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Abstract—After functional verification detects a failure, design
debugging aims to find all locations in the design that could
be responsible for the observed error. The task of debugging
becomes more difficult in modern designs because of the presence
of multiple design errors. Multiple design errors exponentially
increase the solution space of the debugging problem, leading
to an intractable problem. This work aims to manage the
complexity of multiple design errors within existing automated
design debugging frameworks by using unsatisfiable cores to
reduce the solution space. It builds upon previous work to
generalize the generation and application of unsatisfiable cores
for this purpose. An iterative debugging algorithm is presented
in which unsatisfiable cores are generated as a by-product of the
solving process to aid in reducing the search space for multiple
design errors. Experiments on large designs for multiple errors
show an average reduction in run-time of 22% with minimal
impact to peak memory.

I. I NTRODUCTION

Functional verification has become a significant bottleneck
in the modern VLSI design cycle [1]. An ever growing
component of functional verification is when an failure occurs
and the root-cause of the problem must be determined. This
process, known asdesign debugging, is estimated to take up
to 60% of the total functional verification time [2]. Both the
time and complexity of debugging are difficult to estimate at
the beginning of the process. This creates large uncertainties
surrounding tight deadlines with fixed budgets. To alleviate
this growing uncertainty, automation is necessary to manage
and reduce this component of functional verification.

Automated design debugging techniques involve taking a
counter-example from a verification failure and returning a
set of locations in the buggy design that could possibly be
responsible for the observed error(s). Many different tech-
niques [3], [4] have been proposed but recently algorithms
based on satisfiability (SAT) engines [5], [6] have shown
to be the most promising. These algorithms translate the
debugging problem into a satisfiability instance where the
solutions correspond to possible locations that can be corrected
in the design. Improvements in SAT-based techniques [7]–
[9] have focused on three main areas that contribute to the
complexity of debugging: design size, counter-example length,
and number of design errors (orerror cardinality). The error
cardinality is perhaps the most daunting of the three because
the solution space of the debug problem grows exponentially
with the number of errors [4].

A previous algorithm [9] using multiple unsatisfiable (UN-
SAT) cores has shown to be effective in tackling this prob-
lem. Each core intuitively represents a tree of paths in the
circuit that is responsible for causing the observed error.By
analyzing the intersections of these cores, the search space
can be dramatically reduced, improving the performance of
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the debugging engine. However, the main benefit of the
technique for multiple design errors relies on the ability to
find multiple overlapping UNSAT cores. This is a very difficult
problem with no efficient solution in general [10]. In practice,
only disjoint UNSAT cores can be found which limits the
technique’s ability to be more widely applicable.

In this work, we present a new algorithm to deal with
debugging multiple design errors using unsatisfiable cores. It
generalizes previous work by showing how to both generate
and apply unsatisfiable cores for multiple design errors. The
process begins by generating an UNSAT core at error car-
dinality zero with an unsatisfiable debug instance. The core
is used to constrain the search space at the next cardinality,
which is then solved for all solutions. After these solutions are
blocked, another UNSAT core is generated from this instance.
This process is repeated at each subsequent cardinality. By
using the cores generated at each cardinality, we can rule
out locations that cannot be part of solutions at higher error
cardinalities. This greatly reduces the exponential search space
of the debugging problem with multiple design errors. In
addition, since the solving process generates these cores as a
by-product, there is little overhead needed to gain significant
benefit in reducing the search space.

Experimental results on large hardware designs from Open-
Cores [11] shows the efficacy of the proposed algorithm
compared to previous work. For finding all equivalent errorsup
to error cardinality three, the core technique is able to reduce
the total run-time on average by 22% with a negligible impact
on peak memory.

The remaining sections are organized as follows. Section II
describes background material. Section III describes the main
contribution while Section IV presents the experimental re-
sults. Finally, Section V concludes this work.

II. PRELIMINARIES

A. Design Debugging

Design debugging aims to find all sets of error locations,
or suspects, which could potentially be responsible for the
observed failure during verification [3]. SAT-based design
debugging [5] formulates this problem as a SAT instance
for a given counter-example and number of errors (orerror
cardinality). The solutions to this SAT instance correspond
to all possible sets of error locations for the given error
cardinality. The SAT instance is constructed in several steps.
First, the conjunctive normal form (CNF)-translated design is
enhanced with an error model for each location that could
potentially be erroneous. This is denoted byTen. Each error
model has an associatedsuspect variablethat when active,
disconnects that location’s fan-out from its fan-in and allows it
to be free. Next, the combinational component of the enhanced
design is copied (or unrolled) for the length of the counter-
example to model the circuit behavior. On the unrolled model,
the initial state (S0), vector of inputs (X), and vector of



expected outputs (Y ) are constrained according to the counter-
example. Finally, constraints (denoted byΦ(N)) are added
to restrict the number of active suspect variables toN . This
forces the instance to search for exactlyN design errors. This
is formally written in the next equation for a given counter-
example of length0 to k:

Debug(N) = S0 ∧ Φ(N) ∧

k∧

i=0

Xi ∧ Y i ∧ T i
en (1)

Typically, to find multiple design errors, Equation 1 is
iteratively solved fromN = 1 to a maximum desired error
cardinality. By blocking all previously found lower cardinality
solutions, one can find all minimal cardinality equivalent
design errors [4]. In this work, we use this methodology as a
basis for finding multiple design errors.

