—In the last decade, functional verification has become
a major bottleneck in the design flow. To relieve this growing
burden, assertion-based verification has gained popularity as
a means to increase the quality and efficiency of verification.
Although robust, the adoption of assertion-based verification
poses new challenges to debugging due to presence of errors in the
assertions. These unique challenges necessitate a departure from
past automated circuit debugging techniques which are shown to
be ineffective. In this work, we present a methodology, mutation
model and additional techniques to debug errors in SystemVerilog
assertions. The methodology uses the failing assertion, counter-
example and mutation model to produce alternative properties
that are verified against the design. These properties serve
as a basis for possible corrections. They also provide insight
into the design behavior and the failing assertion. Experimental
results show that this process is effective in finding high quality
alternative assertions for all empirical instances.

|. INTRODUCTION

Functional verification and debugging are the largest bottle-
necks in the design cycle taking up to 46% of the total devel-
opment time [1]. To cope with this bottleneck, new methods
such as assertion-based verification (ABV) [2], [3] have been
adopted by the industry to ease this growing burden. ABV in
particular has shown to improve observability, reduce debug
time as well as improve overall verification efficiency [2].
However even with the adoption of ABV, debugging remains
an ongoing challenge taking up to 60% of the total verification
time [1].

Modern ABV environments are typically composed of three
main components. design, testbench and assertions. Due to
the human factor inherent in the design process, it is equally
likely for errors to be introduced into any one of these
components. Commercial solutions [4]-{6] am to help the
debugging process by allowing manual navigation and visual-
ization of these components. Most existing research in auto-
mated debugging [7]-{11] have focused primarily on locating
errors within the design. The absence of automated debugging
tools targeting testbenches and assertions remains a critical
roadblock in further reducing the verification bottleneck.

The adoption of assertions introduces new challenges to
the debugging process. Modern temporal assertion languages
such as SystemVerilog assertions and Property Specification
Language [12], [13] are foreign to most design engineers who
are more familiar with RTL semantics. Temporal assertions
concisely define behaviors across multiple cycles and execu-
tion threads, which creates a significant paradigm shift from
RTL. For example debugging the failing SystemVerilog asser-
tion req |=> gnt ##[1:4] ack, requires the engineer
to analyze four threads over five clock cycles to understand
the failure. Moreover, a single temporal operator such as a
non-consecutive repetition may map to a multiple line RTL
implementation, adding to the debugging complexity. For these

LUniversity of Toronto, ECE Department, Toronto, ON M5S 3G4 ({briank,
veneris} @eecg.toronto.edu)

2Vennsa Technologies, Inc., Toronto, ON M5V 3B1 (sean@vennsa.com)
3University of Toronto, CS Department, Toronto, ON M5S 3G4

reasons, debugging complex temporal assertions remains one
of the biggest challenges in their wide spread adoption.

Automated circuit debugging techniques have traditionally
relied on localizing an error in a circuit. In a similar manner,
it is possible to synthesize assertions [14]-{16] and allow one
to apply similar circuit localization techniques to assertions.
However, this proves ineffective in debugging assertions due
to their compact nature, also shown later in the paper. For
example, applying path-tracing [7] to the assertion valid
##1 start |=> go, will return the entire assertion as
potentially erroneous. Moreover, this type of localization does
not provide help in directing the engineer towards correcting
it. This suggests an urgent need for a departure from traditional
circuit debugging techniques so that we can debug assertions
effectively.

In this work, we propose a novel automated debugging
methodology for SystemVerilog assertions (SVA) that takes
a different approach. It aids debugging by generating a set
of properties closely related to the original failing assertion
that have been validated against the RTL. These properties
serve as abasis for possible corrections to the failing assertion,
providing an intuitive method for debugging and correction.
They aso provide insight into design behavior by being able
to contrast their differences with the failing assertion.

In summary, our major contributions are as follows:

o We introduce a language independent methodology for
debugging errors in assertions that produce a set of
closely related verified properties to aid the debugging
process. These properties are generated by an input set
of modifications that mutate existing assertions.

o We propose a particular set of modifications for the
SystemVerilog assertion language to mutate the failing
assertion in order to generate closely related properties.

o We introduce two techniques dealing with vacuity and
multiple errors to enhance the practical viability of this
approach.

An extensive set of experimental results are presented on
real designs with SystemVerilog assertions written from their
specifications. They show that the proposed methodology and
modification model are able to return high quality verified
properties for al instances. In addition, the multiple error and
vacuity techniques are able to filter out inessential properties
by an average of 23% and 34% respectively.

The remaining sections of the paper are organized as
follows. Section Il provides background material. Our contri-
butions are presented in Section 111, Section IV and Section V.
Section VI presents the experimental results and Section VI
concludes this work.

Il. PRELIMINARIES

This section gives a brief overview of the SystemVerilog
assertions (SVA) language as well as concepts used extensively
throughout this paper. For a more detailed treatment please
refer to [12], [17]. SVA is a concise language for describing
temporal system behavior for use in verifying RTL designs.

TABLE |
COMMON SVA OPERATORS

seq_expr = bool_expr
seq_expr time_range seq_expr
bool _expr bool_abbrv
Seq_expr seq_op seq_expr
first match (seq_expr)
bool_expr throughout seq_expr

#ik | ##k1:k2]

[*k] | [*k1:ka] | [=K] | [=k1tke]
[—> k][[> kitko]

and | intersect | or | within
Seq_expr

seq_expr |— > property_expr
seq_expr |=> property_expr
property_expr or property_expr
property_expr and property_expr

time_range
bool_abbrv

Seq_op
prop_expr

Each system behavior can be specified by writing a SVA
property which in turn can be used as an assertion.

Properties are derived from severa different types of ex-
pressions that build upon each other. A sequence expression
specifies the behavior of Boolean expressions over one or more
clock cycles using operators such as delays and repetitions.
These can be combined to define concise sequence expressions
that define multiple linear sequences known as threads. For
example, start ##[1:3] stop specifies three separate
threads of start followed by stop with varying lengths
of delay in between. If one of the threads evaluates to true
then the sequence is said to match. Threads allow grest
ease in specifying common design behaviors but also lead
to increase difficulty in debugging. A Property expression
specifies more complex combinations of sequence expressions
such as implications. A grammar of common SVA operators
is listed in Table I.

The implication property operator (|— >, |=>) is similar
to an if-then structure. The left-hand side is called the an-
tecedent and the right-hand side is called the consequent. With
respect to the implication operator, a property is said to be
vacuously [18] true if every evaluation of the antecedent is
false. Example 1 gives an overview of how several common
SVA operators are used.

Example 1 Consider the specification: “If start is active,
data repeats 2 times before stop and one cycle later stop
should be low” We can interpret this as the waveform given
in Figure 1 with respect to c1k. This can be concisely written
as the SVA property:

start |=> datal[->2] ##1 stop ##1 !stop

I1l. ASSERTION DEBUGGING METHODOLOGY

This section presents a methodology that automatically
debugs errors in failing assertions. It is assumed that errors
only exist in the assertions and the design is implemented
correctly. Thisfollows the convention in circuit debugging [7]—
[11] literature where the verification environment is assumed
to be correct. If this is not the case, then the methodology
gtill can provide value for debugging by giving insight into
the design behavior. Note that this methodology makes no
assumptions about the assertion language or the types of errors
as these are functions of the input model.

The methodology aids debugging by returning a set of
verified properties with respect to the design that closely relate
to the faling assertion. We denote this set as P. This set

of closely related assertions aids in the debugging process
in several ways. First, P serves as a suggestion for possible
corrections to the failing assertion. As such, it provides an
intuitive method to aid in the debugging and correction pro-
cess. Second, since the propertiesin P have been verified, they
provide an in depth understanding of related design behaviors.
This provides critical information in understanding the reason
for the falled assertion. Finaly, P alows the engineer to
contrast the failing assertion with closely related ones, a fact
that allows the user to build intuition regarding the possible
sources and causes of errors.

The overall methodology is shown in Figure 2 and consists
of three main steps. After a failing assertion is detected by
verification, the first step of applying mutations is performed.
This step takes in the failing property along with the mutation
model and generates a set of closely related properties, denoted
as P’, to be verified. Each property in P’ is generated by taking
the origina failing assertion and applying one or more pre-
defined modifications, or mutations, defined by the mutation
model. This model defines the ability of the methodology to
handle different assertion languages as well as different types
of errors. We define a practical model for SVA in the next
section but different models based on user experience are also
possible.