B. Unsatisfiable Cores in Design Debugging

An unsatisfiable (UNSAT) core is a unsatisfiable subset of
clauses of an unsatisfiable Boolean formula written in CNF.
Modern SAT-solvers can produce UNSAT cores as a by-
product of their solving process [12]. In the context of design
debugging, an UNSAT core intuitively represents a tree of
paths in the circuit from which the primary inputs and initial
states propagate to the expected primary outputs and resultin
a conflict.

This idea has been used in several algorithms to generate
information to aid in the process of design debugging [7]–[9].
The work in [9] uses the above concept of UNSAT cores to
restrict which areas of the circuit need to be examined. If an
UNSAT core exists, at least one of the suspect variables in the
core must be activated to break the conflict. Given multiple
UNSAT cores, this idea can be extended to further restrict the
solution space.

Deriving such an UNSAT core can be done by setting all
the suspect variables in Equation 1 to0. Since the simulated
outputs of the circuit do not match the expected outputs (or
else there is no failure), the instance is unsatisfiable and an
UNSAT core can be generated. However in general, finding
multiple UNSAT cores is difficult. The work in [9] finds
multiple disjoint UNSAT cores by removing previously found
UNSAT cores and calling the SAT-solver again. However,
the main benefit for multiple design errors is if multiple
overlapping UNSAT cores can be found. There are several
algorithms to accomplish this goal, but they require significant
computation [10]. In practice, a single UNSAT core can be
generated easily while multiple disjoint cores can be foundif
the problem happens to contain them.

The following example demonstrates the use of a single
UNSAT core to restrict the solution space for finding a single
design error.

Example 1 Figure 1 shows a visualization of the debug
instance from Equation 1. A simple combinational circuit has
been augmented with the error model denoted by⊗ which
disconnects a gate’s fan-out from its fan-in to become free.
Next, constraints are added for the input and expected outputs.
Notice that the outputs mismatch ong4 and g5.

By disabling all suspect variables, we can generate an
UNSAT core involving variablese1, e2 ande4 for this instance.
This core implies if there is a single design error, it must
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Fig. 1. SAT-based Design Debugging Instance

be among the corresponding gates. When solving the SAT-
instance for a single design error (N = 1), e2 = 1 is the only
satisfiable solution corresponding to gateg2, confirming the
information found in the UNSAT core.

III. E FFICIENT DEBUG OFMULTIPLE DESIGN ERRORS

Unsatisfiable cores can provide valuable information in
determining which locations are involved in the observed
failure. However as mentioned previously, finding multiple
cores is not a simple task. In this section, we describe a
method for finding a single unsatisfiable core at each error
cardinality that can be used to reduce the search space for
higher cardinalities. The unsatisfiable cores generated are a
natural result of the solving process at each cardinality and fit
within existing SAT-based frameworks.

A. Reducing the Search Space of Multiple Design Errors

As previously described, an unsatisfiable core intuitively
contains information regarding which parts of the design are
responsible for the observed failure. Given a single core that is
derived by setting all the suspect variable to0, we know that at
least one of the suspect variables in the core must be activated
in order to generate a satisfying assignment. However, this
result can be generalized to higher cardinalities as well.

When debugging at a certain cardinalityN , one finds
all possible satisfying solutions that have exactlyN suspect
variables active by adding blocking clauses. Once the solver
proves unsatisfiability at that cardinality, it also generates an
unsatisfiable core. However intuitively, this core differsfrom
the one described in Section II-B. Instead of only finding a
single conflict, the suspect variables allow additional flexibility
in breaking up toN conflicts. However, even by breakingN
conflicts, there still must exist at least one more conflict that
cannot be broken. To achieve a SAT result, we must be able
to break each one of these conflicts. This means that some
subset of suspect variables (> N ) involved in these conflicts
are needed in order to break the resulting core. This leads
to the result that if a suspect variable is not included in the
unsatisfiable core atN , then it cannot be in a solution atN+1.
This is stated more precisely in the next theorem.

Theorem 1 Let U be the unsatisfiable core generated by
solving and blocking all solutions for the debug instance
Debug(N). If ei /∈ U , then ei = 1 is not in any satisfying
solution of the instanceDebug(N + 1) with all lower cardi-
nality solutions blocked.