The second step of the methodology quickly rules out
invalid properties in P’ through simulation with the failing
counter-example. A counter-example in this context is a sim-
ulation trace that shows one way for the assertion to fail.
The intuition here is that since the counter-example causes
the origina assertion to fail, it will also provide a quick filter
for related propertiesin P’. It accomplishes this by evaluating
each property in P’ for each cycle in the counter-example
through simulation. If any of the propertiesin P’ fal for any
of the evaluations, they are removed from P’. The resulting
set of properties is denoted by P”.

The final step of the methodology uses an existing verifica
tion flow to filter out the remaining invalid properties in P”.
This is the most time-consuming step in this process, which
is the reason for generating P’. The existing verification flow
can either be a high coverage simulation testbench or a formal
property checker. In the case of the testbench, the properties
in P will have a high confidence of being true. While with the
formal flow, P is a set of proven properties for the design. In
most verification environments, both these flows are automated
resulting in no wasted manual engineering time. The final set
of filtered properties P are verified by the environment and
can be presented to the user for analysis.

IV. SYSTEMVERILOG ASSERTION MUTATION MODEL

This section describes a practical mutation model for Sys-
temVerilog assertions to be used with the methodology de-
scribed in Section 111. These mutations are designed to model

start [
data | | /_\ l—_\ ‘
[

Fig. 1. Example 1: Timing Specification

stop

Design Assertions

vy

¢ Failing Assertion

. Apply | | Mutations |
Counter-example [

v

IIHHHH%HHII

Fig. 2. Assertion Debugging Methodology

common industrial errors[2], [19] as well as misinterpretations
of SVA [17]. This model is created based on our discussions
with industrial partners, own experiences writing assertions,
as well as common errors in cited literature. Note that other
mutation models can be developed based on user experience.

Each mutation modifies the assertion either by adding oper-
ators, changing operators or changing parameters to operators.
Each new property is generated by applying a fixed number
of these mutations to the failing assertion. The number of
mutations is defined to be the cardinality of the candidate
and depends on the number of additions or changes to the
assertion. In some cases, multiple or complex errors may
require higher cardinality to model. The rest of the section
will describe the various types of mutations in this model.

Thefirst group of mutations involves modifying Boolean ex-
pressions. SVA provides operators for signal transitions across
a pair of clock cycles and previous values. These operators
can frequently be misused. For example, a common error
occurs when interpreting the word “active’. It is ambiguous
whether the intent is arising edge ($rose (sig)), or alevel
sengitive trigger (sig). Similarly with the $past (sig, k)
operator, the number of cycles (k) to evaluate in the past is a
common source of errors. The mutation can model this error
by adding or subtracting an integer i. The following table gives
the mapping from Boolean operators to the set of possible
mutations where <s> is a given signal.

[Name [Operator/Expression | Mutation]
Boolean <s>, Spast, Replace with
Expressions Srose, S$fell, {<s>, l!<s>,$rose(<s>),
Sstable, Spast (<s>, k=+1),
Schanged sfell (<s>),
Sstable(<s>),
$changed (<s>) }

The next group of mutations involve commonly used arith-
metic, logical and bitwise operators. They replace such op-
erators with their related counter-parts. For example, if &&
is mutated into | |, it may relax a condition to generate a
passing property. This can provide insight into possible places
where the error may have occurred. Another example might
be replacing > with >= which might also correct a commonly
made error. The mutations for these types are operators are in
the table below.

[Name | Operator/Expression | Mutation |
Logical U, &&, | Replace with {&&, [[};
Remove negation
Bitwise L& A Replace with {7, &, [, A}
Arithmetic +, - Replace with {+, -}
Equdity <, <=,==,>=,>, = Replace with
{<,<=,==,>=,>,l=}

SVA sequential binary operators make up the next group
of mutations. These operators have subtle differences that are
easy to misinterpret. For example, intersect is similar to
and except with the added restriction that the lengths of the
matched sequences must be the same. Another example is
replacing intersect with within which might produce
a passing property that can give insight into the underlying
error. The following table shows the possible mutations.

[Name [Operator/Expression | Mutation |
Sequentia and, intersect, Replace with

Binary Operators {and, intersect,

or,within}

The next group of mutations involve the sequential concate-
nation operator. This family of operators specifies a delay and
it is frequently used in properties. Two types of delays are
possible, a single delay or a range of delays. The mutations
involve changing the delays by integers ¢ or j, or changing a
single delay into a ranged delay. When mutating using ¢ or 7,
the cardinality will be increased by the absolute value of the
integer. For example, changing ##1 to ##3 will increase the
cardinality by 2. The following table describes the mutations.

or,within

[Name [Operator/Expression | Mutation |
Sequential HHE1, #H [k k2] Change single delay to
Concatenation range delay;
Change constants to
ki+i, kotj

Sequentia repetition operators are the next group of mu-
tations. These operators alow repetition of signals in con-
secutive or non-consecutive forms with subtle differences.
For example, the non-consecutive goto repetition sig [->k;]
is frequently confused with the sig[=k;] operator. The
difference between the two is whether the sequence ends with
strictly k1 matches, or if multiple cycles are alowed before
the next occurrence. The mutations may either change the
repetition operator or the number of repetitions performed
using 7 and j. The following table shows the mutations.

[Name [Operaior/Expression | Mutation]
Repetition [*k1]1, [xky:ko] Replace op with
[=k1], [=k1:k2] {I+1,[=1,[->1};
[->k1], [->k1 : k2] Change constant to
ki+ti, kotj

The last group of mutations involve the implication oper-
ators. This family of operators are often used because most
properties are evaluations based on a condition. The first type
of mutation is a change between the overlapping (]— >) and
non-overlapping (|]=>) implication. This accounts for when
there is extra or missing delay between the antecedent and
consequent. The next mutation extends this idea by allowing
a multiple cycle delay after the antecedent with the addition
of the ##: operator. The third type of mutation in this group
involves adding the first match operator to the antecedent
of the implication. This addresses a subtlety of SVA where
the consequent of each matching antecedent thread must be
satisfied. The first match operator handles this subtlety
by allowing only the first matching sequence to be used. The
following table outlines the possible mutations.

[Name [Operator/Expression | Mutation | TABLE Il
Implication [=>, T-> {F‘{eplace|witl'}1 INSTANCE, LOCALIZATION AND SUPPLEMENTAL DATA
=>, |->}
Append [—o 1/b1 ##i: [| Instancelnff? [[Locdlize [Supplementalf]
Add first match on ’ nst ‘ gates ‘ difs ‘ SVAH sus | sus ‘ tb sm ‘ th cyc ‘ orm ‘

antecadent &) ops (%) cyc (k) cyc
hpl 203 | 2164 | 12 9 [75 20479 27 47
. _ _ hp2 203 | 2164 | 16 || 13 | 81 || 20466 27 43
The following example shows how mutations can be applied [mipsT| 734 2670 [19 || 17 | 89 25 2 N;A
i ; mips2 | 734 | 2670 | O 7| 78| 3393 2 | N/A
in the context of an entire property. T et NiE N as
)])] nisc2 | 158 | 1371 | 16 N/A N/A 14
Example 2 Consider the assertion described in Example 1. [spiT 16 32| 12 6] 50 35 7 27
W\e can generate properties in P’ by mutating the failing as- flp'lz %g 1?5 15 g gg gg og ig
sertion with each of the applicable rules. Here we show several ﬂgz 5t oI -5 795 05 T
examples of mutated properties with different cardinalities. Usbl 392 | 2349 i Z 7100 11 04 11
Cardinali 1 ush? | 392 | 2349 | 16 || 11 | 69 219 04 9
// Cardinality , vgal | 894 [17110 [8| 4 | 50 a3 8377 7
Pl:start ‘=> data[->2] ##2 stop ##1 !stop vga2 | 894 [17110 g 5175 581 v
P2:star§ -> data[->2] ##1 stop ##1 !stop Wh1 5o % 5 3 50 13 5T N/A
// Cardinality 2 wh2 52 9% | 7 6| 86 15 5 [N/A

P3:Srose(start) |=> data[=2] ##1 stop ##1 !stop

:Srose (start) |=> datal[->2]
Cardinality 3

start |=> !datal[->2] ##1 stop ##3 !stop

P4 ##2 stop ##1 !stop
//
P5:

V. PRACTICAL CONSIDERATIONS AND EXTENSIONS

The methodology outlined in Section Ill aong with the
model in Section 1V generates a set of closely related prop-
erties, P. However practically speaking, they are only useful
if the number of properties returned by the methodology is
small enough to be analyzed by an engineer. Two techniques
that greatly reduce the number of properties are discussed here.