Proof: Assume towards a contradiction that a suspect
variable ei /∈ U and ei = 1 is part of a satisfying solution
for Debug(N + 1). Since ei = 1, then exactlyN other



suspect variables may be active.U is an unsatisfiable core
that cannot be broken withN or less suspect variables being
active. Therefore,Debug(N + 1) is still unsatisfiable leading
to a contradiction. So it must be the case thatei = 1 is not
part of any satisfying solution forDebug(N + 1).

Although Theorem 1 gives us valuable information about
the next cardinality, it can also provide information about
higher cardinalities. The core can help us constrain the solution
space of higher cardinalities by specifying a superset of the
suspect variables which must be active. This is described in
the next corollary.

Corollary 1 GivenU from Theorem 1, any solution found at
a cardinality greater thanN must have at leastN +1 suspect
variables active fromU .

Proof: If fewer than N + 1 suspect variables fromU
are active, thenU still forms an UNSAT core so it cannot
be part of any solution for a higher cardinality. Therefore,any
satisfying solution must involve at leastN+1 suspect variables
from U .

Notice that the results in [9] are a special case of Theorem 1
and Corollary 1 whereN = 0. Similar results for multiple
UNSAT cores can be applied for the higher cardinality cores
as well. However, as mentioned before, these multiple cores
are difficult to generate efficiently. The next example shows
how Theorem 1 helps reduce the search space at higher
cardinalities.

Example 2 Continuing from Example 1, if we use the UNSAT
core resulting from the debugging instance withN = 1, we
will get an UNSAT core involving variablese1, e2, e4 and e5.
When solving theN = 2 instance (while blocking previously
found solutions), we will get a single solution ofe4 = 1∧e5 =
1 corresponding to gatesg4 and g5. This confirms the result
from Theorem 1 where the suspects in the solution must be in
the UNSAT core from the previous cardinality.

Since unsatisfiable cores are generated at each cardinality
as a by-product of solving process, Theorem 1 can be used
effectively with very little overhead. An integrated algorithm
is described in the next sub-section.

B. Overall Algorithm

Algorithm 1 presents pseudo-code for the overall algorithm
to debug multiple design errors. The algorithm takes as input
the maximum error cardinality (Nmax) and outputs solutions
corresponding to possible locations for the design error(s).
Lines 5-10 consist of the main loop where the debugging
instance is solved for each error cardinality and an UNSAT
core is generated. First, the debugging instance is createdat the
current error cardinality on line 6. The SAT instance is made
such that any satisfying solution will activate exactlyn suspect
variables corresponding to the current error cardinality.Next,
Theorem 1 is applied where suspects not inside the previously
found core are removed from the instance (line 7). This can
either by done by re-generating the instance or simply setting
the corresponding suspect variables to0. Using this optimized
instance all solutions are found (line 8). Finally, the UNSAT
core is extracted on line 9.

On line 9, it is important to use the unoptimized instance
(with all the solutions blocked) to derived the UNSAT core.

This is due to the instance generated on line 7 removing certain
suspect variables from consideration. These removed variables
apply only to the current cardinality, not higher ones. If the
optimized instance were used instead, it would generate a
core whose suspect variables incorrectly constrain the solution
space.

A more general method could use Corollary 1 instead. In
this way, additional constraints could be used to force suspect
variables in the core to be at least a certain number. However,
too many additional clauses would be needed to model this
constraint, negating the benefit of the optimization in the first
place.

Algorithm 1 Debugging Multiple Design Errors
1: Nmax := error cardinality
2: sols := solutions found by algorithm
3: procedure DEBUGMULTIPLEERRORS(Nmax)
4: U ← {}, sols← {}
5: for n : 0 .. Nmax do
6: instorig ← Debug(n)
7: instopt ← DISMISSSUSPECTS(inst, U)
8: sols ← sols ∪ SOLVEALL(instopt)
9: U ← EXTRACTCORE(instorig ∧ block(sols))

10: end for
11: return sols
12: end procedure

IV. EXPERIMENTS

In this section we present results for the proposed algorithm
for debugging multiple design errors. All experiments are
performed using a single core of an Intel Core i5 3.1 GHz
machine with memory limit of 8GB and a timeout of 7200
seconds. The debugger used is a C++ sequential SAT-based
engine based on [5]. MINI SAT [13] is used to solve all the
SAT instances. The UNSAT core extraction feature in the
solver is turned on only during the EXTRACTCORE step in
Algorithm 1. All other runs used the default solver settings
with the core extraction feature off.