The first technique deals with vacuous assertions. Asser-
tions that are vacuous typically are considered erroneous since
their intended behavior is not exercised. Similarly, all verified
properties that are found to be vacuous for al evaluations are
removed from P, reducing its size significantly as seen in the
experimental results.

The second technique deals with multiple cardinalities. As
the cardinality increases, the size of the mutated properties,
P’, increases exponentially. This may become unmanageable
at higher cardinalities. To deal with this, P’ can be reduced by
eliminating properties with mutations that have been verified
at lower cardinalities. For example if the property P1 from
Example 2 is found to be a verified property, it would remove
P4 from consideration since it contains the same mutation
from P1. The intuition here is that the removed properties
do not add value because they are more difficult to contrast
with the original assertion. This proves to be very effective in
reducing the size of P’ for higher cardinalities by removing
these inessential properties.

VI. EXPERIMENTS

This section presents the experimental results for the pro-
posed work. All experiments are run on a single core of a
dual-core AMD Athlon 64 4800+ CPU with 4 GB of RAM.
A commercial simulator or property checker is used for all
simulation and verification steps. All instances are generated
from Verilog RTL designs from OpenCores [20] and our
industrial partners. SVA is written for al designs based on
their specifications.

To generate unbiased results, we do not artificially insert
errors directly into the assertions and then try to fix them.
Instead, we add errors into the RTL to create a mismatch
between the RTL implementation and SVA assertions. We then
assume that the RTL is correct and the SVA is erroneous, to

create a failing assertion. It should be noted that in some cases
there may be no possible corrections to the SVA since the RTL
error may drastically change the design behavior.

The RTL errors that are injected are based on the experi-
ence of our industrial partners. These are common designer
mistakes such as a wrong state transition, incorrect operator
or incorrect module instantiation. It should be emphasized that
RTL errors typically correspond to multiple gate-level errors.

To create instances for the experiments, for each RTL error,
one assertion is selected as the mutation target among the
failing assertions for a design. Each instance is named by
appending a number after the design name. Table Il shows
the information for each of these instances. The table is
divided into three parts. The first section shows instance
information, while the other two parts show localization results
and supplementary information. The first four columns show
the instance name, the number of gates and state elements in
the circuit followed by the number of operators plus variables
in the assertion. The remaining columns are described in later
subsections.

The following subsections presents two sets of experiments.
The first subsection demonstrates the ineffectiveness of circuit
based |ocalization techniques in debugging assertions motivat-
ing the proposed methodology. While the second presents the
experimental results from the proposed assertion debugging
methodol ogy.

A. Localization

To motivate and illustrate the impact of the proposed
methodology, results of a circuit localization technique applied
to debugging assertions are presented in this subsection. The
instances from Table Il that had simulation testbenches are
used in these experiments. A path tracing [7] strategy is
implemented to locate which operators or variables could be
responsible for an error in the assertion. This was done by
replacing variables or nodes with any constant values and
evaluating if the property passed. The counter-example used in
these experiments is generated from its simulation testbench.

The results of these experiments are presented in columns
five and six of Table Il. Column five describes the number of
operators or variables that are potentially erroneous which we
denote as suspects. Column six shows the suspects divided by
the total number of operators and variables as a percentage.

From the table, we see that path tracing returns suspects
covering a large part of the assertion for all instances. This

ranges from 50% for wb1 to 100% for usb1. On average, 71%
of the assertion operators and variables are returned confirming
the ineffectiveness of circuit debugging techniques for use with
assertions. This motivates the need for the mutation based
debugging methodology presented in this work.

B. Assertion Debugging Methodology

The experimental results from implementing the proposed
methodol ogy, mutation model and enhancements are presented
in this section. For each instance, two sets of experiments are
run. The first uses the accompanying simulation testbench to
generate the initial counter-example and the final verification
step. The counter-example is generated by stopping the sim-
ulation at the point of first failure, while the verification runs
through the entire testbench. We refer to these experiments
as testbench. The second set instead uses a formal property
checker for these tasks and we refer to them as formal.
Note that not all instances have both a testbench and formal
environment, thus some entries will be not available and are
denoted by N/A. In addition for the same instance, different
environments may produce different results due to assumption
constraints in forma which are not respected in testbench.
Each instance is run through the methodology varying the
cardinality from one to three. Table 111 shows the results of
these experiments.

The first two columns show the instance name and cardinal-
ity. The next eight columns show the testbench experiments.
Columns three and four show the size of the initial candidates,
P’, without and with the multiple cardinality enhancement
from Section V, respectively. Columns five to seven show
the number of passing assertions from P’ after simulation
with the failing counter-example (P”), the number of vacuous
properties found in P”, and the final number of verified prop-
erties (P). Column eight shows the percent reduction of the
cardinality and vacuity enhancements from the unoptimized
P’. Column nine and ten show the counter-example simula-
tion time followed by the total testbench verification time.
The last eight columns show same respective results for the
formal experiments. The last three columns of Table Il present
supplemental data regarding the number of clock cycles in
the testbench counter-example, testbench final verification step
and formal counter-example respectively. Run-times to create
the mutated properties (P’) take less than two seconds and are
not shown in the table due to space considerations. Time-outs
for each step of the methodology are set at 3600 seconds and
are indicated by TO.

The applicability of the proposed technique is apparent
when analyzing the final number of verified properties in
P. Despite the large number of initial properties in P’, the
methodology successfully filters properties to a manageable
size. Thisisimportant for debugging because if P istoo large
then it becomes impractical to use. Moreover we see that in
the case of formal, most instances are able to return proven
properties that precisely specify the behavior of the design.

The SVA mutation model also proves to be helpful in
generating high quality properties that pass verification.
For example, for hpl one of the cardindity three prop-
erties iS. $rose(rd) && !'tim_cas ##(1) !rd[+4] |->
$rose (wr_safe). The mutation here changed the repeti-
tion operator from [«7] to [«4]. This directly corre-
sponds to the RTL error which changed the timing be-
tween the read and write phases. Showing a different

100,000 T

10,000

1,000

100

of Properties

10k

1

ticl spil mipsl ush2
(formn=1) (form,n=2) (tb,n=2) (tb,n=3)
Instance

Fig. 3. Verified Properties for Several Instances

case for spi2, a cardindity one solutions is: wfre |->
Sstable (rfwe) [-> 1] within Srose(state==1)
##0 (state==0) [-> 1]. The mutation added $stable
to rfwe. This givesinsight into the design behavior where the
error in the RTL is that rfwe does not toggle in the correct
State.

Figure 3 shows the size of each set of properties on a log-
scale for several sample instances. From the figure, we see
that the multiple cardinality technique from Section V helps to
reduce the size of P’ from the original unopt P’. This results
in an average reduction across al instances of 23%. Next,
we see that simulation with the counter-example efficiently
reduces the size of P’ to P"” by an average of 59% across
all instances. This is critical to ensure that the run-time of the
final verification step is minimized.

For columns nine and sixteen in Table I1I, we see that the
number vacuous solutions also contributes to the reduced size
of P from P”. As a percentage of P”, these verified vacuous
properties represent an average of 34% of the set. In addition,
the enhancements from Section V, shown in columns eight
and sixteen, reduce the size of the unoptimized properties in
P’ by 27% across all instances.

Finaly from Table Il, we see that the run-time for the
counter-example simulation and final verification step in-
creases with the number of properties. For cardinality one, this
does not significantly impact performance. For higher cardi-
nalities, this becomes more costly causing time-out conditions
in certain formal cases. This degraded run-time is the trade-
off for being able to model more complicated types of errors.
However, this can be avoided with more precise input mutation
models so that a costly increase in cardinality is not needed.