The effectiveness of the proposed technique is shown on
a variety of RTL designs from OpenCores [11]. Each debug
instance is generated by randomly selecting a line in the
RTL and inserting a typical RTL design error such as a
incorrect operator, state transition, or module instantiation.
These RTL errors translate to multiple design errors at the gate
level. To effectively demonstrate the effect of multiple design
errors, error models (i.e., suspect variables) are placed on the
output of gates of the synthesized design that correspond to
signals at the RTL level. This translates to a suspect variable
on each bit of all Veriloginputs, wires andregs. This
ensures that the error models can correspond precisely to any
given design error. Next, each instance is run through its
accompanying testbench, simulated and the resulting counter-
example is recorded. This counter-example contains the initial
state and the primary input/output values for each cycle of the
simulation trace, which are used to constrain the debugging
problem. The instances are labeled with the circuit name
followed by a number indicating different errors that were
inserted.

The experimental results for Algorithm 1 withNmax = 3
are shown in Table I. The proposed algorithm is denoted by



TABLE I
DEBUGGING MULTIPLE DESIGN ERRORSEXPERIMENTS

instance info orig [5] core
instance gates flops clks # sus sols sols sols time mem core total mem dismiss dismiss dismiss

(N=1) (N=2) (N=3) (s) (MB) (s) (s) (MB) (N=1) (N=2) (N=3)
ac97 ctrl1 15109 2482 300 2483 25 3 262 294 2466 16 165 2628 2450 2471 2413
ac97 ctrl2 15114 2483 200 2456 12 132 205 402 1937 37 303 1903 2430 2350 2333
divider1 3773 424 39 498 18 503 5228 653 487 26 693 473 136 31 9
mem ctrl1 46767 1239 40 2858 6 14 4 57 1309 9 35 1385 2824 2705 2508
mrisc core1 15407 2161 41 2566 52 118 616 317 913 10 245 886 2446 2378 2112
mrisc core2 14456 1371 40 2044 61 358 3392 637 708 7 488 690 1799 1798 1514
rsdecoder1 13023 526 40 5159 21 102 2714 2518 1000 81 2124 1026 2870 1139 602
usb funct1 10217 736 37 1593 27 223 299 1298 788 203 1451 806 1420 994 480
vga1 72292 17110 50 2936 38 328 3578 3958 1639 182 2625 1440 2766 2568 2369
vga2 73546 17213 100 1103 118 116 15 57 1119 4 37 1133 939 1065 1051

core and compared against the SAT-based debugger described
in [5], denoted byorig. Each row of the table corresponds to
a different instance that is run. The first five columns of the
table show the instance name, number of combinational gates,
number of state elements, length of the counter-example, and
number of potential suspect locations. The next three columns
show the number of solutions for each of the three error
cardinalities which are identical for bothcore andorig.

The next two columns show the run-time in seconds and the
peak memory in MB fororig. Columns 11-16 show the results
for core. These six columns show the cumulative time needed
to generate all the UNSAT cores, total run-time including core
generation, peak memory and number of suspects removed
from consideration for each of the three error cardinalities.

The benefit of the proposed technique is clearly shown
when looking at the total run-time compared with the previous
work. There is an average reduction 22% in the total run-time
when using UNSAT cores. This comes with almost no impact
to peak memory resulting in a slight reduction of 0.4% in
favor of thecore technique. This improvement in run-time can
be primarily explained by the drastic reduction in the search
space for each cardinality. From columns 14-16, the average
reduction in terms of number of suspects across all instances
are 83%, 74% and 66% forN = 1 to N = 3 respectively.

Figure 2 shows the number of dismissed suspects for several
instances for eachN . When the number of dismissed suspects
is large, there is significant benefit to total run-time, as inthe
case ofvga with a run-time reduction of 34%. However, when
the number of dismissed suspects is small, as in the case of
divider1, the benefit of reducing the solve time may not
outweigh the increased overhead of finding an UNSAT core.
A similar case occurs inusb_funct1 where the trade-off of
finding a core atN = 2 did not pay off during the solving of
N = 3. Although these two instances show negative results,
overall the technique still performs well in reducing run-time.

In terms of peak memory, the two sets of experiments
returned mixed results. In general, extracting an UNSAT core
causes an increase in memory usage due to the necessary
bookkeeping needed to keep track of the core during solving.
However, for these experiments the peak memory occurred
primarily while solving theN = 3 case where core extraction
is turned off. As a result the memory results are almost
identical to each other.

V. CONCLUSION

In this work, we present a new algorithm for debugging
multiple design errors efficiently. It builds upon previous
work by generalizing the concept of how to generate as well
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Fig. 2. Percentage of Dismissed Suspects

as apply unsatisfiable cores to reduce the solution space of
the debugging problem. The generation and application of
these cores fits naturally within existing SAT-based debugging
frameworks to allow easy extensibility of existing implemen-
tations. Experimental results show large improvements to run-
time while having minimal impact to peak memory.
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