VIlI. CONCLUSION

In this work, we present a methodology, mutation model
and additional techniques to automatically debug errors in
SystemVerilog assertions. The methodology works by using
the assertion, counter-example and mutation model to generate
a set of aternative properties that have been verified against
the design. These properties serve as a basis for possible cor-
rections as well as provide insight into the design behavior and
failing assertion. Experimental results show the methodology
is effective in generating high quality alternative properties for
al empirical instances.

REFERENCES

[1] H. Foster, “Applied assertion-based verification: An industry perspec-
tive,” Foundations and Trends in Electronic Design Automation, vol. 3,
no. 1, pp. 1-95, 20009.

[2] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design.
Academic Publishers, 2003.

Kluwer

TABLE Il
ASSERTION DEBUGGING METHODOLOGY RESULTS

[Tnstance Info [Testbench Formal]
inst N unopt P’ P7 tb P % sm tb unopt P’ P fom [P % ssm [form
P’ vac red | time | time P’ vac red | time | time
(©)] (S ()] (s
hpl 1 34 34 11 8 2 | 24% 1 2 34 34 20 5 0] 1I5% 1 425
2 529 467 220 177 0 | 45% 2 6 529 529 403 121 9 [23% 1 TO
3 5001 4129 2415 1824 38 | 54% 7 73 5001 4710 3801 0 0 6% 6 TO
hp2 1 52 52 17 11 3| 21% 1 2 52 52 25 3 4 6% 1 454
2 1257 1116 441 334 2 | 38% 3 14 1257 1116 615 69 3 17% 2 TO
3 18748 | 15596 6521 4771 11 | 42% 54 197 18748 | 15682 8443 0 0| 16% 55 TO
mipsl 1 62 62 20 15 51 24% 1 2 N/A
2 1797 1514 627 611 12 | 50% 3 29 N/A
3 32338 | 24235 | 11811 | 11660 14 | 61% 84 594 N/A
mips2 1 35 35 7 7 0| 20% 1 2 N/A
2 539 539 181 173 3| 32% 4 6 N/A
3 4791 4714 1952 1846 52 [40% 26 91 N/A
riscl 1 N/A 62 62 25 5 2 8% 1 49
2 N/A 1797 1684 944 277 | 12 | 22% 3 853
3 N/A 32338 | 28643 | 18290 0 0| 11% 112 TO
risc2 1 N/A 53 53 36 11 1] 21% 1 98
2 N/A 1502 1450 1184 398 51 30% 2 TO
3 N/A 28501 | 27109 | 24089 0 0 5% 78 TO
spil 1 38 38 10 1 9 3% 1 1 38 38 13 1 7 3% 1 15
2 682 400 33 24 5 45% 1 1 682 455 96 0 3| 33% 1 42
3 7638 3339 372 267 52 | 60% 5 8 7638 4091 0 0 4| 46% 2 808
Spi2 1 39 39 4 0 4 0% 1 3 39 39 6 0 2 0% 1 15
2 693 527 2 0 0| 24% 1 1 693 623 59 0 0 | 10% 1 62
3 7445 4951 38 0 0| 33% 7 3 7445 6339 497 0 0| 15% 9 | 1648
tlcl 1 26 26 9 3 41 12% 1 1 26 26 9 2 4 8% 1 9
2 285 203 67 40 10 | 43% 1 1 285 203 69 27 8 | 38% 1 16
3 1706 896 250 201 0 | 59% 1 1 1706 920 267 137 0 | 54% 1 70
tlc2 1 42 42 13 1 2 2% 1 1 42 42 12 1 0 2% 1 9
2 803 27 315 81 6 | 20% 1 2 803 803 345 48 | 16 6% 1 88
3 9250 7737 3383 1279 | 103 | 30% 14 15 9250 8728 3687 0 0 6% 13 TO
usbl 1 13 13 3 0 3 0% 1 1 13 13 9 0 3 0% 1 17
2 65 38 11 0 41 42% 1 1 65 38 24 0 3| 2% 1 24
3 163 62 28 0 6 | 62% 1 1 163 63 45 0 51 61% 1 42
ush2 1 51 51 20 16 0| 31% 1 1 51 51 25 8 0| 16% 1 23
2 1206 1206 705 592 6 | 49% 2 3 1206 1206 840 318 | 13 | 26% 2 598
3 17553 | 17301 | 11736 | 10239 70 | 60% 32 54 17553 | 16891 | 13134 0 0 4% 29 TO
vgal 1 19 19 6 0 4 0% 1 244 19 19 6 0 4 0% 1 14
2 151 90 24 0 0 | 40% 1 526 151 90 23 0 0 | 40% 1 15
3 655 278 96 0 9 | 58% 1 | 1691 655 278 92 0 1] 58% 1 133
vga2 1 22 22 7 2 5 9% 1 248 22 22 13 1 0 5% 1 14
2 223 132 38 13 41 47% 1 572 223 223 171 11 1 5% 1 37
3 1358 567 170 40 2 | 61% 11 2172 1358 1341 1022 57 1 5% 2 620
wbl 1 25 25 7 5 11 20% 1 1 N/A
2 260 240 98 85 3 | 40% 1 1 N/A
3 1446 1238 616 560 9 [53% 2 2 N/A
whb2 1 22 22 6 4 2 | 18% 1 1 N/A
2 205 167 50 47 0| 41% 1 1 N/A
3 1050 4 235 214 0 [49% 1 2 N/A

(3
(4]
(9]

(6]

(7
(8]

(9]

[10]
(11]

[12]

B. Tabbara, Y.-C. Hsu, G. Bakewell, and S. Sandler, “Assertion-Based
Hardware Debugging,” in DVCon, 2003.

Y.-C. Hsu, B. Tabbara, Y.-A. Chen, and F. Tsai, “Advanced techniques
for RTL debugging,” in Design Automation Conf., 2003, pp. 362-367.

R. Ranjan, C. Coelho, and S. Skalberg, “Beyond verification: Leveraging
formal for debugging,” in Design Automation Conf., jul. 2009, pp. 648—
651.

M. Siegel, A. Maggiore, and C. Pichler, “Untwist your brain - Efficient
debugging and diagnosis of complex assertions,” in Design Automation
Conf., jul. 2009, pp. 644-647.

S. Huang and K. Cheng, Formal Equivalence Checking and Design
Debugging. Kluwer Academic Publisher, 1998.

A. Veneris and I. N. Hajj, “Design Error Diagnosis and Correction Via
Test Vector Simulation,” IEEE Trans. on CAD, vol. 18, no. 12, pp.
1803-1816, 1999.

A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault Diagnosis and
Logic Debugging Using Boolean Satisfiability,” |IEEE Trans. on CAD,
vol. 24, no. 10, pp. 1606-1621, 2005.

K.-h. Chang, I. L. Markov, and V. Bertacco, “Automating post-silicon
debugging and repair,” in Int'l Conf. on CAD, 2007, pp. 91-98.

G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault
localization for property checking,” |EEE Trans. on CAD, vol. 27, no. 6,
pp. 1138-1149, 2008.

“|IEEE Standard for System Verilog-Unified Hardware Design, Specifi-

(13]
(14]

(19]
(16]

(17]
(18]
(19]
[20]

cation, and Verification Language,” |EEE STD 1800-2009, pp. 1-1285,
20009.

“IEEE Standard for Property Specification Language (PSL),” |[EEE Std
1850-2010, pp. 1-171, apr. 2010.

S. Das, R. Mohanty, P. Dasgupta, and P. Chakrabarti, “Synthesis of
System Verilog Assertions,” in Design, Automation and Test in Europe,
vol. 2, mar. 2006, pp. 1-6.

J. Long and A. Seawright, “Synthesizing SVA local variables for formal
verification,” in Design Automation Conf., 2007, pp. 75-80.

M. Boulé and Z. Zilic, Generating Hardware Assertion Checkers: For
Hardware Verification, Emulation, Post-Fabrication Debugging and On-
Line Monitoring. Springer Publishing Company, Incorporated, 2008.
S. Vijayaraghaven and M. Ramanathan, A Practical Guide for Sys-
temVerilog Assertions. Springer, 2005.

M. Samer and H. Veith, “Parameterized Vacuity,” in Formal Methods in
CAD, 2004, vol. 3312, pp. 322-336.

S. Sutherland, “Adding Last-Minute Assertions: Lessons Learned (a
little late) about Designing for Verification,” in DVCon, 2009.
OpenCores.org, “http://www.opencores.org,” 2007.

